
Monte Carlo Pricing using Operator Methods and

Measure Changes

Claudio Albanese ∗, Hongyun Li †

August 25, 2009, last revised September 7, 2009

Abstract

A large class of generic stochastic processes which are not necessarily analyti-
cally solvable but are still numerically tractable can be described by giving transition
probability kernels over a contiguous set of time intervals. From the numerical view-
point, this procedure is highly effective on current microchip architectures as kernels
can be conveniently evaluated using GPU co-processors and then used for scenario
generation while storing them in CPU caches. This paper describes the pricing
methodology and a mathematical framework for Finance based on direct kernel ma-
nipulations, i.e. operator methods. We also discuss a number of techniques based
on measure changes to accomplish tasks such as variance reduction and sensitivity
calculations. Numerical experiments are included along with performance bench-
marks. Source code is distributed separately online under GPL license in a library
named OPLib.

Contents

1 Introduction 3

2 The First Fundamental Theorem of Finance 6

3 Measure Changes and the Second Fundamental Theorem of Finance 10

4 Markov Processes 12

5 Lattice Models 14

6 Likelihood Ratio Method 16

7 Monte Carlo Pricing 17

8 Generation of Monte Carlo Scenarios on CPUs and GPUs 18
∗Department of Mathematics, King’s College London, claudio@albanese.co.uk
†Department of Mathematics, Imperial College London, hongyun.li06@ic.ac.uk

1

9 Sensitivities 21

9.0.1 Delta . 21
9.0.2 Gamma . 22
9.0.3 First Order Sensitivities with Respect to Model Parameters 22
9.0.4 Second Order Sensitivities with Respect to Model Parameters . . . 22
9.0.5 Mixed Sensitivities . 23
9.0.6 Rho . 23

10 Model Specifications 24

11 Numerical Experiments 27

12 Conclusion 27

2

1 Introduction

This article discusses the optimal design of Monte Carlo pricing algorithms on current and
emerging microchip architectures, in particular multi-core CPUs and GPUs and outlines
a natural mathematical framework within which to approach the technical issues in the
most direct and efficient way.

Recent advances in computer technology motivate us to be ambitious and aim at
achieving not only greater performance but also greater model flexibility. We thus focus
on models freely specified without the constraint of analytic solvability in the form of
Markov chains with a number of state variables in the range 128-1024 for each risk fac-
tor. The task of carrying out a Monte Carlo simulation is thus split into a first stage for
obtaining transition probability kernels and a second stage for actually generating sce-
narios. Although we focus entirely on single factor dynamics in this paper, the methods
do extend to multi-factor processes by correlating marginal return distributions through
dynamic copulas.

Our research led us to the conclusion that the optimal strategy for orchestrating
such an application involves using GPUs for the calculation of kernels and CPUs for the
scenario generation. The reasons are fairly technical and are related to the very different
characteristics of these microchips in terms of

• memory architecture: physical memory plus three levels of caches for CPUs versus
global memory plus a combination of shared and constant memory along with a
large number of registers for GPUs,

• clock frequency: 2-3 GHz for CPUs versus about 1GHz for GPUs

• number of cores: 4-16 for CPUs versus 120-240 for GPUs,

• threading model: native POSIX or managed .NET threads with locks, mutex and
semaphores for CPUs versus fast light-weight threads without locking mechanisms
for GPUs)

• instruction flow management: MIMD multiple-instruction-multiple-data paradigm
for CPUs supplemented by SSE2 (streaming SIMD extensions) instructions versus
SIMT single-instruction-multiple-threads paradigm for GPUs.

Because of the vast architectural differences between CPUs and GPUs, it is no surprise
that relative floating point performance depends very much on the task at hand. GPUs
are overwhelmingly more efficient at performing full-matrix linear algebra tasks such
as matrix-matrix multiplication and tensorial extensions such as concurrent matrix or
matrix-vector multiplication, while CPUs shine at tasks such as scenario generation which
greatly benefit of the rich cache hierarchy to speed up random memory access.

In this paper, we describe in detail the algorithms we have built and which we consider
optimal. Realizing that nothing can be more informative than actually providing source
code, we accompany the release of this article with that of an open source library named
OPLib (Albanese 2009) containing the key building blocks of the Monte Carlo algorithms
discussed in this paper, implemented and optimized separately on both CPU and GPU
architectures.

The Mathematical framework to best understand these methods is described in this
paper in its most direct form. As with all applied mathematics, abstract constructs are

3

motivated and draw legitimacy from the underlying computing technology. In the case
of Mathematical Finance and pricing theory we are faced with several distinct traditions
rooted in the history of probability theory. The tradition of stochastic analysis is well
suited to handle situations where transition probability kernels are out of the reach of
direct numerical methods and need to be either evaluated in closed form or expressed
through asymptotic expansions. Many of these calculations can be carried out using
either stochastic calculus or PDE methods, the former being arguably more elegant be-
cause of the path-wise representations, the latter more powerful algorithmically. Both
methodologies are based on continuum mathematics and infinitesimal calculus. To frame
probability in such a way that continuous probability distributions can be treated directly
as opposed to be represented as finitary limits, one uses the classical Kolmogorov axioms
for probability and in particular the axiom of countable additivity (Kolmogorov 1933).
These cannot be understood constructively in full generality but that is not necessary
if the aim is to obtain analytical formulas for transition probability kernels or functions
thereof.

Recent innovations in computing technology give one the ability of directly manipulat-
ing transition probability kernels, i.e. to compute them, compose them and differentiate
them. As we explain in this article, this ability descends from the availability of pro-
cessors that are highly proficient at matrix multiplications and similar tasks. We thus
increasingly do not need to rely on analytic solvability. In probability, finitism was one
of the main drivers behind the foundational work by Bruno de Finetti, see for instance
(de Finetti 1931) and (Plato 1994)for a historical review. The other drivers were subjec-
tivism and logic. De Finetti grounded Probability Theory upon temporal modal logic, an
ideal setting for Finance theory. Predicate logic as a discipline was founded by Aristotle.
Aristotelian logic is finitist and reference to infinite objects is only accepted in the form
of ”potential infinite”, i.e. the result of a limiting process involving a sequence of finitary
propositions. Thus, within Aristotelian logic any proposition is either true or false and
the principle of the excluded middle holds. Modal logic, pioneered by Averroes and me-
dieval scholars, introduces the notion of possible and impossible to supplement those of
true and false. Temporal logic adds to this a time dimension. Finitist temporal modal
logic is the natural framework upon which legal documents and in particular financial
payoffs for derivative contracts are written. Modern pricing system implementations rely
on lexical analyzers and payoff languages to interpret contract specifications in terms of
temporal modal logic, (S. P. Jones and Seward 2000). It is thus a natural environment
upon which to ground the theory of probability with Finance in mind.

De Finetti’s breakthrough was to discover that the principle of no arbitrage can be
laid at the foundation of probability theory. This basic principle states that if any asset
allocation can possibly give rise to a gain with respect to a given benchmark within a
certain time period, then it should also possibly give rise to a loss. Notice here the
emphasis on possibility, not probability. The no arbitrage principle itself has ancient
roots and also goes back to medieval times. Probability arises only as a secondary concept
through de Finetti’s Fundamental Theorem stating that there is no arbitrage if and only
if asset price processes can be represented as discounted expectations of future payoffs
with respect to some probability measure. The Theorem derives from the Fundamental
Theorem of Linear Inequalities also known as Farkas Lemma (Farkas 1902). In Section
2, we derive this result in a very general case of non-Markov processes over a finite state
space, a setting that provides a general representation for finitist temporal modal logic.

4

As we discuss in Section 4, Markov processes are of special interest as they can be
represented by transition probability matrices and thus, numerically, they can be treated
by means of full matrix algebra. The basic algorithm we use is fast exponentiation, which
allows one to compute transition probability kernels over any time horizon while starting
from an elementary transition probability kernel over a short time interval. The fast
exponentiation algorithm is at least 2000 years old, see (Knuth 1969) for the history. It
has been used in the last decade for applications to cryptography, but there the matrices
involved are smaller than the ones we are dealing with. Hardware advances allow us to
use this method confortably for kernel calculations even in situations where the number of
state variables is in the range 128-1024. In order to be able to form elementary transition
probability kernels, one needs to choose an elementary time interval that satisfies the
so-called Courant-Friederichs-Lewi condition (or in brief the Courant condition), first
derived in (R. Courant and Lewy 1928). The Courant condition we require is equivalent
to the stability condition for explicit Euler methods. It has sometimes been referred
to as a ”curse” as it restricts time intervals to be fairly short, typically measured in a
fraction of a day in Finance applications. Semi-implicit methods combined with sparse-
matrix methods were developed to allow for longer time steps and were shown to be
unconditionally marginally stable, as opposed to being conditionally strongly stable as
explicit Euler methods are. However, as we explain in this paper, if modern hardware is
used to multiply full matrices directly and we make use of fast-exponentiation, kernels
can be evaluated while respecting the Courant bound in a number of iterations that grows
only logarithmically with the length of the time step. This is important as by respecting
the Courant bound we achieve far greater smoothness in our kernel calculations that we
would achieve otherwise by means of unconditionally marginally stable methods. This is
reflected in strong convergence estimates to the continuum limit in (Albanese 2007a) and
(Albanese 2007b) for solutions of stochastic differential equations and stochastic integrals
in the case of diffusion processes with possibly rough coefficients. In practice, we notice
that kernel calculations are stable and robust even in single precision arithmetics at
the condition of respecting the Courant bound. This is technically important as single
precision floating point arithmetics is highly optimized on our favourite engines for matrix
algebra, i.e. GPUs.

The applications on which we focus in this paper are related to the problem of evaluat-
ing sensitivities in Monte Carlo price calculations. Since we have full control of transition
probability kernels, our task is greatly simplified. To explain the main idea, suppose
that one wishes to price a derivative portfolio by generating one million scenarios and
then taking an equally weighted average of discounted payoffs. If next one wishes to
slightly modify the model and reprice the same portfolio, one does not need to regenerate
scenarios and revalue them. It suffices to re-use the previous scenario set at the condi-
tion that scenario values are averaged with respect to weights equal to the ratio between
the probability for that particular scenario under the new model specification divided by
the probability with respect to the original model specification. This technique works
remarkably well as we document in this paper by considering several first and second
order sensitivities. We consider both sensitivities with respect to model parameters and
with respect to initial conditions. The same methodology extends also to the case of
importance sampling, although we do not discuss that situation. The method is known
in the literature as the likelihood-ratio method and was recently discussed by Chen and
Glasserman in a finance context in the paper (Chen and Glasserman 2007). There the

5

method is presented as an alternative to Malliavin calculus, although in fact the two are
related. Our treatment differs from the one in Glasserman et al. in that we use long-step
Monte Carlo as opposed to a short step version and we make use of fast exponentiation
to compute transition probability kernels as opposed to relying on analytic closed form
expressions. Results of numerical experiments conclude the paper.

2 The First Fundamental Theorem of Finance

Consider a family of time points ti = t0 + iδt where t0 is today’s date, δt is a constant
step and i = 0, 1, 2, ... is an integer. Consider also a discrete state space Λ = {0, ...d− 1}
where d ≥ 1. Let P(Λ) denote the set of all paths γ = (γi)i=0,1,... with γi ∈ Λ. γi is the
state variable of path γ at time ti.

Definition 1 If j ≥ 0 is a non-negative integer, a function φ(γ, ti) with γ ∈ P(Λ), i =
0, 1, ... is called step-j non-anticipatory if

φ(γ, ti) = φ(γ′, ti) (1)

for all i and whenever γk = γ′k for all k ≤ i+ j.

Definition 2 A pathspace P(Λ, κ) is characterized by a sequence of incidence matrices
taking only values 0 and 1 and given by step-1 non-anticipatory functions κ(γ, ti) ∈ {0, 1}
such that if κ(γ, ti) = 0 for some i ≥ 0 then κ(γ, tk) = 0 for all k ≥ i. A path γ belongs
to the set P(Λ, k) if κ(γ, ti) = 1 for all i ≥ 0.

Definition 3 A real valued process adapted to the pathspace P(Λ, κ) is given by a real
valued step-0 non-anticipatory function A(γ, ti).

Pricing is carried out relative to a valuation benchmark, also called numeraire.

Definition 4 A numeraire is a positive valued adapted process g(γ, ti) > 0.

An example of a numeraire is given by the price of a commodity with negligible carry
costs and negligible convenience yield such as, for instance, gold. A second example of a
numeraire is defined through a positive valued process r(γ, ti) interpreted as a short rate,
i.e. the money market account process given by

B(γ, ti) = (1 + δtr(γ0, t0)) ... (1 + δtr(γi−1, ti−1)). (2)

Definition 5 Let P(Λ, k) be a pathspace characterized by the incidence matrices κ(γ, ti)
and let g(γ, ti) be a numeraire process. Let As(γ, ti) be a family of non-anticipatory path
functionals indexed by s = 1, ...M with M > 0 on the time interval ti ∈ [t0, tj] where
j > 0. The family of processes As(γ, ti) is called g-coherent if for any ti ∈ [t0, tj] and any
set of coefficients ζs, s = 1,M , the following property holds: if γ is a possible path for
which κ(γ, ti) = 1 and

1
gs(γ, ti+1)

∑
s

ζsAs(γ, ti+1)− 1
gs(γ, ti)

∑
s

ζsAs(γ, ti) > 0 (3)

6

then there is a second possible path γ′ such that γ′k = γk for all k ≤ i and κ(γ′, ti) = 1
and

1
gs(γ′, ti+1)

∑
s

ζsAs(γ′, ti+1)− 1
gs(γ, ti)

∑
s

ζsAs(γ, ti) < 0. (4)

Definition 6 An elementary transition probability kernel on P(Λ, k) is a family of 1-step
non-anticipatory path functionals q(γ, ti) defined for i = 0, 1, .., γ ∈ P(Λ, k) satisfying the
following properties:

(i) q(γ, ti) ≥ 0,

(ii)
∑
γ′:γ′k=γk,k≤i q(γ

′, ti) = 1,

(iii) q(γ, ti) > 0 if and only if κ(γ, ti) = 1, while otherwise q(γ, ti) = 0.

Definition 7 Let us fix a time tj > t0 and let A(γ, ti), i = 0, ...j be a process. The
expectation of this process at time ti prior to tj with respect to the kernel q(γ, ti) is a
process denoted by Eqti [A(γ, tj) | {γk}k≤i] and defined as follows:

Eqti [A(γ, tj)|{γk}k≤i] =
∑

γ′:γ′k=γk∀k≤i

q(γ′, ti) q(γ′,tj−1)A(γ′, tj). (5)

This formula can be recast in terms of conditional probabilities of a path given by the
functional

p(γ, ti, tj) ≡ q(γ, ti) q(γ,tj−1). (6)

In terms of this functional, we can express expectations in (5) as follows:

Eqti [A(γ, tj)|{γk}k≤i] =
∑

γ′:γ′k=γk∀k≤i

p(γ′, ti, tj)A(γ′, tj). (7)

The interpretation of p(γ, ti, tj) is that this is the probability for a path to be equal to
γ in the time interval [ti+1, tj] conditioned to knowing that it coincides with γ on the
preceding time interval [t0, ti].

Definition 8 Let g(γ, ti) be a numeraire asset, the adapted process A(γ, ti) is called g-
discounted martingale with respect to the elementary kernel q(γ, ti) if

A(γ, ti) = Eqti

[
g(γ, ti)
g(γ, tj)

A(γ, tj)
∣∣∣∣{γk}k≤i] . (8)

where Eq denotes the expectation with respect to the elementary transition probability
kernels q(γ, ti).

As an example, consider the case where the numeraire is given by the money market
account B(γ, ti) in (2). Fix a time tj > t0 and let A(γ, tj) be a process. The discounted

7

expectation of this process at time ti prior to tj with respect to the money market account
B(γ, ti) can be expressed as follows:

Eqti

[
B(γ, ti)
B(γ, tj)

A(γ, tj)
∣∣∣∣ {γk}k≤i] =

∑
γ′:γ′k=γk ∀k≤i

q(γ′, ti) q(γ′, tj−1)
B(γ′, ti)
B(γ′, tj)

A(γ′, tj).

(9)

Elementary discounted transition probability kernels defined as

qD(γ, ti) =
1

1 + δtr (γ, ti)
q(γ, ti) (10)

can be used to implicitly account for the numeraire asset in the path expansion for
discounted expectations by recasting it as follows:

Eqti

[
B(γ, ti)
B(γ, tj)

A(γ, tj)
∣∣∣∣{γk}k≤i] =

∑
γ′:γ′k=γk ∀k≤i

qD(γ′, ti) qD(γ′, tj−1) A(γ′, tj).

(11)

Definition 9 The family of adapted processes As(γ, ti), s = 1, ..M is called a family of
g-discounted equivalent martingales if there exists an elementary kernel q(γ, ti) on the
path-space P(Λ, k) with respect to which the processes As(γ, ti), s = 1, ..M , are all g-
discounted martingales.

Theorem 10 (First Fundamental Theorem of Finance) Let g(γ, ti) be a numeraire
process and let As(γ, ti), s = 1, ...M be family of processes adapted to P(Λ, k) and defined
on the time interval ti ∈ [t0, tj]. Then As, s = 1, ...M is a family of equivalent g-discounted
martingales if and only if they are a g-coherent family.

Proof. This theorem was first stated and proved by Bruno de Finetti in (de Finetti 1931).
The proof depends on the following Farkas Lemma (see for instance (Farkas 1902)):

Lemma 11 (Farkas) Let A be a n × m matrix and let c be a real non-zero n−vector.
Then either the primal system:

Ax ≥ 0, and cTx < 0 (12)

has a solution or the dual system

AT y = c, and y ≥ 0 (13)

has a solution but never both.

To prove the Fundamental Theorem, assume that As(γ, ti) is a g-coherent family of
processes. Let i ≥ 0, ti ∈ [t0, tj]. We need to show that for all i ≥ 0, there exists a
transition probability kernel q(γ, ti) such that

q(γ, ti) > 0 if and only if k(γ, ti) = 1, (14)

8

with respect to which the processes As(γ, ti) are discounted martingales, i.e. are such
that ∑

γ′:γ′k=γk ∀k≤i

q(γ′, ti)As(γ′, ti+1)
g(γ′, ti)
g(γ′, ti+1)

= As(γ, ti) (15)

for all s = 1, ...M , all i = 0, ..j and all γ ∈ P(Λ, k). This is sufficient as, by iterating this
equation one arrives to the discounted martingale condition over arbitrarily long time
intervals. It is convenient to recast this last equation (15) as follows:∑

γ′:γ′k=γk ∀k≤i

q(γ′, ti)
(
As(γ′, ti+1)

g(γ′, ti)
g(γ′, ti+1)

−As(γ, ti)
)

= 0. (16)

Let γabe a family of paths where a = 1, . . . , n with the following properties:

(i) they coincide for t ≤ ti, i.e. γak = γbk for all a, b = 1, . . . , n and all k ≤ i;

(ii) they differ at time ti+1, i.e. γai+1 6= γbi+1 if a 6= b.

(iii) For all a = 1, . . . , n we have that k(γ, ti) = 1;

(iv) If y satisfies k(γ, ti) = 1 then there is a path γa in the family such that y = γai+1.

Let

was = As(γa, ti+1)
g(γa, ti)
g(γa, ti+1)

−As(γa, ti). (17)

Let V be a n-dimensional vector space with basis vectors v1, ...,vn. Let ws be the vector
in V of components

ws =
n∑
a=1

wasva. (18)

It suffices to show that there is a vector q = (qa) such that qa ≥ 0, ∀a = 1, . . . , n,∑n
a=1 q

a = 1 and

q ·ws ≡
n∑
a=1

qawas = 0 ∀s = 1, . . . ,M. (19)

The coherence hypothesis can be recast in this language as the statement according to
which a vector (ζs) satisfies

M∑
s=1

ζswas ≥ 0, ∀a = 1, ..., n (20)

only if it is the zero vector, i.e. ζs = 0.
The system 

∑n
a=1 q

a = 1∑n
a=1 q

awas = 0
qa ≥ 0,

(21)

9

can be recast as a primal system of linear inequalities in the standard form Aq = c, q ≥ 0,
where

A =

1 1 1

WT

 and c =


1
0
...
0

 (22)

The corresponding dual system is

ξ−1 +
M∑
s=1

wasξs ≥ 0, ξ−1 < 0, (23)

i.e.
∑M
s=1 w

asξs > 0. Assuming coherence, the dual system does not have a solution.
Hence the primal equation does and this establishes one direction of the theorem. Vice
versa, thanks again to Farkas Lemma, if the dual has a solution, i.e. there is no g-
coherence, then the processes are not g-discounted martingales.

3 Measure Changes and the Second Fundamental The-
orem of Finance

The Second Fundamental Theorem compares two models corresponding to different nu-
meraire assets but giving rise to the same prices.

Definition 12 Two processes are said mutually absolutely continuous if the correspond-
ing two sets of admissible paths P(Λ, κ) are equal.

Notice that if two processes are mutually absolutely continuous then the conditional
path probabilities p(γ, ti, tj) and p′(γ, ti, tj) for any given path γ and time points ti < tj
are either simultaneously positive or simultaneously zero. This motivates introducing the
following notion of derivative:

Definition 13 If two processes are mutually absolutely continuous and correspond to the
path probability densities p(γ, ti, tj) and p′(γ, ti, tj), then the Radon-Nykodim derivative
of one with respect to the other is defined as the path functional

w(γ, ti, tj) =
p(γ, ti, tj)
p′(γ, ti, tj)

. (24)

whenever the path γ is admissible and as zero otherwise.

Theorem 14 (Second Fundamental Theorem of Finance) Let A (γ, ti) be an asset
price process on the time interval ti ∈ [t0, tj]. Let g(γ, ti) be a numeraire asset price
processes and let q(γ, ti) be a transition probability kernel associated to it. If g′(γ, ti) is a
second numeraire asset price process, then a transition probability kernel consistent with
it is given by the equation

q′(γ, ti) =
g′(γ, ti+1)
g′(γ, ti)

g(γ, ti)
g(γ, ti+1)

q(γ, ti). (25)

10

for all γ ∈ P(Λ, k) and defined as zero otherwise.
The kernel q′ describes a process which is mutually absolutely continuous with respect

to the process defined by q. The Radon-Nykodim derivative between these two processes
is given by

w(γ, ti, tj) =
g(γ, ti)
g(γ, tj)

g′(γ, tj)
g′(γ, ti)

. (26)

Proof. Since g(γ, ti) is a numeraire asset price process, i.e. g(γ, ti) > 0 is a strictly
positive asset price process, we have that

g(γ, ti) =
∑

γ′:γ′k=γk∀k≤i

q(γ′, ti) ... q(γ′, tj−1)g(γ′, tj). (27)

This equation implies that∑
γ′:γ′k=γk∀k≤i

q(γ′, ti) ... q(γ′, tj−1)
g(γ′, tj)
g(γ, ti)

= 1. (28)

Hence, the step-1 non-anticipatory functional

q′(γ, ti) =
g′(γ, ti+1)
g′(γ, ti)

g(γ, ti)
g(γ, ti+1)

q(γ, ti) (29)

is a transition probability kernel defining a process equivalent to the one of kernel q(γ, ti).
The inverse relation

q(γ, ti) =
g(γ, ti+1)
g(γ, ti)

g′(γ, ti)
g′(γ, ti+1)

q′(γ, ti) (30)

allows one to express the discounted expectation of the future value of an asset by Defi-
nition 5 as follows:

A(γ, ti) = Eqti

[
g(γ, ti)
g(γ, tj)

A(γ, tj)
∣∣∣∣{γk}k≤i]

=
∑

γ′:γ′k=γk∀k≤i

q(γ′, ti) ... q(γ′, tj−1)
g(γ′, ti)
g(γ′, tj)

A(γ′, tj)

=
∑

γ′:γ′k=γk∀k≤i

q′(γ′, ti) ... q′(γ′, tj−1)
g′(γ′, ti)
g′(γ′, tj)

A(γ′, tj)

= Eq
′

ti

[
g′(γ, ti)
g′(γ, tj)

A(γ, tj)
∣∣∣∣{γk}k≤i] (31)

A useful variant of the Second Fundamental Theorem which is of key importance for
the intent of article comes about when one considers two mutually absolutely continuous
processes under the same specification for the numeraire process.

Theorem 15 Consider two mutually absolutely continuous processes with elementary
kernels q (γ, ti) and q′ (γ, ti) and Radon-Nykodim derivative w(γ, ti, tj).

11

If f(γ, ti, tj) is a path functional depending on the values attained by the path γ in the
time interval [ti, tj], then

Eqti [f(·, ti, tj) | {γk}k≤i] = Eq
′

ti [f(·, ti, tj)W (·, ti, tj) | {γk}k≤i] . (32)

Proof. By the Definition 7, the expectation of f(·) at time zero with respect to the kernel
q(γ, ti) is defined as follows:

Eqti [f(·, ti, tj) | {γk}k≤i]

=
∑
γ

q(γ, ti) q(γ, tj−1)f(γ, ti, tj).

=
∑
γ

q′(γ, ti) q′(γ, tj−1)
q(γ, ti) q(γ, tj−1)
q′(γ, ti) q′(γ, tj−1)

f(γ, ti, tj)

= Eq
′

ti [f(·, ti, tj)w(·, ti, tj) | {γk}k≤i] (33)

4 Markov Processes

Markov processes are a particularly important special class of processes characterized by
the fact that transition probability kernels are independent of the past values attained
by the path γ. More precisely, elementary transition probability kernels for a Markov
process have the special form

q(γ, ti) = uδt(γi, γi+1; ti) (34)

where uδt(y1, y2; ti) is a function of y1, y2 ∈ Λ and time ti. The Markov generator or
Markovian is given by the matrix L (y1, y2; ti) such that

uδt(y1, y2; ti) = δy1,y2 + δtL (y1, y2; ti) (35)

for all y1, y2 ∈ Λ and all ti, i = 0, 1, Here

δy1,y2 =

{
1 if y1 = y2

0 if y1 6= y2

(36)

is the so called Kronecker Delta. The constraints in Definition 6 imply the following two
conditions on the matrix L (y1, y2; ti):

(i)
L (y1, y2; ti) ≥ 0 for all y1 6= y2 and all ti; (37)

(ii) ∑
y2

L (y1, y2; ti) = 0 for all y1 and all ti. (38)

12

Due to condition (i) and (ii), the diagonal matrix elements

L (y1, y1; ti) = −
∑
y2 6=y1

L (y1, y2; ti) ≤ 0 (39)

are non-positive. In order to ensure positivity of the diagonal elements of the elementary
kernel, we thus need to postulate the following condition:

(iii)

δt ≤ 1
max
y
|L (y, y; ti)|

. (40)

This condition is called the Courant condition.

Definition 16 A matrix L (y1, y2; ti) satisfying the properties (i) (ii) is called Markov
matrix or Markovian.

In practice, one builds elementary transition probability kernels starting from a Marko-
vian, given which one finds the elementary time interval δt > 0 (typically one day or a
fraction of a day) satisfying the Courant condition.

As a matter of terminology, we distinguish between operators and kernels. A kernel is
a matrix A(x, y) with indices x, y taking up a finite set of values. In the previous example
x, y = 0, ...d − 1. A vector is instead represented by an array v(x). The matrix A(x, y)
can also be put in relation with an operator A that transforms vectors linearly, so that

(Av)(x) =
∑
y

A(x, y)v(y). (41)

Vice versa, to each operator that transforms vectors linearly there corresponds a matrix.
In fact, if one considers the vector δy(x) = δ(x− y), one finds

(Aδy)(x) = A(x, y). (42)

Given an operator A, the matrix A(x, y) is called the kernel of A.
A transition probability kernel over finite time intervals is given by a two-parameter

family of matrices u (y1, t1; y2, t2) dependent on the time coordinates t1 ≤ t2 and repre-
senting the transition probabilities from state y1 at time t1 to state y2 at time t2. For
fixed t1 and t2, these are the transition probability kernels. The operator corresponding
to a transition probability kernel is called propagator.

Given the family of elementary transition probability kernels uδt (y1, y2; ti) for a Markov
process, one can compute more general transition probability kernels u (y1, ti; y2, tj) over
arbitrary time intervals [ti, tj] with i < j. In the particular case of a time step twice the
size of δt from the equation (6), we find

u (γi, ti; γi+2, ti+2) =
∑
γi+1

uδt (γi, γi+1; ti)uδt (γi+1, γi+2; ti+1) (43)

Remarkably, this law is the same as the standard rule for multiplying matrices rows by
columns. This is perhaps the single most noteworthy property of Markov processes which
allows one to reduce problems in probability theory to linear algebra.

13

In matrix language, the equation above can be recast as follows:

u (ti; ti+2) = uδt (ti)uδt (ti+1) . (44)

For two generic time indices i < j, we have that

u (ti; tj) = uδt (ti) · · ·uδt (tj−1) . (45)

The path-wise representation for the latter formula is

u (γi, ti; γj , tj) =
∑

γ:γi→γj

uδt (γi, γi+1; ti) · · ·uδt (γj−1, γj ; tj−1) (46)

where the sum is over all paths γ = {γi, . . . , γj}, γk is a state variable and k = i, . . . j.
The incidence matrix κ is characterized by the set of all admissible set P(Λ, κ). In

turn, admissible paths are characterized by the condition

u (γi, ti; γi+1, ti+1) > 0. (47)

being satisfied for all i ≥ 0.

5 Lattice Models

In a lattice model, one typically needs to design a process by giving time dependent
Markovians and then finding propagators. To facilitate the numerical analysis, it is
very useful to assume that Markovians are piecewise constant. To generate Monte Carlo
scenarios one is then faced with the problem of obtaining propagators between pairs of
time points which are relevant for the payoff at hand to evaluate.

The relevant times for the payoff and the times at which Markovian parameters change
in general do not coincide. This leads us to considering the following three sequences of
time points:

• Let the fixing date be zero by convention and let Ti, i = 0, ...Ni − 1, be an in-
creasing sequence of time points in the time interval (0, T] such that the generator
L (y1, y2; t) is piecewise constant and equal to the matrix Li (y1, y2) on each time
interval [Ti−1, Ti) for i = 0...Ni − 1, where T−1 = 0.

• Let T ′k, k = 0, ...Nk − 1 be the times which enter in the payoff definition and at
which one needs to evaluate scenarios.

• Let T̄q, q = 0, ...Nq − 1, be the union of the time points Ti and T ′k arranged in
increasing order.

Propagators need to be obtained over each subinterval [T̄q−1, T̄q), for q = 0, ...Nq − 1,
where by convention we set T̄−1 = 0. To compute the propagator u

(
yq−1, T̄q−1; yq, T̄q

)
over each time period [T̄q−1, T̄q) we exploits time-homogeneity by making use of the
following algorithm called fast exponentiation. The algorithm applies in case one wishes

14

to computer a power of the form 2n where n is an integer and consists of the following
iteration:

u2δt = uδt · uδt
u4δt = u2δt · u2δt

...
u2nδt = u2n−1δt · u2n−1δt = u∆T (48)

Let (δt)q be an elementary period of the form (δt)q = 2−nq (∆T)q for some integer
nq, where (∆T)q = (T̄q − T̄q−1). The integer n is chosen so large that

(δt)q ≤
1

max
y

∣∣Li(q) (y, y)
∣∣ for all q = 0, ...Nq − 1. (49)

By means of fast exponentiation, one can evaluate each of the transition probability
kernels

u
(
yq−1, T̄q−1; yq, T̄q

)
=

(
1 + (δt)qLi(q)

) (∆T)q
(δt)q (yq−1, yq)

=
(
1 + (δt)qLi(q)

)2n (yq−1, yq) . (50)

Finally, by multiplying such matrices we arrive at the transition probability kernels

Uk(yk−1, yk) ≡ u
(
yk−1, T

′
k−1; yk, T ′k

)
. (51)

Notice that
lim
δt↓0

(
1 + (δt)qLi(q)

) (∆T)q
δt = e(∆T)qLi(q) . (52)

This is a consequence of Neper’s formula that reads as follows for a generic complex
number z ∈ C :

ez = lim
n→∞

(
1 +

z

n

)n
. (53)

The limit in Neper’s formula defines an entire analytic function admitting the Taylor
expansion

ez =
∞∑
j=0

zj

j!
. (54)

The exponential of a matrix (∆T)qLi(q) is similarly given also by a Taylor expansion,i.e.

e(∆T)qLi(q) =
∞∑
j=0

(
(∆T)qLi(q)

)j
j!

, (55)

as follows from the fact that powers of a given matrix are mutually commutative, i.e.

Lmi(q)L
n
i(q) = Lni(q)L

m
i(q). (56)

By the same token, one derives Neper’s formula above. Notice that the commutativity
argument hinges upon the fact that the generator Li(q) is constant as a function of time
over the interval [T̄q−1, T̄q).

15

6 Likelihood Ratio Method

Consider two models described by the pair of Markovians Li and L′i, respectively, which
are constant over the same collection of time intervals [Ti−1, Ti). The likelihood ratio
method allows one to evaluate an expectation with respect to one model by using scenarios
generated according to the transition probabilities specific to the other one.

Consider a payoff function f(γ) which depends on the values attained by the path
γ at the time points T ′k, k = 0, 1, ...Nk − 1. To carry out a Monte Carlo simulation we
thus need to evaluate the transition probability kernels of the sequence of time intervals
[T ′k−1, T

′
k). Consider the set of long-step paths Γ consisting of sequences of state variables

Γ = {Γ0, ...ΓNk−1}, where Γk is the state variable at time T ′k. With slight abuse of
notation, we write f(γ) = f(Γ). The probability for the path Γ to occur is given by

P (Γ) = U0 (Γ−1,Γ0)U1 (Γ0,Γ1) · · ·UNk−1 (ΓNk−2,ΓNk−1) (57)

where Γ−1 is the value of the path Γ at time T ′−1 = 0.
The expectation of the payoff function f (γ) by Definition 7 is

Eu0 [f(·)] =
∑
γ

uδt(γ0, γ1; t0) · · ·uδt(γj−1, γj , tj−1) f (γ)

=
∑

Γ

U0 (Γ−1; Γ0)U1 (Γ0,Γ1) · · ·UNk−1 (ΓNk−2,ΓNk−1) f (Γ)

=
∑

Γ

P (Γ)f (Γ) (58)

Lemma 17 If u and u′ are the elementary transition probability kernels for two Markov
processes which happen to be mutually absolutely continuous, then the corresponding path-
probability functions P (Γ) and P ′(Γ) are either simultaneously positive or simultaneously
zero, i.e. the corresponding discrete time processes of kernels U and U ′ are mutually
absolutely continuous.

Proof. Let’s notice that
P (Γ) =

∑
γ:Γk=γT ′

k
∀k≥−1

p(γ). (59)

Hence if P (Γ) > 0 for some long-step path Γ, then there is a path γ ∈ P(Λ, κ) such
that Γk = γT ′k for all k = −1, ...Nk−1, for which p(γ) > 0. Since u and u′ are mutually
absolutely continuous, we also have that p′(γ) > 0. But then also P ′(Γ) > 0.

This lemma does not have a converse. If the long-step processes described by the
kernels U and U ′ are mutually absolutely continuous, it may well be that the short step
processes are not. In the following section, we discuss situations of practical relevance for
which this precisely the case.

Definition 18 If U and U ′ are the long-step transition probability kernels for two mutu-
ally absolutely continuous Markov processes at the time points T ′k, k = 0, 1, ...Nk−1, then
one defines the long-step Radon-Nykodym derivative as follows:

W (Γ) =
P (Γ)
P ′(Γ)

=
U0 (Γ−1,Γ0)U1 (Γ0,Γ1) · · ·UNk−1 (ΓNk−2,ΓNk−1)
U ′0 (Γ−1,Γ0)U ′1 (Γ0,Γ1) · · ·U ′Nk−1 (ΓNk−2,ΓNk−1)

(60)

16

Theorem 19 If U and U ′ are the long-step transition probability kernels for two mutually
absolutely continuous Markov processes at the time points T ′k, k = 0, 1, ...Nk − 1, then

Eu0 [f(·) | ȳ] = Eu
′

0 [f(·)W (·) | ȳ] (61)

where W (Γ) denotes the long-step Radon-Nykodym derivative between the two processes
and ȳ is the initial state variable.

This result finds two types of applications. The first is to the calculation to sensitivi-
ties with respect to model parameters where u′ is a small perturbation of the elementary
kernel u and we are interested in determining the rate of change of the discounted expec-
tation. The second application is to importance sampling, where we aim at evaluating
the discounted expectation of a payoff sensitive to rare events and to increase sampling
we opt to generate scenarios according to a process different from the base process in
order to produce a greater number of relevant events. This of course necessitates the
introduction of weights to compensate for the process miss-specification.

A variant of this situation occurs when we are interesting in changing not the process
but the initial condition.

Theorem 20 Consider two state variables y1, y2 and a long-step kernel U . Suppose that

U0 (y1, y3) > 0 (62)

if and only if y3 is such that
U0 (y2, y3) > 0. (63)

Define the weight

Q(y1, y2; Γ) =
U0 (y2,Γ0)
U0 (y1,Γ0)

. (64)

Then

Eu0 [f(·) | y2] = Eu0 [f(·)Q(y1, y2; ·) | y1]. (65)

7 Monte Carlo Pricing

A derivative instrument is characterized by a sequence of cash flows contingent to a
realized path γ. Cash flows are given by a step-0 non anticipatory functional φ(γ, t).
Typically, cash flows depend only on the values achieved by the underlying process on a
subset T ′k, k = 0, ...Nk−1 of dates, i.e. we can interpret the path functional φ(γ, t) as a
functional on long-step paths Φ(Γ, t), whereby Φ(Γ, T ′k) is the cash flow occurring at time
T ′k.

Prices are given by discounted expectations. To account for the discount term, it is
convenient to embed it directly into discounted elementary transition kernels uD according
to equation (10). Long step discounted kernels UD are evaluated by fast-exponentiation
of discounted transition probability kernels. A discounted expectation of the payoff func-
tional Φ(Γ, t) is evaluated as∑

k

∑
Γ

UD(Γ−1,Γ0)...UD(Γk−1,Γk)Φ(Γ, T ′k). (66)

17

A discounted payoff functional is defined as follows

ΦD(Γ, T ′k) =
UD(Γ−1,Γ0)...UD(Γk−1,Γk)
U(Γ−1,Γ0)...U(Γk−1,Γk)

Φ(Γ, T ′k). (67)

In terms of this discounted functional, the discounted expectation in equation (66) can
simply be expressed as

EU
[
ΦD(Γ, T ′k)

]
=
∑
k

∑
Γ

U(Γ−1,Γ0)...U(Γk−1,Γk)ΦD(Γ, T ′k). (68)

under the un-discounted measure U . Since the kernel U is a proper transition probability
kernel, such an expression can be valued using Monte Carlo methods.

In the important special case of models whereby we use the money market account as
the numeraire asset and whereby interest rates are deterministic, the ratio ΦD(Γ, T ′k)/Φ(Γ, T ′k)
is independent of the path Γ and can be easily evaluated as the inverse of the money mar-
ket account value

B(t) = eri(t−Ti)
∏
i:Ti<t

eri(Ti−Ti−1) (69)

evaluated at t = T ′k, i.e.
ΦD(Γ, T ′k) = B(T ′k)−1Φ(Γ, T ′k). (70)

8 Generation of Monte Carlo Scenarios on CPUs and
GPUs

The actual implementation of a Monte Carlo pricing algorithm is based on drawing uni-
formly distributed pseudo-random deviates in the interval [0, 1] and inferring scenario
paths based on them.

There are several pseudo-random generations algorithms in the literature and broadly
used software libraries. In the case study discussed in this paper we use a family of Mat-
sumoto’s Mersenne Twister algorithms of period 22203, one for each execution thread,
see (Matsumoto 1998). We have two implementations, one for CPUs and another for
GPUs. On the CPU, we make use of pseudo-random numbers generated by means of the
SIMD version of the algorithm described in (Matsumoto 2007-2009) as implemented in
the Intel Math Kernel libraries. The subroutine viRngUniformBits provides a stream of
random bits evaluated 128 bits at a time by means of SSE2 instructions. The algorithm
is particularly effective on 64 bit chips. We read 32 bit pseudo-random integers out of
the sequence and convert them into uniformly distributed, double precision deviates by
dividing by 232. On the GPU, we make use of the 32-bit version of the same algorithm
implemented by Podlozhnyuk in the nVidia CUDA SDK. In this case, random bit se-
quences are produced 32 bits at a time and the converted into single precision floating
point numbers by dividing by 232.

In each time period [T ′k−1, T
′
k), we define the cumulative transition probability kernel

Ck (y1, y2) as follows:

Ck (y1, y2) =
y2∑
z=0

U(y1, z) (71)

18

The starting point of each path in the first time period [T ′−1, T
′
0) is a fixed lattice site y0

corresponding to the spot state variable. To generate sample paths of the form Γk, k =
0, 1 . . . , Nk − 1 for the state variables, we generate Nk deviates ξk uniformly distributed
in [0, 1]. If

ξk ≤ Ck (Γk−1, 0) (72)

then we set
Γk = 0. (73)

If, instead,
ξk > Ck (Γk−1, d− 1) (74)

then we set
Γk = d− 1. (75)

Otherwise, Γk is determined as the site such that

Ck (Γk−1,Γk) < ξk ≤ Ck (Γk−1,Γk + 1) . (76)

At the k−th time interval, to find the state variable Γk that solves this constraint, one
can use a binary search.

In our experience, the optimal implementation on GPUs and CPUs differ quite radi-
cally because of the different memory architectures and threading models. On CPUs it is
very useful to speed up the search by using a hash table of pre-computed upper and lower
bounds. A hash table is based on a discretization of the interval [0, 1] in d sub-intervals
of equal size. Let z = 0, ...d − 1 be an index for these sub-intervals. For each z, one
finds an array of lower bounds lb(z) and an array of upper bounds ub(z) with values in
{0, 1, ...d− 1}, so that

Ck (Γk−1, lb(z)d) ≤ z

d
≤ ξ <

z + 1
d
≤ Ck (Γk−1, ub(z)d) (77)

for every ξ ∈
[
z
d ,

z+1
d

]
. Since the lattice size is practically restricted to be far less then

216, the upper and lower bounds can be stored as short 16-bit integers and jointly stored
in a 32-bit integer as follows:

h(z) = lb(z) + 216ub(z) (78)

Once we draw a pseudo-random deviate and find that ub(z)− lb(z) > 1, we use a binary
search between ub(z) and lb(z) and set Γk = ub(z). Otherwise, if ub(z)− lb(z) <= 1, no
iteration is needed and we still set Γk = ub(z). An exception is represented by the case
when lb(z) = 0, in which case we need to control whether the condition in (72) is realized;
if so, we set Γk = 0.

On GPUs, in our experience the use of hash tables along the lines we describe does not
improve performance. The reason is that hash table need to be stored in global memory
and be retrieved through random un-coalesced access. This operation is notoriously time
expensive as it needs to be performed sequentially by each individual thread in a thread-
block and costs about 180 clock cycles. On GPUs it is thus worthwhile to execute a
binary search taking as initial lower and upper pivots the state variables 0 and d − 1.
Furthermore, it is worth to design the search in such a way that the maximum number

19

of iterations is executed so that the for loop can be unrolled, thus avoiding an expensive
control for the possibility of early branching.

On CPUs access to hash tables and cumulative transition probability kernels can be
further sped up by properly organizing the scenario simulation. At a higher level we
partition the job in batches. At a lower level we need to execute too loops: a loop over
scenarios and a loop over calendar time as indexed by the variable k. The order matters.
On CPUs, it is useful to select as the innermost loop the one over scenarios in a given
batch and then iterate over the time steps. This way, over each time interval one accesses
the same transition probability kernel and the operating system has a change to page the
corresponding memory into level-3 cache. On current CPUs, one finds about 2 MB of
cache per core while a 5122 transition probability kernel and hash table take 1 MB each.
Thus they fit snugly into level-3 cache. On GPUs there is no cache and as a consequence
this argument does not apply. On the contrary, it is worthwhile choosing as the innermost
loop the one over the time coordinate as in this case, at the k−th time period one can
store the value Γk−1 in registers and have it immediately available, thus avoiding two
expensive global memory transactions.

The performance ratios we observe between GPUs and CPUs is about a factor three,
both considering 2008 hardware (Tesla 860 and quad-core Xeon 8460) and 2009 hardware
(Tesla 1060 and 16-core Xeon 8600 Nehamel). The code is published as an open source
distribution available at www.albanese.co.uk.

Microchip Mersenne Twister Model with d = 128 Model with d = 512
Xeon 5460 602 ME/s 170 ME/s 169 ME/s
Nehamel 849 ME/s 593 ME/s 529 ME/s

Tesla 860C 1528 ME/s 121 ME/s 95 ME/s
Tesla 1060C 2327 ME/s 200 ME/s 196 ME/s

Table 1: Performance of CPUs and GPUs at scenario generation in million evaluations per

second. The Xeon 5460 processor used is by Intel, has 4 cores and a frequency of 3.16MHz. The

Nehamel processor is also by Intel, has 16 cores at 2.4 GHz. The Tesla 860C and the Tesla 1060C

are chips by nVidia with 128 and 240 cores, respectively, running at 1.3 GHz. Performances are

independent of model specification.

As explained, algorithms for kernel valuation rely on fast exponentiation. Here, the
situation is reversed with respect to the scenario generation case and GPUs offer a greater
range of possibilities for optimization. We find that one can achieve highly efficient per-
formance by implementing fourth level BLAS extension subroutines operating on tensors.
In particular, fast exponentiation benefits by performing matrix multiply operations con-
currently. This is achieved by fourth level BLAS extensions also introduced in OPLib.
In particular, OPLib contains the subroutines SGEMM4 for general matrix-matrix multi-
plication for a given array of matrix pairs and the subroutine SSQMM for evaluating the
second power of an array of square matrices. Also important for applications to pricing
theory are the routines SSGEMV4 that accomplishes multiplications between a given array
of matrices and a number of vectors for each input matrix. CPU side we were so far
unable to take advantage of fourth level extensions of the BLAS. Performance for kernel
valuations are given by the following table:

20

Microchip SGEMM SGEMM4 SGEMV SGEMV4 d = 128 d = 512
Xeon 5460 84.7 GF/s 84.7 GF/s 3.1 GF/s 3.1 GF/s 9.3 GF/s 14.7 GF/s
Nehamel 63.7 GF/s 63.7 GF/s 3 GF/s 3 GF/s 6.8 GF/s 11.7 GF/s

Tesla 860C 186 GF/s 200 GF/s 3 GF/sec 151 GF/s 105 GF/s 186 GF/s
Tesla 1060C 341 GF/s 369 GF/s 2.6 GF/s 288 GF/s 256 GF/s 256 GF/s

Table 2: Performance of CPUs and GPUs at kernel valuation.

9 Sensitivities

Pricing sensitivities with respect to small changing of initial conditions or model param-
eters, also known as Greeks, are vital tools in risk management. Greeks give information
on hedge ratios needed to immunize portfolios with respect to market risk.

Below, we make use of the following notations for forward and backward finite differ-
ence:

∇+Φ
∇+X

(y) =
Φ(y + 1)− Φ(y)
X(y + 1)−X(y)

(79)

and
∇−Φ
∇−X

(y) =
Φ(y − 1)− Φ(y)
X(y − 1)−X(y)

(80)

and the symmetric second derivative

∆Φ
∆X

(y) =
2

∇+X −∇−X

(
∇+Φ
∇+X

(y)− ∇
−Φ
∇−X

(y)
)
. (81)

9.0.1 Delta

Delta is the price sensitivity with respect to the underlying instrument spot price. If
ΦD(Γ, t) is the discounted cash flow functional and assuming for notational simplicity
that there is a single cash-flow at time T = T ′Nk−1, the Delta is given by

Delta =
∇+EU0

[
ΦD(Γ, T)

]
∇+X

(ȳ)

=
EU0

[
ΦD(Γ, T)|ȳ + 1

]
− EU0

[
ΦD(Γ, T)|ȳ

]
X (ȳ + 1)−X (ȳ)

=
EU0

[
ΦD(Γ, T)Q+(Γ)|ȳ

]
− EU0

[
ΦD(Γ, T)|ȳ

]
X (ȳ + 1)−X (ȳ)

=
EU0

[
ΦD(Γ, T) (Q+(Γ)− 1) |ȳ

]
X (ȳ + 1)−X (ȳ)

(82)

where

Q+(Γ) =
U0 (ȳ + 1,Γ0)
U0 (ȳ,Γ0)

. (83)

21

9.0.2 Gamma

Gamma is the second derivative of the value function with respect to the underlying price
and measures also the rate of change in the Delta and is defined as follows:

Gamma =
∆EU0

[
ΦD(Γ, T)

]
∆X

(ȳ)

=
2

∇+X −∇−X

(
∇+EU0

[
ΦD(Γ, T)

]
∇+X

(ȳ)−
∇−EU0

[
ΦD(Γ, T)

]
∇−X

(ȳ)

)

=
2

X (ȳ + 1)−X (ȳ − 1)

(
EU0

[
ΦD(Γ, T) (Q+(Γ)− 1) |ȳ

]
X (ȳ + 1)−X (ȳ)

−
EU0

[
ΦD(Γ, T) (Q−(Γ)− 1) |ȳ

]
X (ȳ − 1)−X (ȳ)

)
(84)

where Q+(Γ) is given by (83) and

Q−(Γ) =
U0 (ȳ − 1,Γ0)
U0 (ȳ,Γ0)

(85)

9.0.3 First Order Sensitivities with Respect to Model Parameters

To evaluate numerically sensitivities with respect to a model parameter λ, we make use
of the Radon-Nykodim derivatives of the base process giving rise to the long step kernel
U = U(λ) with respect to another model specification with a slightly augmented value
for the parameter λ and corresponding to the long-step kernel U+ = U(λ+ δλ). Let

P (ȳ, λ) = E
U(λ)
0

[
ΦD(Γ, T)

]
(86)

be the pricing function with arguments the spot state variable ȳ and the generic parameter
λ, all other parameters being omitted. The first λ sensitivity is evaluated as follows:

P (ȳ, λ+ δλ)− P (ȳ, λ)
δλ

=
EU

+

0

[
ΦD(Γ, T)|ȳ

]
− EU0

[
ΦD(Γ, T)|ȳ

]
δλ

=
EU0

[
ΦD(Γ, T)W+ (Γ|ȳ) |ȳ

]
− EU0

[
ΦD(Γ, T)|ȳ

]
δλ

=
EU0

[
ΦD(Γ, T) (W+ (Γ|ȳ)− 1) |ȳ

]
δλ

(87)

where

W+(Γ|ȳ) =
U+

0 (ȳ,Γ0)
U0 (ȳ,Γ0)

U+
1 (Γ0,Γ1)
U1 (Γ0,Γ1)

· · ·
U+
Nk−1 (ΓNk−2,ΓNk−1)

UNk−1 (ΓNk−2,ΓNk−1)
(88)

9.0.4 Second Order Sensitivities with Respect to Model Parameters

The second order variation with respect to the generic model parameter λ is evaluated
similarly to the first order sensitivity by considering a long-step kernel U+ = U(λ + δλ)

22

with slightly augmented value for λ and a long-step kernel U− = (λ− δλ) with a slightly
decreased value.

P (ȳ, λ+ δλ) + P (ȳ, λ− δλ)− 2P (ȳ, λ)
(δλ)2

=
1

(δλ)2

(
EU

+

0

[
ΦD(Γ, T)|ȳ

]
+ EU

−

0

[
ΦD(Γ, T)|ȳ

]
− 2EU0

[
ΦD(Γ, T)|ȳ

])
=

1
(δλ)2

EU0

[
ΦD(Γ, T)

(
W+ (Γ|ȳ) +W− (Γ|ȳ)− 2

)
|ȳ
]

(89)

where W+(Γ|ȳ) is given by (88) and

W−(Γ|ȳ) =
U−0 (ȳ,Γ0)
U0 (ȳ,Γ0)

U−1 (Γ0,Γ1)
U1 (Γ0,Γ1)

· · ·
U−Nk−1 (ΓNk−2,ΓNk−1)
UNk−1 (ΓNk−2,ΓNk−1)

(90)

9.0.5 Mixed Sensitivities

Mixed sensitivities with respect to state variables and model parameters, also known as
cross-gammas are defined as follows:

1
∇+X

(
P (ȳ + 1, λ+ δλ)− P (ȳ + 1, λ)

δλ
− P (ȳ, λ+ δλ)− P (ȳ, λ)

δλ

)
=

1
δλ∇+X

(
EU0

[
ΦD(Γ, T)

(
W+ (Γ|ȳ + 1)− 1

)
|ȳ + 1

]
− EU0

[
ΦD(Γ, T)

(
W+ (Γ|ȳ)− 1

)
|ȳ
])

=
1

δλ∇+X

(
EU0

[
ΦD(Γ, T)

(
W+ (Γ|ȳ + 1)− 1

)
Q+(Γ)|ȳ

]
− EU0

[
ΦD(Γ, T)

(
W+ (Γ|ȳ)− 1

)
|ȳ
])

=
1

δλ∇+X
EU0

[
ΦD(Γ, T)

(
W+ (Γ|ȳ + 1)Q+(Γ)−Q+(Γ)−W+(Γ|ȳ) + 1

)
|ȳ
]

(91)

where Q+(Γ) is given by (83) and W+(Γ|ȳ) is given by (88). Notice that

W+(Γ|ȳ + 1)Q+(Γ)

=
U+

0 (ȳ + 1,Γ0)
U0 (ȳ + 1,Γ0)

U+
1 (Γ0,Γ1)
U1 (Γ0,Γ1)

· · ·
U+
Nk−1 (ΓNk−2,ΓNk−1)

UNk−1 (ΓNk−2,ΓNk−1)
U0 (ȳ + 1,Γ0)
U0 (ȳ,Γ0)

=
U+

0 (ȳ + 1,Γ0)
U0 (ȳ,Γ0)

U+
1 (Γ0,Γ1)
U1 (Γ0,Γ1)

· · ·
U+
Nk−1 (ΓNk−2,ΓNk−1)

UNk−1 (ΓNk−2,ΓNk−1)
(92)

9.0.6 Rho

Rho is the derivative of the option value with respect to the risk free rate and measures
the sensitivity to the interest rate level. In case interest rates are deterministic, i.e.
independent on the state variables of the underlying process, we use the money-market
account as a numeraire asset and a change in interest rates is reflected in a change in the
value of the numeraire asset. A constant shift in rates would lead from the money-market
account in (69) to the perturbed process

B′(t) = e(ri+δr)(t−Ti)
∏
i:Ti<t

e(ri+δr)(Ti−Ti−1). (93)

23

Hence, the different discounting reflects as follows on the value of the discounted payoff
functional:

ΦD
′
(Γ, T) = R(T)ΦD(Γ, T). (94)

where
R(t) = e−δr(t−Ti)

∏
i:Ti<t

e−δr(Ti−Ti−1). (95)

Hence

Rho =
P (ȳ, r + δr)− P (ȳ, r)

δr

=
EU

+

0

[
ΦD

′
(Γ, T)|ȳ

]
− EU0

[
ΦD(Γ, T)|ȳ

]
δr

=
EU0

[
ΦD

′
(Γ, T)W+(Γ)|ȳ

]
− EU0

[
ΦD(Γ, T)|ȳ

]
δr

=
EU0

[
ΦD(Γ, T) (R(T)W+(Γ)− 1) |ȳ

]
δr

(96)

10 Model Specifications

In this section we review three model specifications based on Brownian motion, a local
volatility process and a stochastic volatility process.

Discrete diffusion processes are defined on a lattice of nx > 1 sites given by the set of
integers Λ = {0, 1, 2, . . . , nx − 1}. The Markov generator has the form

L (x1, x2; t) = µ(x1, t)∇± (x1, x2) +
σ2(x1, t)

2
∆ (x1, x2) . (97)

Here ∇± (x1, x2) is the kernel for the discrete gradient and Laplace operators given by

∇± (x1, x2) = δx1±1,x2 − δx1,x2 . (98)

The plus sign is chosen in case µ > 0 while we select the negative sign in case µ < 0, so
that either way µ∇± is a correctly defined Markovian. The operator ∆ (x1, x2) is given
by

∆ (x1, x2) = δx1+1,x2 − 2δx1,x2 + δx1−1,x2 (99)

Financial risk factors are associated to the lattice process by means of a non-linear function
S(x, t). The parameter µ(x, t) is called drift and the parameter σ(x, t) is called volatility.
For reasons of numerical efficiency, it is important to define model parameters and the
risk factor function φ(x, t) in such a way that they are piecewise constant. Periods of time
over which parameters are constant are called epochs. Over each epoch, it is convenient
to evaluate model parameters indirectly by assigning the first two moments of the risk
factor short time increments, i.e.

m1(x1, t)
δt

≡
∑
x2

uδt(x1, x2)(φ(x2, t)− φ(x1, t))

=
∑
x2

L(x1, x2)(φ(x2, t)− φ(x1, t)) (100)

24

and

m2(x1, t)
δt

≡
∑
x2

uδt(x1, x2)(φ(x2, t)− φ(x1, t))2

=
∑
x2

L(x1, x2)(φ(x2, t)− φ(x1, t))2. (101)

Possible examples of diffusion processes of practical use in financial modeling include

• Brownian motion for which moments are not state dependent, i.e.

m1(x, t) = µ(t), m2(x, t) = σ(t)2; (102)

• geometric Brownian motion with

m1(x, t) = µ(t)φ(x, t), m2(x, t) = σ(t)2φ(x, t)2, (103)

• mean reverting diffusions with

m1(x, t) = κ(t)(θ(t)− φ(x, t)), m2(x, t) = σ(t)2φ(x, t)2, (104)

• local volatility processes with

m1(x, t) = µ(t)φ(x, t), m2(x, t) = σ(t)2

(
φ(x, t)
φ(x0, t)

)2β(S(x))−2

φ(x, t)2. (105)

A two factor or regime switching model is characterized by a state variable given by
a pair y = (x, r) where x = 0, 1, ...nx − 1 and r = 0, 1, ..nr − 1. The variable y itself can
be written in the form y = x + nx ∗ r and takes values y = 0, ...d− 1 where d = nx · nr.
Let us introduce the functions

r(y) =
[
y

nx

]
(106)

and
x(y) = y − nxr(y). (107)

It is useful to cast the Markovian in the form

L(y1, y2) ≡ Lx(x(y1), x(y2); r(y1))δr(y1),r(y2) +A(y1, y2). (108)

Here Lx(x(y1), x(y2); r(y1)) is a restricted Markovian in the state variable x only specific
to the regime as a function of the regime state variable r(y1). The matrix A(y1, y2) is a
remainder term. Notice that the first term in this equation describes only the transitions
between x state variables, not transition between regime state variables. The general
intuition behind this separation of terms is that the x variables make transitions with
high frequency on a finely discretized lattice while the regime variables change less often.

To correlate the x and the r variables one could in principle think of considering cross
moments of the form

mrx(x1, r1t)
δt

≡
∑
x2,r2

L(x1 + nx · r1, x2 + nx · r2)(φ(x2, t)− φ(x1, t))(ψ(r2, t)− ψ(r1, t)).

(109)

25

However, due to the typically major gap in time scales between fast modes driven by the
variable x and slow modes driven by the variable r, it turns out that to enforce such a
cross-moment condition one would require a fine discretization of both the variables x
and r. To allow for a coarser discretization of the regime variable r, we instead proceed
otherwise to model correlations and derive them out of a definition of a jump component
in the process. Namely, conditioned to a transition in regime variable x occurring, we
allow the x variable to jump either up or down according to an exponential distribution.

To be more specific, the construction of a regime switching generator proceeds as
follows. Firstly we consider the regime specific dynamics given by a family of generators
of the form

Lx(x1, x2; r1) = µx(x1, r1, t)∇± (x1, x2) +
σ2
x(x1, r1, t)

2
∆ (x1, x2) (110)

These generators can be identified by means of first and second moments as described
above for the case of one factor diffusion processes.

Secondly, one considers a dynamics for the regime variable given by a similar Marko-
vian of the form

Lr(r1, r2;x1) = µr(x1, r1, t)∇± (x1, x2) +
σ2
r(x1, r1, t)

2
∆ (x1, x2) . (111)

For each transition r1 → r2 with r1 6= r2, we introduces jumps in the x coordinate in such
a way to preserve the transition probability rate given by this Markovian Lr(r1, r2;x1).
More precisely, we define the residual matrix A(y1, y2) so that∑

x2

A(x1 + nx · r1, x2 + nx · r2) = Lr(r1, r2;x1) (112)

for all r1 6= r2. Assuming that jumps are distributed exponentially, we set

A(x1 + nx · r1, x2 + nx · r2) = c(x1, r1, r2)e−(φ(x2)−φ(x1))/a± (113)

where a± are two constants. In this equation, we select a+ in case x2 >= x1 and select
a− in case x < x2. The constant c(x1, r1, r2) is positive and is evaluated in such a way
to satisfy equation (112).

A final remark concerns the drift. As a consequence of the two-step construction
above, the drift of the resulting process deviates from the input drift used for the initial
x process. As a consequence, it is often not even worthwhile to specify this drift to any
value different from zero in the first stage. After introducing jumps, the drift can always
be restored to the desired value with a simple construction. Namely, we evaluate the first
moment

m1(y1, t)
δt

≡
∑
y2

uδt(y1, y2)(φ(x(y2), t)− φ(x(y1), t))

=
∑
x2

L′(y1, y2)(φ(x(y2), t)− φ(x(y1), t)) (114)

where L′(y1, y2) is the Markovian obtained after the first two steps and we then set

L′(y1, y2) = L′(y1, y2) + δµ(y1)∇±, (115)

26

where δµ(y1) is chosen so that the first moment for the resulting Markovian is at the
desired value and the sign in the gradient operator ∇± is chosen so that δµ(y1)∇± is
itself a correctly defined Markovian.

11 Numerical Experiments

In this section, we discuss some numerical experiments illustrating our algorithm for
finding price sensitivities with Monte Carlo simulations by means of the likelihood ratio
method. We consider a local volatility model of volatility function σ0S

β with interest rate
r = 0, volatility σ0 = 25%. The initial stock price is S0 = 100 and parameter β = 0.25.
We price an option of maturity T = 10 years and a butterfly type payoff of the form

(ST − 95)+ − 2(ST − 100)+ + (ST − 105)+ (116)

In addition, there is a knock-out clause whenever the stock hits barriers at L = $75 and
U = $125 at epoch dates occurring with yearly frequency starting from the value date.
We evaluate numerically the following sensitivities:

• Delta and Gamma sensitivities as described in Section 9;

• The Vega and the Vomma, defined as the first and second sensitivities with respect
to a small change in σ0 = 25% to σ0 + 1%;

• the Vanna, defined as the mixed sensitivity with respect to a small change in spot
underlying price and a small change in σ0;

• the Rho, defined as the sensitivity with respect to a small change in the interest
rate from 0 to 0.001.

• the BetaPV01, defined as the price sensitivity with respect to a small change in the
β parameter from β = 25% to β + 1%.

In the graphs below, on the X axis we plot the number of batches for the simulation and
in each batch, we generate one million scenarios. We compare sensitivities obtained by
simply rerunning the simulation with the same initial seeds and bumped parameters with
the likelihood ratio method reviewed in this paper. The main advantage of the likelihood
ratio method is speed, as it requires recomputing the kernels but not generating new
scenarios or evaluating payoffs anew. This is a particularly important advantage in cases
where one is evaluating large portfolios and a computational bottleneck is given by the
payoff valuation step. A secondary advantage is an effect of variance reduction that we
notice empirically.

12 Conclusion

We review a general Monte Carlo simulation methodology that covers a large class of
not necessarily solvable processes whose dynamics is expressed in the form of a Markov
chain. The theory is illustrated ab initio and algorithms are reviewed in detail. The
interested reader is invited to download the open source library OPLib (Albanese 2009)
for coded examples and benchmarks. We conclude that Monte Carlo algorithms are

27

best orchestrated on current hardware platforms by using GPU coprocessors for kernel
valuations and CPUs for scenario generation.

References

Albanese, C. (2007a). Kernel Convergence Estimates for Diffusions with Continuous Co-
efficients.

Albanese, C. (2007b). Stochastic Integrals and Abelian Processes.

Albanese, C. (2009). Oplib 1.0, a monte Carlo Pricing Library Based on Operator Meth-
ods.

Chen, N. and P. Glasserman (2007). Malliavin Greeks without Malliavin Calculus.
117, 1689–1723.

de Finetti, B. (1931). Sul Significato Soggettivo della Probabilita’.. 17, 298–329.

Farkas, J. (1902). Ueber die Theorie der Einfachen Ungleichungen. 124, 1–27.

Knuth, D.E. (1969). Semi-numerical Algorithms: The Art of Computer Programming.

Kolmogorov, A. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer.

Matsumoto, M. (1998). Mersenne Twister: a 623-dimensionally equidistributed uniform
psudo-random number generator. 8, 3.

Matsumoto, M. (2007-2009). Simd-oriented fast mersenne twister.

Plato, J. Von (1994). Creating Modern Probability. Dover Publications, New York.

R. Courant, K. Friedrichs and H. Lewy (1928). ber die Partiellen Differenzengleichungen
der Mathematischen Physik. 100, 32–74.

S. P. Jones, J. M. Eber and J. Seward (2000). Composing Contracts: An Adventure in
Financial Engineering.

28

Figure 1: Comparative performance at Monte Carlo scenario generation.

Figure 2: Comparative performance at third level BLAS.

29

Figure 3: Comparative performance at multiple kernel evaluation. This is handled con-
currently on GPUs and serially on CPUs.

Figure 4: Convergence of the Delta for a barrier butterfly spread as a function of the
number of simulation batches.

30

Figure 5: Convergence of the Gamma for a barrier butterfly spread as a function of the
number of simulation batches.

Figure 6: Convergence of the Vega for a barrier butterfly spread as a function of the
number of simulation batches.

31

Figure 7: Convergence of the Vanna for a barrier butterfly spread as a function of the
number of simulation batches.

Figure 8: Convergence of the Vomma for a barrier butterfly spread as a function of the
number of simulation batches.

32

Figure 9: Convergence of the Rho for a barrier butterfly spread as a function of the
number of simulation batches.

Figure 10: Convergence of the BetaPV01 for a barrier butterfly spread as a function of
the number of simulation batches.

33

