

Axis Tutorial

Axis Tutorial |

Table of Contents

1. Axis Scales 1-4

1.1. Scale Synchronization 4-5

1.2. Elements And Axis Scales 5-6

2. Axis Ticks 7-10

2.1. Minor Ticks 10-11

2.2. Axis Time Label Automation 11-15

2.3. Axis Calculated Ticks 15-16

3. Axis Markers 17-19

4. Multiple Axes 20

4.1. Calculated Axes 21-22

5. Element Layout Control 23

5.1. Advanced: Z Axis Effect 23-25

6. Axis Value Coordinates 26

Axis Tutorial |

Axis Scales

Introduction
This section will describe the following:

 Scale Types
What the different axis scales offer.

 Intervals
Controlling numeric and time tick intervals.

 Scale Range
Controlling the axis scale start, end, and range.

 Scale Breaks
Using scale breaks.

 Scale Influentials
Allow axis markers and custom axis tick to influence axis scale ranges.

Scale Types

Axis scales dictate more than just the values on an axis. They also specify element behavior such as
stacked, or FullStacked. The options for the Scale enumeration include:

 Normal

 Range

 Logarithmic

 Time

 Stacked

 FullStacked

 LogarithmicStacked

Between numeric and time scales, .netCHARTING will automatically set the appropriate scale so it does
not always need to be specified explicitly. Scales such as Stacked or FullStacked only apply to axes on
which the element y values are plotted because these are the values that are stacked. For example with a
combo chart, the Chart.YAxis would be the one to specify a stacked scale.

Other properties that control the scale include:

 LogarithmicBase
specifies the logarithmic base of intervals.

 Percent
A '%' sign will be added to the end of tick labels and the axis maximum will snap to 100% if the
plotted data's range falls between 50 and 100.

 InvertScale
reverses the sequence of a scale.

Intervals

Intervals come in two flavors, numeric, and time. The latter is more complicated so we’ll tackle numeric
first.

Controlling the interval is a simple concept. You can specify a numeric interval using code such as:
[C#]
Chart.YAxis.Interval = 5;

[Visual Basic]
Chart.YAxis.Interval = 5

This will force an interval at every five numeric units. Other interval related properties include:

 MinimumInterval
Specifies the minimum numeric interval.

1 Axis Scales

TIP: This allows you to prevent the axis scale from using intervals that are smaller than a single

Axis Tutorial | 1

 TickNumberMaximum
Specifies the maximum number of ticks to generate.

Time interval

The basic time interval is controlled with the Axis.TimeInterval property
[C#]
Axis.TimeInterval = TimeInterval.Week;

[Visual Basic]
Axis.TimeInterval = TimeInterval.Week

Advanced time interval

A more complex time interval is also available and can be specified through the
Axis.TimeIntervalAdvanced property.

Multiplier

Using the advanced time interval version allows you to specify an interval multiplier. For example we can
have an interval every 4 days or 2 weeks etc.
[C#]
Axis.TimeIntervalAdvanced.Multiplier = 2;

[Visual Basic]
Axis.TimeIntervalAdvanced.Multiplier = 2

Custom time span

A completely custom time span can be used as a time interval.
[C#]
Axis.TimeIntervalAdvanced.TimeSpan = new TimeSpan(10,5,3);

[Visual Basic]
Axis.TimeIntervalAdvanced.TimeSpan = New TimeSpan(10,5,3)

Custom start time

An interval can also start at any given time. These times can be specified through the following
properties:

 StartMonth
The month of year at which this interval initially occurs. Value ranges from zero indicating January, to
eleven, indicating December.

 StartDayOfWeek
The day of the week at which this interval initially occurs. Value ranges from zero indicating Sunday,
to six, indicating Saturday.

 Start
A DateTime object representing the time instant at which this interval initially occurs. The value of
this DateTime structure can be specific down to the millisecond.

Ranges

The scale’s numeric, time, and category axis boundaries can be specified using the Axis.ScaleRange
property. New in version 5.0, the scale range can also represent a range on a category axis.
[C#]
Chart.YAxis.ScaleRange.ValueHigh = 100;
Chart.YAxis.ScaleRange.ValueLow = 2;
//Or
Chart.YAxis.ScaleRange.ValueHigh = new DateTime(2000,12,1);
Chart.YAxis.ScaleRange.ValueLow = new DateTime(2000,1,1);

[Visual Basic]
Chart.YAxis.ScaleRange.ValueHigh = 100

unit of your data. For example a chart showing votes and the maximum number being 3 may
show intervals at .5 which are not desired.

Axis Tutorial | 2

Chart.YAxis.ScaleRange.ValueLow = 2
'Or
Chart.YAxis.ScaleRange.ValueHigh = New DateTime(2000,12,1)
Chart.YAxis.ScaleRange.ValueLow = New DateTime(2000,1,1)

Providing a single high or low value without its counterpart is also permitted.
[C#]
YAxis.ScaleRange.ValueLow = 2;

[Visual Basic]
YAxis.ScaleRange.ValueLow = 2;

Category Axis Scale Ranges

New in version 5.0, the scale range can also represent a category axis range. It can achieved in two
ways. The axis tick label text can be used to specify the range. The other way is to use a zero-based
indexes to reference the axis ticks. For example, if there are 10 axis ticks they can be referenced using a
numeric index of [0-9]. This code demonstrates the two methods.
[C#]
// Using names.
Chart.XAxis.ExtraTicks.Add(new AxisTick("Element 1", "Element 3", "Range"));
// Using indexes.
Chart.XAxis.ExtraTicks.Add(new AxisTick(0, 2, "Range"));

[Visual Basic]
' Using names.
Chart.XAxis.ExtraTicks.Add(New AxisTick("Element 1", "Element 3", "Range"))
' Using indexes.
Chart.XAxis.ExtraTicks.Add(New AxisTick(0, 2, "Range"))

Time Scale Padding

Time scale ranges can be padded with an equal amount of time on either side of the plotted data to
produce the final range. This is achieved using Axis.TimePadding.
[C#]
Chart.XAxis.TimePadding = TimeSpan.FromDays(10);

[Visual Basic]
Chart.XAxis.TimePadding = TimeSpan.FromDays(10)

Scale Breaks

Scale breaks are discontinuities in an axis' scale. They are useful in the following scenarios:

 When there is a large difference between low and high element values.

 When element value variations are much smaller than the scale range.

 When specific days of a week should be excluded in the scale, for example, weekends are not needed
in financial charts. Scale breaks can work with a calendar pattern in this case.

For the first two cases, the chart engine can automatically generate a scale break by setting
Axis.SmartScaleBreak to true.

Note: Numeric intervals start at zero, therefore, if the minimum value doesn’t land on an interval there
may be a gap between the scale’s edge and the first axis tick.

Sample: AxisScaleBreakCalendarPattern.aspx

Sample: AxisScaleBreaks.aspx

Axis Tutorial | 3

Scale breaks are added manually like so:
[C#]
Axis.ScaleBreaks.Add(new ScaleRange(0,50));
//Or for time:
Axis.ScaleBreaks.Add(new ScaleRange(new DateTime(2000,1,1), new DateTime(2000,12,1)));

[Visual Basic]
Axis.ScaleBreaks.Add(New ScaleRange(0,50))
'Or for time:
Axis.ScaleBreaks.Add(New ScaleRange(New DateTime(2000,1,1), New DateTime(2000,12,1)))

Scale Break Styles

A number of options are available to achieve the scale break style your charts require. The style can be
set with the ScaleBreakStyle enumeration at the axis level as shown below.
[C#]
Chart.YAxis.ScaleBreakStyle = ScaleBreakStyle.ZigZag;

[Visual Basic]
Chart.YAxis.ScaleBreakStyle = ScaleBreakStyle.ZigZag

Scale Influentials
Objects that inherit from ScaleRange, such as AxisMarker and AxisTicks are able to influence the axis’
scale range. For instance, a chart showing bandwidth usage over a period of time with an axis marker
representing the bandwidth limit may have elements that will never reach or even come close to the limit
marker’s value. Because of this, the limit marker will not be visible on the chart; however, if
AxisMarker.IncludeInAxisScale is true, the marker will tell the axis scale range to encompass its value.

Objects that can influence axis scales are:

 AxisMarker

 AxisTick

Introduction

Multiple axes of the same type (numeric or time) and orientation (X or Y) can synchronize their scales in a
number of ways. They can sync their entire scale, only high or low values, and the origin positions. This is
useful if you are using many axes on a single chart that need to sync or different axes throughout chart
areas that need to stay on the same scale.

To synchronize two axes, simply specify which axis you want another axis to sync with.

Sample: AxisScaleBreaksManual.aspx

Sample: AxisScaleBreakStyling.aspx

Sample: AxisAffectScale.aspx

1.1 Scale Synchronization

Axis Tutorial | 4

[C#]
Chart.YAxis.SynchronizeScale.Add(myNewAxis);

[Visual Basic]
Chart.YAxis.SynchronizeScale.Add(myNewAxis)

You can add as many axes to synchronize as you'd like. By default the entire scale will sync but if you
would like to change this behavior you can specify a SynchronizeScaleMode enumeration.
[C#]
Chart.YAxis.SynchronizeScale.Mode = SynchronizeScaleMode.High;

[Visual Basic]
Chart.YAxis.SynchronizeScale.Mode = SynchronizeScaleMode.High

This will cause the axes to sync only the high values.

Synchronization Chain

This system also allows for complex sync chains. The above synchronizes the main y axis high value with
the high value of myNewAxis. If you would like to synchronize the low value of myNewAxis with another
axis you can do this also:
[C#]
myNewAxis.SynchronizeScale.Add(myOtherAxis);
myNewAxis.SynchronizeScale.Mode = SynchronizeScaleMode.Low;

[Visual Basic]
myNewAxis.SynchronizeScale.Add(myOtherAxis);
myNewAxis.SynchronizeScale.Mode = SynchronizeScaleMode.Low

This will result in different synchronizations between different axes.

Introduction

While there are many options for scales, .netCHARTING can automatically determine the appropriate
scales based on your data. This tutorial will demonstrate how element data influences axis scales.

The Y Axis (value axis)

We will call this the y axis but by 'value axis' we don't literally mean (Y) axis. With
ChartType.ComboHorizontal for instance we would be referring to the x axis. For all others however it is
the y axis. The element values that influence this axis are

 YValue

 YValueStart

 YDateTime

 YDateTimeStart

The automatically chosen axis scales here are either Normal or Time. It is determined by whether the
YValue (numeric) or YDateTime (time) values are specified for each element.

The X Axis (Category / Value Axis)

1.2 Elements And Axis Scales

[New in v5.0]
The elements of a series can be excluded from the axis scale range using Series.ExcludeFromAxisRange
= true

The following table shows value settings of these element properties that the chart engine will consider
not set.

 YValue & YValueStart
Setting: double.NaN

 YDateTime & YDateTimeStart
Setting: DateTime.MinValue

Axis Tutorial | 5

The x axis is very powerful, it can operate just like the y axis value axis as well as a category axis. If the
elements have names (Element.Name) specified, the axis scale will be a category scale. However, if the
elements have either XValue or XDateTime properties set, the appropriate value axis scale will be chosen.

The element properties that influence the x axis type are:

 Name

 XValue

 XValueStart

 XDateTime

 XDateTimeStart

The data engine will always provide elements with both, names and values if the names represent
numeric or time values. By default this creates a category scale. To use a value scale instead, set the axis
scale property to the appropriate scale. Scale.Normal for numeric and Scale.Time for date time values.

Smart Category Axis
A smart category axis scale is one that contains elements with names and values but the names are
string representations of the value properties. The 'smart' part is that despite it being a category (string)
axis, the elements will be sorted in sequence based on the values they represent.
To use this axis type you must use the DataEngine and specify 'XAxis=valueDBColumn' in its DataFields
property.

Y Axis using ChartType.ComboHorizontal

Even if all numeric or time values are provided, setting any of the element's Name properties will yield
a category axis scale and values will become names for elements without specified names.

Setting the scale through DefaultAxis.Scale will not produce the same result.
[C#]
Chart.XAxis.Scale = Scale.Time;

[Visual Basic]
Chart.XAxis.Scale = Scale.Time

Axis Tutorial | 6

Axis Ticks

Introduction
This section will describe the following:

 Tick Types
Different axis tick types.

 Custom Ticks
Using custom ticks and placing them at arbitrary positions.

 String Tokens
Using tokens in axis ticks to describe elements or tick values.

 Tick Overrides
Using ticks to override the properties of a single or multiple ticks.

 Styling
Ticks styling.

 Tick Alignment
Aligning tick labels with tick marks.

The AxisTick object encapsulates information such as its value, appearance, and grid properties. It can
also be used to override a single or range of ticks on an axis.

The Axis.DefaultTick property offers a tick object that will propagate it’s settings to all ticks on the axis.
This provides a method of applying settings to all axis ticks quickly.

Another axis tick property is Axis.ZeroTick. This is the axis tick that is added to each numeric axis at its
origin (0). This tick can be disabled by setting the property to null.
[C#]
Chart.XAxis.ZeroTick = null;

[Visual Basic]
Chart.XAxis.ZeroTick = Null

Modes
An axis tick can have a single value or two values in which case it will represent a range. Numeric, time,
and string ranges can be used.

Normal Axis Ticks
[C#]
AxisTick at = new AxisTick();
At.Value = 10;

[Visual Basic]
Dim at As New AxisTick()
At.Value = 10

Range Ticks

The tick can also represent a numeric or time range.
[C#]
At.ValueHigh = 20;
At.ValueLow = 10;

2 Axis Ticks

Axis Tutorial | 7

[Visual Basic]
At.ValueHigh = 20
At.ValueLow = 10

Marker Ticks

Both value and range ticks can be represented by an ElementMarker instead of a label.
[C#]
At.Marker = new ElementMarker(“images/myImage.gif”);
[Visual Basic]
At.Marker = New ElementMarker(“images/myImage.gif”)

Custom / Automatic ticks

The element object contains XAxisTick and YAxisTick properties. These are null by default, however,
when instantiated, they will be drawn on the axis the elements belong to and will display the element’s
values on the related axis.

The AxisMarker also contains a single AxisTick property. When instantiated, it will represent the marker’s
value or range as a range tick, depending on the marker's value.

Adding Custom Ticks to an axis:

Custom axis ticks can be added to any axis like so:
[C#]
Chart.XAxis.ExtraTicks.Add(At);

[Visual Basic]
Chart.XAxis.ExtraTicks.Add(At)

To quickly add multiple axis ticks you can also list them as parameters in the Add method.
[C#]
Chart.XAxis.ExtraTicks.Add(at1, at2, at3, at4);

[Visual Basic]
Chart.XAxis.ExtraTicks.Add(at1, at2, at3, at4)

Tokens

Tick labels on a category axis can use tokens to display information about element groups they represent.
For example the default category tick’s label is “%Name” which will show the element’s name.

Ticks assigned to elements (Element.YAxisTick & Element.XAxisTick) can also use tokens to describe the
elements they represent.

Tick labels on a numeric or time axis can also use tokens. A single value tick uses the token '%Value'. A
range tick can use either the value token or any tokens related to the ScaleRange object. This
functionality is useful with time scales because it allows you to break the time label into multiple lines as
the following sample demonstrates:

Sample: ElementTicks.aspx

Sample: AxisMarkerTicks.aspx

AxisTick.IncludeInAxisScale can by used by custom ticks to affect the scale of the axis its added to.
See Axis Scale > Scale Influentials above.

Sample: elementTemplate.aspx

Sample: AxisTickToken.aspx

Axis Tutorial | 8

 See also: Token Reference ('Tokens' in the on-line documentation)

Overrides

A tick added to an axis that already contains a tick with the same value will update the old tick
properties with its own. For example, if an axis shows a tick at 20 we can override it to display some
different text using this code:
[C#]
AxisTick at = new AxisTick();
At.Value = 20;
At.Label.Text = “Twenty”;
XAxis.ExtraTicks.Add(At);

[Visual Basic]
Dim at As New AxisTick()
At.Value = 20
At.Label.Text = “Twenty”
XAxis.ExtraTicks.Add(At)

If a tick at 20 didn’t exist, it would be added as an additional tick.

A tick can also be used to propagate its settings to a range of ticks. Consider a scale from -100 to 100. If
we wanted to color all the negative values red we could do so with the following code:
[C#]
AxisTick at = new AxisTick();
At.ValueHigh = -1;
At.ValueLow = -100;
At.Label.Color = Color.Red;
At.OverrideTicks = true;
XAxis.ExtraTicks.Add(At);

[Visual Basic]
Dim at As New AxisTick()
At.ValueHigh = -1
At.ValueLow = -100
At.Label.Color = Color.Red
At.OverrideTicks = True;
XAxis.ExtraTicks.Add(At)

Styling

The AxisTick object can control its appearance as well as the grid line that stems from it. The TickLine
property can also take advantage of the Line.Length and Line.(LineCap related) properties.

Some styling examples:
[C#]
AxisTick at = new AxisTick();
At.Label.Font = new Font(“Verdana”,10);
At.Line.Length = 8;
At.GridLine.DashStyle = Dash;

[Visual Basic]
Dim at As New AxisTick()
At.Label.Font = New Font(“Verdana”,10)
At.Line.Length = 8
At.GridLine.DashStyle = Dash

Notice that the AxisTick.OverrideTick setting is required so the axis knows whether override a range of
ticks or add a regular range tick.

Axis Tutorial | 9

The axis contains properties that also modify the axis tick appearance.

 TickLabelMode
This enumeration allows you to specify the layout behavior of ticks.

 TickLabelPadding
A numeric value in pixels that indicates the distance between a tick line and the label.

 TickLabelSeparatorLine
Between each tick mark a line can be drawn to accentuate tick label separation. This line is
automatically enabled when tick labels decide to wrap.

Tick Alignment
Tick marks can also be drawn between each tick label instead of above it. This is done by setting
Axis.CenterTickMarks to false. When this is the case, only Axis.DefaultTick properties are used instead of
individual tick line properties because not every tick mark will pertain to a label.

Introduction

Minor axis ticks are used to divide scale intervals into smaller logical intervals. This can be done
automatically or specified manually.

Smart Minor Ticks (Automatic)

Smart minor ticks will automatically determine a logical minor interval considering the scale's major
intervals. For example, a time interval of three months will automatically place a minor tick for every
month. To use this feature simply set an axis' SmartMinorTicks property to true.

[C#]
Chart.XAxis.SmartMinorTicks = true;

[Visual Basic]
Chart.XAxis.SmartMinorTicks = True

Manual Minor Ticks

Minor tick intervals can be controlled through the following axis properties:

 MinorInterval
Gets or sets a numeric value that determines the interval of minor axis ticks.

 MinorTicksPerInterval
Gets or sets the number of minor axis ticks generated between major axis ticks.

 MinorTimeIntervalAdvanced
Gets or sets a TimeIntervalAdvanced object that determines the interval of minor axis ticks on a
time scale.

Minor Tick Manipulation

While minor ticks don't traditionally have labels or any special styling, in .netCHARTING terms it's just
another axis tick. If needed, the minor ticks can have labels, extra long or thick lines etc. All the
functionality of an axis tick is available to minor ticks. One difference is that minor ticks will not influence
the grid with regards to alternating grid colors of an axis (AlternateGridBackground).

Tip: Centered tick marks are commonly used with category axes [Group A , Group B, …] and
sometimes with time axes [May, June, …]

2.1 Minor Ticks

Sample: AxisSmartMinorTicks.aspx

 Smart minor ticks are only generated when the interval is determined automatically as opposed to
explicitly specified .

 If smart minor ticks are less than the specified Axis.MinimumInterval, they will not be
generated.

Sample: AxisMinorTicksTrick.aspx

Axis Tutorial | 10

Introduction
This feature is yet another charting innovation brought to you only by .netCHARTING. Axis time label
automation is a collection of smart features that accurately describe the time segment shown on a time
axis scale. With these user friendly and automatic features, your time based charts will be more intuitive
and readable.

How smart is it?

Simply put, quite. This feature is aware of things such as whether your time span crosses into another
day, month, or year and will point these things out to the viewer. It is also aware of how specific your
data is; meaning, whether it's describing minutes, days, months and so on. This is a complicated task
with countless permutations where you may require a behavior other than the default. Fortunately, this
feature is also very well equipped with plenty of options that allow meticulous customization.

If this sounds useful for your projects, let's explore the topic a bit further.

Hierarchy & API

There are two separate mechanisms involved with time label automation. One generates single value
labels and the other generates range ticks. The behavior of both can be controlled with two properties:

 Axis.TimeScaleLabels.Mode (Single Value Mechanism)
Enumeration Members: TimeScaleLabelMode

 Axis.TimeScaleLabels.RangeMode (Range Value Mechanism)
Enumeration Members: TimeScaleLabelRangeMode

Additional options of these features are available through the Axis.TimeScaleLabels property.

Single Value Time Labels
Dynamic Mode

An automatically determined or specified time interval can be used with this mode. This mode will
determine what the axis ticks are describing and apply the format strings and axis tick properties that
correspond to the time instance of each axis tick. The format strings and axis ticks are found in the
TimeScaleLabelInfo class and are covered in depth below.

Let's start with an example. This is a normal time axis without any time automation. Only the
time interval is automatically determined:

Now let's see how the automation engine will handle this scale in 'dynamic' mode.
[C#]
Chart.XAxis.TimeScaleLabels.Mode = TimeScaleLabelMode.Dynamic;

[Visual Basic]
Chart.XAxis.TimeScaleLabels.Mode = TimeScaleLabelMode.Dynamic

As you can see, the ticks are evaluated and for the most part have been determined to represent months,
therefore, they are labeled with the month's name. One of the ticks, however, represents the year and is
formatted to show the four digit year.

Smart Mode

The above, 'dynamic mode' uses static formats specified in the TimeScaleLabelInfo class. The smart
mode will do the same, however, only if they are specified by the user. Otherwise the formats will be

2.2 Axis Time Label Automation

Axis Tutorial | 11

determined automatically based on a number of factors resulting in a detailed and well laid out axis.
Considering all the different factors, the smart time automation engine will choose from over 100 formats
and templates to produce the most appropriate result.

[C#]
Chart.XAxis.TimeScaleLabels.Mode = TimeScaleLabelMode.Smart;

[Visual Basic]
Chart.XAxis.TimeScaleLabels.Mode = TimeScaleLabelMode.Smart

Hidden Mode

This mode will prevent any single value axis ticks from being shown on the axis. It is useful in conjunction
with range labels when they sufficiently describe the time segment and single value ticks are not desired.

[C#]
Chart.XAxis.TimeScaleLabels.Mode = TimeScaleLabelMode.Hidden;

[Visual Basic]
Chart.XAxis.TimeScaleLabels.Mode = TimeScaleLabelMode.Hidden

Ranged Time Labels
Default Mode

The default mode does not generate any axis ticks, unless, the time intervals to base those axis ticks on
are specified. Adding range time intervals is explained below.

Dynamic Mode

When the TimeScaleLabelRangeMode.Dynamic mode is specified, the time span is analyzed to determine
what time intervals should be used to generate ranged axis ticks. The range ticks are then generated
based on those intervals. If range time intervals are specified by the user this mode will not generate any
extra axis ticks based on automatic time intervals. In effect, it will behave like the Default mode.

Consider the following axis scale:

[C#]
Chart.XAxis.TimeScaleLabels.RangeMode = TimeScaleLabelRangeMode.Dynamic;

[Visual Basic]
Chart.XAxis.TimeScaleLabels.RangeMode = TimeScaleLabelRangeMode.Dynamic

The resulting axis:

Because the axis ticks represent months and span multiple years, range axis ticks were created for both
of these units of time.

The chart will be widened below so everything is shown properly.

Sometimes, there may be a large number of range ticks generated which will span multiple rows.
Since this may not be desirable, using Axis.TimeScaleLabels.MaximumRangeRows will provide a way
to limit the number of rows drawn.

Axis Tutorial | 12

Specifying Range Time Intervals

Time intervals can be added using the Axis.TimeScaleLabels.RangeIntervals property. When added,
they are always generated and the dynamically determined time intervals are omitted. This code snippet
will also demonstrate using TimeScaleLabelMode.Hidden to hide the single value ticks.

[C#]
Chart.XAxis.TimeScaleLabels.Mode = TimeScaleLabelMode.Hidden;
Chart.XAxis.TimeScaleLabels.RangeIntervals.Add(TimeInterval.Month);

[Visual Basic]
Chart.XAxis.TimeScaleLabels.Mode = TimeScaleLabelMode.Hidden
Chart.XAxis.TimeScaleLabels.RangeIntervals.Add(TimeInterval.Month)

Custom Styling and Formatting

The time label automation mechanism will describe the time segment accurately, but, it may not describe
it exactly as you'd like. This section describes the options available for this customization.

The axis property TimeScaleLabels is an Axis.TimeScaleLabelInfo class. This class contains format
strings and axis tick objects that correspond to time units used by these features. Because time
automation is based mainly on time instances, the generated labels can be fully controlled through
objects you may already be familiar with.

For example, let's consider this is our time scale using dynamic mode:

Format Strings

The labels are long and this is causing them to angle. The day labels don't NEED to spell the whole word
out, therefore, the days format string will be modified to only abbreviate the day names using the
following code:
[C#]
Chart.XAxis.TimeScaleLabels.DayFormatString = "ddd d";

[Visual Basic]
Chart.XAxis.TimeScaleLabels.DayFormatString = "ddd d"

Label Templates
Now that the labels aren't angled, there is another thing that stands out a bit, or rather, doesn't stand out
enough. The February tick can be easily missed and it doesn't tell us what day it is describing. If we
change its format to show all this information, this label will be long and cause the labels to angle again.
To overt this problem, we will instead manipulate the month's axis tick label to show all the information
we need and add a new line character to draw the label on two lines and keep it narrow.
[C#]
Chart.XAxis.TimeScaleLabels.MonthTick.Label.Text = "<%Value,ddd d>\n<%Value,MMMM>";

[Visual Basic]

TIP: Multiple range intervals can be added simultaneously using a single line of code:

Chart.XAxis.TimeScaleLabels.RangeIntervals.Add(TimeInterval.Months, TimeInterval.Years)

Axis Tutorial | 13

Chart.XAxis.TimeScaleLabels.MonthTick.Label.Text = "<%Value,ddd d>\n<%Value,MMMM>"

Styling

Now the scale looks much better. Still, for those of you who always give 110%, let's go a step further and
make those month labels really stand out. As we've seen in the above example, an AxisTick is exposed for
each time unit. This gives us complete control over its appearance. This code will modify the month
label's font and color.
[C#]
Chart.XAxis.TimeScaleLabels.MonthTick.Label.Font = new Font("Arial",8,FontStyle.Bold);
Chart.XAxis.TimeScaleLabels.MonthTick.Label.Color = Color.DarkBlue;

[Visual Basic]
Chart.XAxis.TimeScaleLabels.MonthTick.Label.Font = New Font("Arial",8,FontStyle.Bold)
Chart.XAxis.TimeScaleLabels.MonthTick.Label.Color = Color.DarkBlue

Range ticks labels can be customized in the same manner. This code modifies the YearTick's font and line
color.

[C#]
Chart.XAxis.TimeScaleLabels.YearTick.Label.Font = new Font("Arial",8,FontStyle.Bold);
Chart.XAxis.TimeScaleLabels.YearTick.Line.Color = Color.Blue;

[Visual Basic]
Chart.XAxis.TimeScaleLabels.YearTick.Label.Font = new Font("Arial",8,FontStyle.Bold)
Chart.XAxis.TimeScaleLabels.YearTick.Line.Color = Color.Blue

Test your skills

Now that you're a time label automation expert, let's test your skills and see if you can figure out the
code used to generate this chart axis:

Answer (code)

[C#]

Tip: It may also be useful to use a smaller font to create more room for axis ticks.

Axis Tutorial | 14

 Chart.XAxis.FormatString = "d";

 Chart.XAxis.TimeLabelAutomation.RangeIntervals.Add(TimeInterval.Weeks, TimeInterval.Months, TimeInterval.Years);
 Chart.XAxis.TimeLabelAutomation.WeekTick.Label.Text = "Week\n<%Low,dd> - <%High,dd>";
 Chart.XAxis.TimeLabelAutomation.MonthTick.Line.Color = Color.Orange;
 Chart.XAxis.TimeLabelAutomation.YearTick.Line.Color = Color.Green;
 Chart.XAxis.TimeLabelAutomation.YearTick.Label.Font = new Font("Arial",8,FontStyle.Bold);
 Chart.XAxis.TimeLabelAutomation.MonthTick.Label.Font = new Font("Arial",8,FontStyle.Italic);

[Visual Basic]
 Chart.XAxis.FormatString = "d"

 Chart.XAxis.TimeLabelAutomation.RangeIntervals.Add(TimeInterval.Weeks, TimeInterval.Months, TimeInterval.Years)
 Chart.XAxis.TimeLabelAutomation.WeekTick.Label.Text = "Week\n<%Low,dd> - <%High,dd>"
 Chart.XAxis.TimeLabelAutomation.MonthTick.Line.Color = Color.Orange
 Chart.XAxis.TimeLabelAutomation.YearTick.Line.Color = Color.Green
 Chart.XAxis.TimeLabelAutomation.YearTick.Label.Font = new Font("Arial",8,FontStyle.Bold)
 Chart.XAxis.TimeLabelAutomation.MonthTick.Label.Font = new Font("Arial",8,FontStyle.Italic)

Introduction

Previous to version 3.2, to create an axis tick representing a value such as the average of the plotted
data, the value had to be calculated, then, an axis tick was manually added to the axis. This process has
now been simplified down to one simple line of code.

Calculated Axis Tick

The following code adds a calculated tick to an axis.

[C#]
Chart.YAxis.AddCalculatedTick(Calculation.Average);

[Visual Basic]
Chart.YAxis.AddCalculatedTick(Calculation.Average)

As you can see, this code does not specify any data to perform the calculation on. In this case, the data
plotted on the axis is calculated.

Data Specific

A calculation based on only one series of the data shown on an axis is often desired. When this is the
case, a single series or any number of series can be specified to base the calculation on.

The following code demonstrates specifying a series:

[C#]
Chart.YAxis.AddCalculatedTick(Calculation.Average, mySeries);

[Visual Basic]
Chart.YAxis.AddCalculatedTick(Calculation.Average, mySeries)

Using a template

2.3 Axis Calculated Ticks

To specify multiple series, place them into a series collection which can be specified as a method
parameter.

Axis Tutorial | 15

The resulting axis tick will show the calculated value, however, if additional formatting or textual
modifications are required, a template can be specified. The '%Value' token in the template will be
replaced with the resulting value. The following examples demonstrate template usage.

[C#]
Chart.YAxis.AddCalculatedTick("<%Value,Currency>", Calculation.Average);
Chart.YAxis.AddCalculatedTick("Average: %Value", Calculation.Average);
// Resulting Ticks:
// $123
// Average: 123

[Visual Basic]
Chart.YAxis.AddCalculatedTick("<%Value,Currency>", Calculation.Average)
Chart.YAxis.AddCalculatedTick("Average: %Value", Calculation.Average)
' Resulting Ticks:
' $123
' Average: 123

Calculated Ticks of Shadow Axes (Section 4.1)

Calculated axis ticks can also be generated for shadow axes. Despite the data not being bound to the
actual axis, a shadow axis will base it's calculations on the parent axis' data.

A common task could be to have an original axis show the scale, and a shadow axis on the other side of
the chart can show the calculated axis ticks as shown below.

[C#]
Axis axisReplica = Chart.XAxis.Calculate("Replica",true,Orientation.Right);
axisReplica.AddCalculatedTick(Calculation.Average);
Chart.AxisCollection.Add(axisReplica);

[Visual Basic]
Dim axisReplica As Axis = Chart.XAxis.Calculate("Replica",True,Orientation.Right)
axisReplica.AddCalculatedTick(Calculation.Average)
Chart.AxisCollection.Add(axisReplica)

 Sample: AxisShadowCalculatedTicks.aspx

Axis Tutorial | 16

Introduction

The AxisMarker class can be used to highlight parts of a chart area along an axis. The axis marker can
have a single value, a range, or even a CalendarPattern. An axis marker can also be attached to an
element in cases where the marker is wanted on a category axis.

Axis markers can also be drawn on top of the chart elements when in 2D mode. This behavior can be
specified by setting the AxisMarker.BringToFront property to true.

Single Value AxisMarker

An axis marker can take a number, DateTime, or string value to define it's position. This sample code
snippet uses a number and string to insert markers.
[C#]
AxisMarker am1 = new AxisMarker("Marker at 45",new Line(Color.Orange),45);
AxisMarker am2 = new AxisMarker("Text marker at 'Element 0'",new Line(Color.Green),"Element 0");
Chart.XAxis.Markers.Add(am1, am2);

[Visual Basic]
Dim am1 As New AxisMarker("Marker at 45",new Line(Color.Orange),45)
Dim am2 As New AxisMarker("Text marker at 'Element 0'",new Line(Color.Green),"Element 0")
Chart.XAxis.Markers.Add(am1, am2)

Range AxisMarker

Axis markers can also highlight a range on the chart. Even a string range.

[C#]
AxisMarker am3 = new AxisMarker("20-30",new Background(Color.FromArgb(100,Color.LightBlue)),20,30);
AxisMarker am4 = new AxisMarker("'Element 1'-'Element 2'",new Background(Color.FromArgb(100,Color.LightBlue)),"Element 1","Element 2");
am4.Label.LineAlignment = StringAlignment.Near;
Chart.XAxis.Markers.Add(am3, am4);

[Visual Basic]
Dim am3 As New AxisMarker("20-30",New Background(Color.FromArgb(100,Color.LightBlue)),20,30)
Dim am4 As New AxisMarker("'Element 1'-'Element 2'",New Background(Color.FromArgb(100,Color.LightBlue)),"Element 1","Element 2")
am4.Label.LineAlignment = StringAlignment.Near
Chart.XAxis.Markers.Add(am3, am4)

3 Axis Markers

String ranges are determined by string comparison where 2 is larger than 12.

Axis Tutorial | 17

Attached to an element

To attach an axis marker to an element simply instantiate one for the elements in question.

[C#]
myElement.AxisMarker = new AxisMarker("Attached to element 3",new Line(Color.Blue),0);

[Visual Basic]
myElement.AxisMarker = New AxisMarker("Attached to element 3",new Line(Color.Blue),0)

Calendar Pattern AxisMarker

A calendar pattern can be used to specify sections of time the axis marker is drawn on.

This example highlights the weekdays on a time x axis:
[C#]
CalendarPattern cp = new CalendarPattern(TimeInterval.Day,TimeInterval.Week,"0111110");
cp.AdjustmentUnit = TimeInterval.Day;
AxisMarker am = new AxisMarker("",new Background(Color.FromArgb(100,Color.Orange)),0,0);
am.CalendarPattern = cp;
Chart.XAxis.Markers.Add(am);

[Visual Basic]
Dim cp As New CalendarPattern(TimeInterval.Day,TimeInterval.Week,"0111110")
cp.AdjustmentUnit = TimeInterval.Day
Dim am As New AxisMarker("",New Background(Color.FromArgb(100,Color.Orange)),0,0)
am.CalendarPattern = cp
Chart.XAxis.Markers.Add(am)

 See Also: Calendar Pattern Tutorial ('Calendar Patterns' in the on-line documentation)

Markers attached to an element only appear on category axes and only if one is available.

AxisMarkerAdvanced.aspx

Axis Tutorial | 18

Sample: calendarPattern.aspx

Axis Tutorial | 19

Multiple Axes

.netCHARTING employs a straightforward yet effective system to utilize multiple axes. Each series can
have it's own x and y axis. By default each series on a chart inherits the main x and y axis

Main Axes

 Chart.YAxis

 Chart.XAxis

Axes are defined for series using the following properties:

 Series.XAxis

 Series.YAxis

The relationships and identification of axes is maintained by axis object instances. This means instead of
specifying an axis name you would specify it by using the axis object itself.

For example, here both series will use the same x axis:
[C#]
Series1.XAxis = new Axis();
Series2.XAxis = Series1.XAxis;

[Visual Basic]
Series1.XAxis = New Axis()
Series2.XAxis = Series1.XAxis

This example will show how two different axes are specified for two series.
[C#]
DataEngine de = new DataEngine();
//(... get data into the engine ...)
SeriesCollection sc = de.GetSeries();
// Let's assume the data engine generated 2 series.
// Specify different axes for each series.
sc[0].XAxis = new Axis();
sc[0].YAxis = new Axis();
sc[1].XAxis = new Axis();
sc[1].YAxis = new Axis();
// Add the series collection to the chart.
Chart.SeriesCollection.Add(sc);

[Visual Basic]
Dim de As New DataEngine()
'(... get data into the engine ...)
Dim sc As SeriesCollection = de.GetSeries()
' Let's assume the data engine generated 2 series.
' Specify different axes for each series.
sc(0).XAxis = New Axis()
sc(0).YAxis = New Axis()
sc(1).XAxis = New Axis()
sc(1).YAxis = New Axis()
' Add the series collection to the chart.
Chart.SeriesCollection.Add(sc)

See also: Z Axis effect using multiple axes (Section 5.1)

4 Multiple Axes

Samples:

 RateChart.aspx

 SeriesAxisBinding.aspx

 SeriesAxisBindingDB.aspx

 InvisibleAxis.aspx

Axis Tutorial | 20

Introduction

A Calculated axis is a Shadow Axis that mimics another axis that already exists but with a change in
behavior.

The different behavioral changes and forms of shadow axes are:

 Numeric Unit Conversion

 Time Interval Conversion

 Custom tick label manipulation delegate method

 Completely custom replica axis.

Unit Conversion

.netCHARTING is equipped with calculations for converting between 1092 different units. If you have an
axis with a scale that represents some measure, it can be easily converted to another unit. For example
feet to inches and so on.

The process for adding a calculated axis is simple:

 Instantiate a calculated axis by calling the Calculate method of an existing axis.

 Add it to the Chart.AxisCollection collection.
[C#]
Axis inchAxis = Chart.YAxis.Calculate("Inches",Length.Feet, Length.Inch);
Chart.AxisCollection.Add(inchAxis);

[Visual Basic]
Dim inchAxis As Axis = Chart.YAxis.Calculate("Inches",Length.Feet, Length.Inch)
Chart.AxisCollection.Add(inchAxis)

That is all. The axis will automatically show up on the chart by the original axis.

There is another feature worth discussing. The new converted unit axis will by default take the parent axis
ticks and convert them to the specified unit. The refresh scale option will allow the axis to come up with
its own intervals. They will not match the parent axis tick positions exactly but will behave as if it is the
original axis. This option is specified in the Calculate method as a parameter and illustrated below.

Time Interval Conversion

This type of conversion allows the resulting axis to show different time intervals than the original axis. For

4.1 Calculated Axes

Calculated axes do not fill alternating grid areas.

Do not add axes to AxisCollection that are not calculated axes. See Axis Tutorial > Multiple Axes
(Section 4) for information on how additional axes can be used.

Sample: interactiveUnitConversion.aspx

Axis Tutorial | 21

example, the first axis can show days and the calculated axis can show weeks.
[C#]
Chart.XAxis.TimeInterval = TimeInterval.Days;
Chart.XAxis.Label.Text = "Days";
Chart.AxisCollection.Add(Chart.XAxis.Calculate("Weeks",TimeInterval.Weeks));

[Visual Basic]
Chart.XAxis.TimeInterval = TimeInterval.Days
Chart.XAxis.Label.Text = "Days"
Chart.AxisCollection.Add(Chart.XAxis.Calculate("Weeks",TimeInterval.Weeks))

Custom Tick Label Manipulation Method

The third conversion requires a custom delegate method that takes a string and returns a processed
string. This gives you full control over the axis tick label text if necessary.

Replica Shadow Axis
This form of shadow axis can be very useful because it allows you to specify data related axis ticks that
help describe your data. This code demonstrates how to acquire the replica axis.
[C#]

Axis axisReplica = Chart.XAxis.Calculate("Replica");
Chart.AxisCollection.Add(axisReplica);
[Visual Basic]

Dim axisReplica As Axis = Chart.XAxis.Calculate("Replica")
Chart.AxisCollection.Add(axisReplica)

After reviewing the above samples you will see that this feature can be useful, however, don't limit
yourself to the demonstrated possibilities. The dynamic nature of this feature allows for countless
different ways to better describe your data you're plotting.

Sample: CalculatedTimeAxis.aspx

Sample: customFunction.aspx

To only show the calculated axis on the chart and not it's parent, use ParentAxis.Clear()
to make it disappear as shown in the customFunction.aspx sample.

Some possible uses of this type of shadow axis are shown in the following samples.

 AxisShadowImportantTicks.aspx

 AxisShadowSeriesNames.aspx

 AxisShadowValues.aspx

 AxisShadowValues2.aspx

Axis Tutorial | 22

Element Layout Control

Introduction
This section will describe the following:

 Sizing Columns
How axes influence the element behavior and appearance.

 Clustering Columns
How axes control column and cylinder clustering.

Besides the obvious, an axis can also control how elements drawn on its scale behave. These behavioral
features are determined by the axis that shows element names or x values. For a vertical combo chart
this would mean the x axis and y axis for horizontal combo.

Column and Cylinder Widths

 SpacingPercentage
Gets or sets a percentage (0 - 100) which indicates the spacing between columns, cylinders or groups
thereof.

 StaticColumnWidth
Gets or sets the static bar width in pixels.

Example: This code specifies the column or cylinder widths for a ChartType.Combo chart.
[C#]
Chart.XAxis.SpacingPercentage = 30; // Default is 16
// When this property is set, it takes precedence over spacing percentage.
Chart.XAxis.StaticColumnWidth = 20;

[Visual Basic]
Chart.XAxis.SpacingPercentage = 30 ' Default is 16
' When this property is set, it takes precedence over spacing percentage.
Chart.XAxis.StaticColumnWidth = 20

Clustering Columns / Cylinders
This feature enables columns in 3D modes to cluster (draw side by side) or not (draw one in front of the
other). The default behavior is to cluster and column must be clustered in 2D mode.
[C#]
Chart.Use3D = true;
Chart.XAxis.ClusterColumns = false;

[Visual Basic]
Chart.Use3D = True
Chart.XAxis.ClusterColumns = False

Other options include

 Position
The axis positions when 2 or more axes are drawn on the same side of a ChartArea.

 ReverseSeriesPositions
Indicates whether the positions of series bound to this axis are reversed without reversing legend
positions.

 ReverseSeries
Indicates whether the positions of series bound to this axis are reversed.

 ReverseStack
Indicates whether the order of stacked elements is reversed.

Z-Axis Effect

5 Element Layout Control

Tip: The column width control also defines the tool tip hotspot width of area line series types.

5.1 Advanced: Z Axis Effect

Axis Tutorial | 23

Using multiple axes with series can yield some interesting results you may not be aware of. We'll explore
a situation that simulates a z axis. A basic z axis can be simulated by setting the x axis ClusterColumns
property to false:
[C#]
Chart.XAxis.ClusterColumns = false;

[Visual Basic]
Chart.XAxis.ClusterColumns = false

This may show a chart that looks like this:

Using X Axes

This works well however if we wanted a z axis with two steps and two clustered series on each step we
will have to use two X axes. This time we will also omit setting the cluster columns property to false.
[C#]
Axis a2 = new Axis();
mySC[0].XAxis = a2;
mySC[1].XAxis = a2;
a2.Clear();

[Visual Basic]
Dim a2 As New Axis()
mySC(0).XAxis = a2
mySC(1).XAxis = a2
a2.Clear()

Using Y Axes
Y axes will typically not affect the z axis. For example using the following code where we give two of the
four series a new y axis and set the scale to stacked:
[C#]

Gantt chart tip:

The CluseterColumns feature is only available when Chart.Use3D = true, however, it is still possible to
use this feature in 2D by using 3D but emulating a 2D chart by setting the Chart.Depth property to
zero. This trick may be most useful when creating Gantt charts which require element columns from
different series (but using the same element names) to occupy the same horizontal space (with
vertical 'Combo') or vertical space with ComboHorizontal charts.

We "Clear()" the second axis so that only the original one is visible.
Tip: This method also allows overlapping columns
in 2D mode which is useful in Gantt charts:

Axis Tutorial | 24

Axis a2 = new Axis();
mySC[0].YAxis = a2;
mySC[1].YAxis = a2;
a2.Scale = Scale.Stacked;
[Visual Basic]

Dim a2 As New Axis()
mySC(0).YAxis = a2
mySC(1).YAxis = a2
a2.Scale = Scale.Stacked
Will yield this result:

Notice that the new y axis is stacked but still the main x axis manages the clustered - unclustered layout.
Therefore if we wanted to uncluster the columns we could have multiple z axis steps and some may be
stacked while other wont.
[C#]
Chart.XAxis.ClusterColumns = false;

[Visual Basic]
Chart.XAxis.ClusterColumns = false

Please note that using multiple value axes while hiding one of them may result in one going out of
sync with the other. This will result in the bars indicating incorrect values (according to the visible
value axis). This issue can be resolved by synchronizing the visible with the invisible axes.

For more information see the scale synchronization (Section 1.1) tutorial.

Sample: AxisDualScales.aspx

Axis Tutorial | 25

Introduction

This new version 4.0 feature enables users to click on a chart and obtain the value of any axis, at the
specific click location. This allows users to interact with the chart by selecting a point or range on a given
axis.

Usage

When the chart is clicked, the coordinates of the mouse click on the image must be supplied to the chart.
This is achieved by using a custom image tag with the ISMAP attribute or an image type input tag .

For example a working html tag that will return the coordinates will look like this:

To get the x y coordinates that can be passed to the axis:
[C#]
string coordinates = Page.Request.QueryString[0];

[Visual Basic]
Dim coordinates As String = Page.Request.QueryString(0)

OR

<FORM method=get> <INPUT Type=Image SRC="dnc-1j8d9ahj.png" Value=Submit > </FORM>

To get the x y coordinates that can be passed to the axis:
[C#]
string coordinates = Page.Request.Params["x"] + "," + Page.Request.Params["y"];

[Visual Basic]
Dim coordinates As String = Page.Request.Params("x") & "," & Page.Request.Params("y")

When the coordinates are retrieved they can be passed to the axis.GetValueAtX() or axis.GetValueAtY
() method and the value on the axis at this coordinate is returned as an object. If null is returned, the
coordinates were not valid for the particular axis.

 For more information on arbitrarily generating the chart, see this kb article
(http://dotnetcharting.com/kb/article.aspx?id=10073).

Samples:

 XAxisZoom.aspx

 YAxisZoom.aspx

 AxisValueClick.aspx

6 Axis Value Coordinates

In order to use this feature the default hotspot functionality cannot be used.

In WebForms, because the chart object does not maintain a state through postbacks, the chart must
be generated before this method can be called.

Axis Tutorial | 26

	Axis Scales
	Scale Synchronization
	Elements And Axis Scales

	Axis Ticks
	Minor Ticks
	Axis Time Label Automation
	Axis Calculated Ticks

	Axis Markers
	Multiple Axes
	Calculated Axes

	Element Layout Control
	Advanced: Z Axis Effect

	Axis Value Coordinates

