
Using the Ashling Opella-XD for ARM™ Debug Probe with the GNU GDB Debugger
Page 1 of 8

Ashling Application Note APB198

Using the Ashling Opella-XD Debug

Probe for ARM™ with the GNU GDB

Debugger

Table of Contents
1. Introduction 1

1.1 Installing your System 2
1.1.1 Connecting the Opella-XD to your PC and Target 2
1.1.2 Software installation (GDB server) under Windows 3
1.1.3 Software installation (GDB server) under GNU/Linux 3

2. Configuring the Ashling GDB Server 4
3. Example Debug Session using the Ashling GDB Server 5
4. GDB Detach, Quit and Kill commands 7
5. Improving GDB Download Performance 7
6. Extended GDB functionality 7

1. Introduction
Ashling’s Opella-XD for ARM Debug Probe as shown in Figure 1 is a powerful JTAG Debug
Probe for embedded development with ARM cores with a high-speed USB 2.0 connection to
the host PC.

Figure 1. The Ashling Opella-XD for ARM™ Debug Probe

The Ashling GDB Server allows you to use Opella-XD to connect to your embedded target
and debug using the Free Software Foundation's (FSF) GNU GCC GDB Debugger (see the

FSF GCC home page at http://www.gnu.org/software/gcc/gcc.html).

http://www.gnu.org/software/gcc/gcc.html

Using the Ashling Opella-XD for ARM™ Debug Probe with the GNU GDB Debugger
Page 2 of 8

Figure 2. Using the Ashling GDB Server

The Ashling GDB Server is a console type application hosted on either Windows™ or
GNU/Linux x86 based PCs. It takes requests from the GDB Debugger and sends them
directly to the Opella-XD Debug Probe. In the above figure, the GDB Debugger and Server
are shown running on the same PC, however, this is not a requirement and the GDB Server
can reside on any machine that has a network connection to the machine running the GDB
Debugger (as the Server communicates to the Debugger using the TCP/IP protocol). The
Ashling GDB Server supports any debugger that adheres to the GDB Remote Serial Protocol
including:

 GDB version 5 or later

 Insight (graphical version of GDB)

 Eclipse CDT

1.1 Installing your System
The Ashling Opella-XD for ARM Development system consists of:

 Ashling Opella-XD Debug Probe with Ashling JTAG Target Probe Assembly (TPA) for
connecting between the Opella-XD and your target system’s JTAG connector. For the
hardware connection to your ARM target, Ashling provide the TPAOP-ARM20 20-pin .1"
JTAG probe cable, for connection to a 20-pin JTAG pin-strip on your target board.

 Standard USB cable for connecting between Opella-XD and your PC.

 Opella-XD for ARM Software on CD.

Installation and target connection requires the following steps:
1. Installing the Ashling Opella-XD for ARM software. Opella-XD software works under

Windows™ and GNU/Linux x86 hosts.
2. Connecting the Opella-XD to your PC’s USB port.
3. Connecting the Opella-XD to your target’s JTAG connector (e.g. application hardware)

using the appropriate Ashling Target Probe Assembly.
4. Configuring your Debugger to use the Opella-XD as it’s target connection.

1.1.1 Connecting the Opella-XD to your PC and Target
Opella-XD is designed to connect to your PC via the USB Port and your target via the
supplied TPA. Please note the following recommended target connection sequence:

1. Ensure your target is powered off.
2. Connect Opella-XD to your PC using the supplied USB cable and ensure Opella-XD’s

Power LED is on.
3. Windows users may get a New USB hardware found message from Windows and

will be prompted to install the appropriate USB drivers. The Ashling Opella-XD drivers
are supplied on your Ashling Opella-XD for ARM Software CD and installed in your
installation directory. Direct the Windows Hardware Installation Wizard to your
installation directory so that it can locate the necessary drivers and complete the
installation. Windows only needs to perform this operation the first time you connect

your Opella-XD to the PC. The Opella-XD USB driver is called libusb0.sys

4. Connect Opella-XD to your target’s JTAG connector using the supplied TPA.
5. Power up your target.

Ashling strongly recommend you adhere to this sequence at all times to avoid damage
to the Opella-XD or to your target. When disconnecting from your target ensure you:

1. Power off your target.

Using the Ashling Opella-XD for ARM™ Debug Probe with the GNU GDB Debugger
Page 3 of 8

2. Power off Opella-XD (disconnect USB cable).
3. Disconnect Opella-XD from your target.

An un-powered Opella-XD should never be connected to a powered target.

1.1.2 Software installation (GDB server) under Windows
To install, run the SETUP.EXE program located on your CD. Follow the on screen instructions
and the SETUP program will install the software in the directory of your choice. By default, the

software is installed in the C:\Program Files\Ashling\Opella-XDforARM directory of

your hard drive. To verify Opella-XD is installed and working correctly run the supplied

diagnostic program OPXDDIAG (this is a console application and must be run from a

Command prompt). To run all tests enter:
> opxddiag --diag 1

Running with out any parameters displays all available options
> opxddiag

Make sure Opella-XD is connected to your PC and that you have installed the USB drivers
before running these tests.

1.1.3 Software installation (GDB server) under GNU/Linux
Installation consists of two steps: installing the USB driver and installing the GDB Server as
follows.

1.1.3.1.1 USB driver installation

Opella-XD uses the libusb driver (http://libusb.sourceforge.net/). By default, the driver is

stored in: /usr/lib/libusb. Check for this as follows:
$ ls /usr/lib/libusb* /usr/include/usb.h

If you see /usr/include/usb.h and libusb-0.1.so.4.4.0 or higher then you don’t

need to install or update libusb and can skip to the next section.

1.1.3.1.1.1 Ubuntu/Debian

Install using the following command:
$ sudo apt-get install libusb-dev

1.1.3.1.1.2 Fedora or other distributions

Download the latest libusb from http://libusb.sourceforge.net/ and install as follows:

$ tar zxf libusb-0.1.12.tar.gz (use appropriate version number)

$./configure --prefix=/usr

$ make

$ make install

1.1.3.1.2 GDB Server installation
1. Ensure that Opella-XD is connected to the PC, connected to the target and that the target

is powered

2. Expand the supplied gdbserverarmvXYZ.tar.gz (located on the root of the CD where

XYZ is the actual version number) file in a directory of you choice, e.g.:
$ cd /home/ashling

$ tar -zxf gdbserverarmv100.tar.gz

3. This creates the following sub directories:
ash-arm-gdb-server

4. Change to ash-arm-gdb-server directory
$ cd ash-arm-gdb-server

5. To ensure the current $USER has access to the Opella-XD device we recommend using

the Linux utility udev (requires kernel 2.6 or later).

6. Ensure udev is installed and running on your system by checking for the udev deamon

process (udevd) eg:
$ ps –aef | grep udev

7. Create a udev rules file to uniquely identify the Opella-XD device and set permissions as

required by owner/ groups. An example udev file is supplied (60-ashling.rules)

which identifies Opella-XD device (by Ashling’s USB product ID and Vendor ID).

http://libusb.sourceforge.net/
http://libusb.sourceforge.net/

Using the Ashling Opella-XD for ARM™ Debug Probe with the GNU GDB Debugger
Page 4 of 8

8. The rules file must then be copied into the rules directory (requires root permission) e.g.:
$ sudo cp ./60-ashling.rules /etc/udev/rules.d

9. Finally, you can now run ash-arm-gdb-server within the ash-arm-gdb-server directory,
e.g.:

 $. /ash-arm-gdb-server

To verify Opella-XD is installed and working correctly run the supplied diagnostic program

OPXDDIAG (this is a console application and must be run from a Command prompt). To run

all tests enter:
$./opxddiag --diag 1

Running with out any parameters displays all available options
$./opxddiag

Make sure Opella-XD is connected to your PC and that you have installed the USB drivers
before running these tests.

2. Configuring the Ashling GDB Server
The server is supplied as a console type application (ash-arm-gdb-server.exe for

Windows and ash-arm-gdb-server for GNU/Linux) and is configured via command line

parameters. Supported parameters can be seen by running ash-arm-gdb-server without

any parameters as follows:

C:\Program Files\Ashling\Opella-XDforARM>ash-arm-gdb-server.exe

Ashling GDB Server for ARM (ash-arm-gdb-server).

v1.0.0 13-Jun-2008, (c)Ashling Microsystems Ltd 2008.

ash-arm-gdb-server [options]

If no options are specified then, ash-arm-gdb-server will read options from

the command file ash-arm-gdb-server.ini if it exists.

Valid options are:

--help Display usage information.

--version Display program version.

--debug-stdout Display debug messages to standard output.

--debug-file <file> Log debug messages to <file>.

--command-file <file> Read command line options from <file>.

--gdb-port <port> Listen on <port> for remote connections

 from GDB. Default is port 2331.

--instance <number> Select Opella-XD from multiple Opella-XD(s)

 connected.

 <number> is Opella-XD serial number.

--jtag-frequency <freq> Specifies JTAG frequency.

 <freq> for Opella-XD can be in range

 from 1kHz to 100MHz (default 1MHz) or RTCK.

[snip]…

For further details on the supported parameters, please refer to the user manual.

Using the Ashling Opella-XD for ARM™ Debug Probe with the GNU GDB Debugger
Page 5 of 8

Connecting GDB to the Ashling GDB Server
Once running and connected to the target, the Ashling GDB Server will listen on the specified
port (default:2331) using the GDB Remote Serial Protocol (RSP) for incoming connections.
To connect to the Server from GDB (or any other compliant debugger), you must specify:

1. The protocol to use.
2. The IP address of the machine running the GDB Server.
3. The port that GDB Server is listening for connections on.

This may be done from within GDB using the target remote command. This command tells
GDB to use the RSP protocol, the command parameters specify the IP address and port as
follows:

target remote <SERVER IP ADDRESS>:<PORT>

For example:
target remote 192.168.10.27:2331

tells GDB to connect using the RSP protocol to the GDB Server running at IP address
192.168.10.27 and using port 2331. If you are running GDB on the same machine as the
server then this can be abbreviated to:

target remote :2331

3. Example Debug Session using the Ashling GDB Server
This section documents an example GDB debug session using the Opella-XD and an
ARM7TDMI-S target board (Ashling LPC2000 EVBA7 board).

1. Ensure Opella-XD is connected to the PC and the target board and everything is powered

up.

2. Run the GDB Server from a command line prompt as follows:

>ash-arm-gdb-server.exe --program-entry-point 0x40000000 --device ARM7TDMI-S -–

target-reset 1 5 --jtag-frequency RTCK

Where:

Switch Action
--program-entry-point 0x40000000 specifies the initial PC value to be 0x4000-

000
--device ARM7TDMI-S specifies the target device type is

ARM7TDMI-S
–target-reset 1 5 forces a hard-reset (by asserting the nSRST

pin) followed by a 5 second delay

--jtag-frequency RTCK Uses returned TCK (RTCK). When selected,
Opella-XD will wait for RTCK before sending
a subsequent TCK pulse.

Table 1. Ashling GDB Server Command Line Switches

the GDB Server should connect to the target as follows:

Ashling GDB Server for ARM (ash-arm-gdb-server).

v0.0.3 30-Apr-2008, (c)Ashling Microsystems Ltd 2008.

Setting program entry point (PC) to 0x40000000.

Checking Opella-XD firmware.

Configuring Opella-XD.

Delaying 5 seconds after target hard reset.

Connected to target device configured as: ARM7TDMI-S

(currently in Little Endian mode).

Connected to target via Opella-XD

(diskware:v0.0.3, firmware:v1.0.0) using RTCK.

Waiting for debugger connection on port 2331 for core 1.

Press 'Q' to Quit.

Using the Ashling Opella-XD for ARM™ Debug Probe with the GNU GDB Debugger
Page 6 of 8

The last line indicates that the GDB Server is now ready for a debugger connection (and
that the pressing ‘Q’ will quit the Server).

3. Now run the GDB debugger and specify the program you wish to debug.

> arm-elf-gdb obj/simple.elf

arm-elf-gdb is the executable name of the ARM GDB debugger and simple.elf is

the program we wish to debug. Windows users may need to run this in a Cygwin

Command Shell (as arm-elf-gdb requires access to Cygwin DLLs).

Connect to the GDB Server in GDB by entering:
(gdb) target remote:2331

4. When we connect, we will see an acknowledgement in the GDB Server Console Window

as follows:
…

Waiting for debugger connection on port 2331 for core 1 .

Press 'Q' to Quit.

Got a debugger connection from 192.168.10.58 on port 2331.

5. Now download the program to the target:
(gdb) load

Loading section .text, size 0x6e0 lma 0x40000000

Start address 0x40000000, load size 1760

Transfer rate: 14080 bits in <1 sec, 146 bytes/write.

(gdb)

6. Set a breakpoint and execute as follows:

(gdb) break main

Breakpoint 1 at 0x40000138: file src/simple.c, line 44.

(gdb) continue

Continuing.

Breakpoint 1, main () at src/simple.c:44

44 InitialiseI2C();

(gdb)

Our breakpoint was taken at main, lets look at the source-code associated with the
current PC value

(gdb) list

39 unsigned char i;

40 volatile unsigned long * pulGpioReg;

41 unsigned long x;

42

43 // Initialisation....

44 InitialiseI2C();

45

46 // loop forever,

47 while (1)

48 {

(gdb)

7. To view memory, use the X command as follows:

(gdb) x /16 0x80000000

0x80000000: 0xe321f0d2 0xe321f0d2 0xe321f0d2 0xe321f0d2

0x80000010: 0xe321f0d2 0xe321f0d2 0xe321f0d2 0xe321f0d2

0x80000020: 0xe321f0d2 0xe321f0d2 0xe321f0d2 0xe321f0d2 0x80000030: 0xe321f0d2

0xe321f0d2 0xe321f0d2 0xe321f0d2 (gdb)

8. The SET command allows you to write to memory as follows:

(gdb) set {int} 0x40001000 = 0x12345678

 (gdb) x /w 0x40001000

0x40001000 <cI2CAddrVal>: 0x12345678

(gdb)

Using the Ashling Opella-XD for ARM™ Debug Probe with the GNU GDB Debugger
Page 7 of 8

4. GDB Detach, Quit and Kill commands
The Ashling GDB Server supports these commands as follows:

 detach disconnects from the Ashling GDB Server and resumes target execution.

 quit disconnects from the Ashling GDB Server, resumes target execution and exits GDB.

 kill resets the target and disconnects from the Ashling GDB Server (target execution is
not resumed).

5. Improving GDB Download Performance
GDB allows you to set the packet size used when transferring information to/from the GDB
Server. A larger packet size will improve throughput and thus download performance. The
maximum supported packet size (as of writing) is 2048 bytes. The packet size can be set from
the GDB command prompt for both reading and writing memory as follows:

set remote memory-write-packet-size 2048

set remote memory-write-packet-size fixed

set remote memory-read-packet-size 2048

set remote memory-read-packet-size fixed

Alternatively, add the above commands to your .gdbinit file to automatically use these

settings every time.

GDB’s current settings can be seen as follows:

show remote memory-write-packet-size

show remote memory-write-packet-size

6. Extended GDB functionality
The Ashling GDB server adds several useful additional commands to the GDB debugger that
can be accessed via the monitor command. For example, to assert a hardware reset from
within GDB, issue the following command:

> monitor hwreset

This causes Opella-XD to assert the nSRST* pin on the target.

 MONITOR
command

Explanation

ashload The Ashling GDB Server allows you to directly download
ELF files which will give improved performance over GDB’s
load command. This can be invoked directly from the GDB
command line (console) as follows:
> monitor ashload <filename> <--verify>

for example, the following command will load the elf file

c:\kernels\vmlinux.elf to target memory:

> monitor ashload c:\kernels\vmlinux.elf

the following command will load the elf file

c:\kernels\vmlinux.elf to target memory and verify it:

> monitor ashload c:\kernels\vmlinux.elf --

verify

Please note the following:
o Full path names should be used for files to ensure that

the Ashling GDB Server can find them.
o If you are downloading very large images then GDB may

timeout, increase the GDB timeout value (in seconds)
using the following command:

> set remotetimeout 10000

hwreset Reset target (hardware reset via nSRST pin).

hwbreak

<on|off>

Force use of hardware breakpoints (default is off)

Using the Ashling Opella-XD for ARM™ Debug Probe with the GNU GDB Debugger
Page 8 of 8

swreset Reset target (software reset) which is defined as follows:
o Ensure ARM core processor in debug mode
o Put core into ARM/supervisor mode with IRQ and FIQ

interrupts disabled.

o •Sets the PC value to Program Entry Point (as set via --

program-entry-point switch).

wpaddr

[r|w|d]

[b|h|w|d]

<addr>

Set watchpoint when <addr> accessed. Support access
qualifiers are:
 r read.
 w write.
 d don't care.

Supported size qualifiers are:
 b byte.
 h half-word.
 w word.
 d don't care.

wpdata

[r|w|d]

[b|h|w]

<data>

Set watchpoint when <data> value occurs on the bus.

Access/size qualifiers as WPADDR.

monitor

wpad

[r|w|d]

[b|h|w|d]

<addr>

<data>

Set watchpoint when <addr> accessed with specific <data>

value. Access/size qualifiers as WPADDR.

wpclr Clear all watchpoints

semi-

hosting

<on|off>

<addr1>

<addr2>

Enable semi-hosting (default is off).
 <addr1> Top of memory (no default).
 <addr2> Vector trap address (default:0x8).

Doc: APB198-ARMGDB.doc, v1.2, 25th June 2008, Hugh O’Keeffe, Ashling Microsystems

Ashling Microsystems Ltd
National Technology Park
Limerick
Ireland
Phone: +353 61 334466
Email: ashling.support@nestgroup.net

mailto:ashling.support@nestgroup.net

