
SRI International

Modeling the Digital Earth in VRML

November 9, 1998

Technical Note No. 559

Prepared By: Martin Reddy, Computer Scientist
Yvan Leclerc, Sr. Computer Scientist
Lee Iverson, Computer Scientist
Nat Bletter, Research Engineer
Kiril Vidimce†, Student Associate
Artificial Intelligence Center
SRI International

Approved by: C. Raymond Perrault, Director
Artificial Intelligence Center

William S. Mark, Vice President
Information and Computing Sciences

†Kiril Vidimce was a summer student working at SRI International and is currently studying at Mississippi State
University. This work was supported in part by contracts from the Defense Advanced Research Projects Agency.

Modeling the Digital Earth in VRML

Martin Reddy, Yvan G. Leclerc, Lee Iverson, Nat Bletter, and Kiril Vidimce†

SRI International, Menlo Park, CA 94025.

9 November, 1998.

Abstract: This paper describes the representation and navigation of large, multi-resolution,
georeferenced datasets in VRML97. This requires resolving nontrivial issues such as how to
represent deep level of detail hierarchies efficiently in VRML; how to model terrain using
geographic coordinate systems instead of only VRML’s Cartesian representation; how to model
georeferenced coordinates to sub-meter accuracy with only single-precision floating point
support; how to enable the integration of multiple terrain datasets for a region, as well as cultural
features such as buildings and roads; how to navigate efficiently around a large, global terrain
dataset; and finally, how to encode metadata describing the terrain. We present solutions to all of
these problems. Consequently, we are able to visualize geographic data in the order of terabytes
or more, from the globe down to millimeter resolution, and in real-time, using standard VRML97.
Keywords: terrain visualization, multi-resolution, georeferenced, VRML, Java.

1 Introduction
The problem of accurately representing geographic data is one that presents the Virtual Reality
Modeling Language (VRML) with perhaps one of its greatest challenges: it requires the ability to
display massive quantities of geometry and imagery, support numerous alternative coordinate
systems, implement application-specific navigation schemes, and model data to very high
precision.

The importance of geographic representations was recently highlighted by Al Gore, Vice
President of the United States, in a speech that he made to the California Science Center entitled,
“The Digital Earth” [1]. In this speech, Gore challenges the scientific community to build a
“multi-resolution, three-dimensional representation of the planet, into which we can embed vast
quantities of geo-referenced data”. Gore proceeds to detail various issues and desirable features of
such a representation, including the necessity to

1. Integrate presently available georeferenced data
2. Model the world to 1 m resolution
3. Distribute all data across thousands of servers and organizations
4. Support many kinds of data, e.g. imagery, buildings, weather, etc.
5. Build potentially on key Web and Internet standards
6. Develop metadata standards to describe the georeferenced information

Here, we attempt to illustrate how VRML can be used to model the digital earth. Much of the
work that we have performed in this domain has been contributed to the GeoVRML Working
Group (http://www.ai.sri.com/geovrml/). GeoVRML is an official working group of the Web3D
Consortium that was formed with the specific goal of producing tools and recommended practice

† E-mail: {reddy|leclerc|leei|bletter}@ai.sri.com, and vkire@cs.msstate.edu. The last co-author was a
summer student at SRI International and is currently studying at Mississippi State University.

for representing geographic data using VRML. We have implemented all of the material that is
presented in this paper, except for some of the navigation techniques presented in Section 6.

2 Previous Work
VRML has drawn a lot of interest from various sectors involved in the creation and visualization
of geographic information. For example, the Virtual Field Course (VFC) at the University of
Leicester, UK, utilizes VRML and Java to present students with 2-D and 3-D views of fieldwork
locations to enhance their cognition of the real environment [2]. The Naval Postgraduate School
(NPS), in association with the US Geological Survey (USGS), is developing a multi-resolution
model of the Monterey Bay in VRML, using raw bathymetry (elevation below sea level) data for
a 2.5 × 2.5 deg region of the bay (http://www.stl.nps.navy.mil/~auv/leaver/). Researchers at
NASA Goddard Space Flight Center have produced several VRML terrain models, including a
visualization of Hurricane Linda off the west coast of Mexico (http://vrml.gsfc.nasa.gov/).
Abernathy and Shaw recently presented work to visualize the course of a 1997 relay race through
the San Francisco Bay Area, using VRML to model the terrain and to overlay a track obtained
from Global Positioning System (GPS) receivers [3]. The Image Processing Group at the
University of Zagreb developed an interactive map of Croatia, where users could select a region
and then view this in 3-D, using VRML (http://petra.zesoi.fer.hr/croatia/).

For the most part, many of the VRML terrain models that have been produced are not multi-
resolution, and hence are limited in the amount of geometry and imagery that can be effectively
displayed. In addition, no work has yet faced the issue of modeling large-scale areas to very high
precision, such as the world to 1 m resolution. In addition, little effort has been made to use or
preserve the original georeferenced data in the VRML terrain representations. We address all of
these issues in this paper and present solutions that we hope will improve the generality and
fidelity of geographic support in VRML.

3 Terrain Representation
Many current VRML applications proudly advertise the fact that they have been developed in
under 100 K and hence can be quickly downloaded; also that they are geometrically noncomplex
and hence the browser can render them at interactive frame rates. In our problem domain, we
have massive volumes of complex data, but we still desire minimal download times and high
frame rates. For example, storing color imagery for the entire world at 1 m resolution would
require over one petabyte (1015 bytes) of backing store. If we had elevation data for the world at
30 m resolution, this would produce a geometric model of over 500 billion (5 × 1011) polygons.
Obviously, it is therefore essential for us to implement some form of level of detail (LOD)
management.

3.1 Multi-resolution Terrain
LOD is best achieved for terrain applications using a hierarchical data structure such as a quad-
tree [4, 5, 6]. This involves progressively downsampling an image or elevation bitmap to produce
a multi-resolution pyramid. Each level of this pyramid is then segmented into a grid of equally-
sized rectangular tiles, e.g. 128 x 128 pixels. A tile at one level of the pyramid will therefore map
onto four tiles on the immediately higher-resolution level, i.e. the tiles at the higher-resolution
level cover half the geographical area of the former. Using such a representation, we can
progressively display higher resolution data around some area of interest (e.g. the user’s
viewpoint) while other regions remain in low resolution. The use of tiling also allows us to only
fetch and display sections of the dataset that are visible from a certain vantage point. These
concepts are illustrated in Figure 1.

3.2 Tree Files and Terrain Tile Files
We implement the above terrain representation by introducing two primary types of VRML files:
Tree files and Terrain Tile files. These are the basic building blocks of our VRML terrain
representation.

Tree files : These implement part of the multi-resolution structure for the entire globe. In effect,
these files are the glue that holds the Terrain Tile files into a global quad-tree structure. The
Tree files enable us to split the entire LOD hierarchy over multiple files and to abstract the
LOD structure from the actual terrain data. It is also possible for us to create different LOD
tree depths for different regions of the globe. For example, we could have 100 km resolution
data for the entire globe but recursively insert higher-resolution datasets for smaller regions
of interest, e.g. a 1 km resolution dataset for the conterminous United States and a 1 m
resolution dataset for Yosemite Valley, CA. We store these files using the file and directory
name convention “dataset/trees/r/pxpy.wrl”, where r is the Tree file resolution, and (x,y)
specify the coordinates of the Tree file in that level.

Terrain Tile files : These contain the actual terrain data for a single tile of a pyramid. This
includes the elevation geometry and links to the texture-map imagery for that specific tile of
terrain. There will exist a separate pyramid of Tile files for each terrain dataset. Using the
previous example, the 1 km U.S. dataset and the 1 m Yosemite dataset will each have its own
pyramid of Tile files. We use the following file and directory name conventions for Tile files:
“dataset/vtile/n/pxpy.wrl”, where n is the level of the pyramid (0..n), and (x,y) specify the
coordinates of the Terrain Tile file at that pyramid level.

Figure 1: Illustrating a tiled pyramid representation. The left image shows four different
resolutions of a digital map where each level has been segmented into a regular grid of tiles.
The right image demonstrates the use of a quad-tree technique to alter the resolution of an
image in different regions.

4 Fusion of Multiple Datasets
One of the principal goals of our work is to represent multiple types of georeferenced data for any
given region. For example, we desire the ability to switch between alternative terrain imageries;
to display cultural features such as roads, buildings, and lines of communications; to visualize

weather phenomena such as clear air turbulence isosurfaces or wind vectors; and to provide
terrain annotations such as a city name or a mountain height (see Figure 2).

4.1 GeoTile Files
In order to support this functionality, we introduce an extra layer of abstraction into our terrain
representation. This is done using a hierarchy of files that we will call GeoTiles. A GeoTile
contains descriptions and links to all available data for a single region at one level of detail.
GeoTiles are therefore introduced between Tree and Terrain Tile files. That is, for every Tree file
there exists a GeoTile, and each GeoTile can link to any number of Terrain Tile files for different
terrain representations, or arbitrary georeferenced VRML files for cultural or other features
within that region. (N.B. in the future we may merge the contents of the GeoTile files directly
into the Tree files.)

By adding this extra layer to our structure, we simplify the task of maintaining and adding new
datasets into our global structure. For example, when we want to add a new image pyramid to the
structure we can generate the Terrain Tiles in isolation and then simply add links to these tiles
from the appropriate GeoTiles. (Additional Tree files may also have to be generated if the new
dataset provides higher resolution than previously available for that region; however, existing
Tree files will not need to be modified.) In addition, because each dataset is stored independently
and only referenced via the GeoTiles, it is possible to selectively display any desired combination
of datasets and to do so without needlessly loading data that will not be displayed.

A GeoTile file will contain a single instance of a GeoTile node, implemented using VRML’s
EXTERNPROTO facility. This node simply contains fields to specify a list of alternative terrain
URLs (Universal Resource Locators) for that tile, and a list of URLs for all cultural or other
features that extend into that tile (along with fields to provide short textual descriptions of each
URL). With this provision, we can embed arbitrary amounts of georeferenced data into our terrain
representation.

Figure 2: Two examples showing the embedding of georeferenced objects. The image on the
left shows a weather simulation over the Colorado Rockies, while the image on the right
shows an airstrip with georeferenced 3-D geometry for roads (orange) and buildings (yellow).
These and other terrain datasets can be browsed from http://www.ai.sri.com/VRMLSets.

4.2 The GlobalState Node
The integration of terrain features such as roads and buildings into a tiled pyramid structure raises
a difficult issue. That is, it is possible for features to extend beyond tile boundaries, e.g. a road
could cover multiple tiles, or a large building might sit on the boundary between two tiles. One
way to deal with this problem would be to dissect the geometry for all ground features along tile
boundaries at every resolution. This would constrain all features in a tile to be contained entirely
within that tile. Another solution would be to simply include a link to the same feature in all of
the GeoTiles that it projects into. We have adopted the latter approach as it does not constrain the
cultural features to the same resolution range as the terrain, and it requires no modification to
feature geometries. However, one problem is that we would load, store, and render duplicate
copies of each feature for every loaded GeoTile in which it occurs. We therefore treat features
specially within the GeoTile node by keeping a count of the number of times a particular feature
URL has been loaded. Whenever a file is to be loaded we increment its reference count and
perform the load operation only on the first invocation. Similarly, we unload a feature file only
when its reference count returns to zero.

To implement this reference count system, we must be able to maintain state that is global to the
entire scene. This can be done by simply declaring static class variables inside a Java script.
However, a further complication arises because features may extend over multiple tiles. The tile
that originally loaded a feature may get unloaded because it is no longer visible, and hence the
feature geometry would get unloaded although it, itself, is still visible. We therefore developed a
GlobalState node that is used to manage the loading and unloading of all features. This node
stores all of the feature geometry and also provides an interface to select which features and
terrain datasets are to be displayed. The latter facility enables the use of an External Authoring
Interface (EAI) program to display a list of available terrain and feature sets and allow the user to
select which data to view at any time.

5 Geographic Coordinate Systems
VRML97 uses a right-handed, Cartesian coordinate system to model all objects in 3-D space [7].
In addition, the positive Y axis is defined as the up direction. In terms of georeferencing, this
coordinate system is most similar to a geocentric coordinate system, where all locations are
specified in units of meters as an (x,y,z) offset from the center of the planet. However, most
georeferenced data are provided in some geodetic or projective coordinate system.

A geodetic (or geographic) coordinate system is related to the ellipsoid used to model the earth,
e.g. the latitude-longitude system. A projective coordinate system employs a projection of the
ellipsoid onto some simple surface such as a cone or a cylinder, for example, the Lambert
Conformal Conic (LCC) or the Universal Transverse Mercator (UTM) projections [9]. Each of
these coordinate systems was designed for slightly different applications and offers particular
advantages and restrictions. For example, some projections can represent only small-scale
regions, others are conformal (same scale in every direction), and others can be equal area
(projected area corresponds to the earth’s physical area over the entire projection). Figure 3
illustrates some contemporary coordinate systems.

(a) (b)

(c) (d)

Figure 3: Examples of geodetic and projective coordinate systems. (a) Orthographic
projection, used for perspective views of the earth, moon, and other planets, (b)
latitude/longitude graticule, used to locate points on the earth’s surface via a grid of meridians
and parallels, (c) Mercator projection, used for navigation or maps of equatorial regions, (d)
Lambert Conformal Conic, used by USGS for topographic maps. (Images adapted from [10].
Reproduced with permission.)

5.1 The geotransform Java Package
We would like to directly specify coordinates in a VRML file using geographic coordinate
systems. To do this, we require software to perform fast transformations from each of these
coordinate systems into geocentric coordinates that we can pass to the VRML browser. We have
therefore produced a Java package to perform this conversion
(http://www.ai.sri.com/~reddy/geovrml/geotransform). This package, called geotransform, is
based upon freely-available C source code developed by the SEDRIS project
(http://www.sedris.org/). Currently, this package provides support for the lat/long, UTM, and
geocentric coordinate systems.

5.2 The GeoCoordinate and GeoElevationGrid nodes
Using the geotransform Java package, we have developed two new nodes that enable a user to
specify locations in geographic coordinate systems. The GeoCoordinate node functions as a
replacement for the Coordinate node and can be used wherever a standard Coordinate node can
be used, e.g. in an IndexedFaceSet, IndexedLineSet, or PointSet. The GeoCoordinate node offers
a point field to specify a list of coordinates; however, the node also contains a geoSystem field to
specify the coordinate system of the values in the vertex list. For example, specifying a
geoSystem of “GDC” (geodetic) means that the vertex list consists of (latitude, longitude,

elevation) tuples, where latitude and longitude are specified in units of degrees and elevation is
measured in units of meters above the ellipsoid1. These coordinates are transparently transformed
to geocentric values by the GeoCoordinate node and then passed to the VRML browser to be
rendered. Figure 4 provides an example of this functionality.

#VRML V2.0 utf8
Specify geometry directly in lat/long coords
All elevations are 0 m for this example
...
Shape {
 geometry IndexedFaceSet {
 coord GeoCoordinate {
 geoSystem "GDC"
 point ["
 -180 -90 0, -160 -90 0, -140 -90 0, ...
 -180 -75 0, -160 -75 0, -140 -75 0, ...
 -180 -60 0, -160 -60 0, -140 -60 0, ...
 ...
 "]
 }
 ...

Figure 4: Illustrating the use of the GeoCoordinate node to insert latitude/longitude
coordinates directly in a VRML file. These coordinates are transparently transformed to
geocentric coordinates to produce an ellipsoidal model of the earth, as seen on the left.

The limitations of the VRML97 ElevationGrid node for serious geographic applications are well
known [3]. The primary problem is that this node assumes that all heights are relative to a flat
plane, but planets are curved objects, not flat. ElevationGrids are therefore useful only for
modeling local regions where the earth’s curvature is not significant (in the order of roughly 100
km2). We have therefore built a new node, called GeoElevationGrid, also using the geotransform
Java package. This node is used in exactly the same manner as an ElevationGrid, except that the
height field is relative to the surface defined by the coordinate system in the geoSystem field. The
xspacing and zspacing fields are delta values in that coordinate system. Thus, if a non-Cartesian
coordinate system is specified, such as UTM, then the zero-height surface will have non-zero
curvature.

5.3 Facing the Single-Precision Problem
There is a further problem to face when dealing with geographic coordinate systems: precision.
VRML97 provides support for single-precision floating point numbers, designated as SFFloat and
MFFloat [7]. Single-precision values are represented using 32-bits with a 23-bit mantissa [8], thus
providing around 6 digits of precision (223 = 8.39 × 106). Given that the equatorial diameter of the
earth is 12,756,274 m (under the WGS 84 ellipsoid [9]), we will be able to represent geocentric
values only down to the order of 10’s of meters. Below this threshold, we will experience various
floating point rounding artifacts such as vertices coalescing and camera jitter. We observe,
however, that single-precision is sufficient to render a single view. It is therefore clear that we
must attempt to simulate higher precision by composing a number of single-precision local
coordinate frames and transforming these into a local Cartesian coordinate system for VRML to
display.

1 We are currently working on providing the ability to specify the vertical datum for a coordinate system so
that elevations can be relative to the geoid (mean sea level) or the ellipsoid.

In order to perform this task, we introduce the GeoOrigin node. This defines an absolute
georeferenced location and an implicit local coordinate frame against which geometry is
referenced. This is done by specifying a double-precision, absolute location in the geoCoords
field. We store this coordinate as a string so that it can be parsed by a Java script and stored
internal to that script as a double-precision value. The coordinate system used to specify the
coordinate in the geoCoords field is defined by a geoSystem field (e.g. “GDC” or “UTM”).

The GeoOrigin node can then be instanced in an additional geoOrigin field of the GeoCoordinate
and GeoElevationGrid nodes. Given that these latter two nodes contain geometry for a single
coordinate frame, we can then translate their absolute geocentric coordinates into a local
Cartesian coordinate system where the VRML world’s origin corresponds to the geoOrigin
location. For example, if we specify the geoOrigin of a GeoCoordinate node to be “Z13,
310385.0 4361550.0” in UTM coordinates, then this will be transformed internally to a double-
precision geocentric coordinate of (-1459877.12, -4715646.92, 4025213.19). If we then supply an
absolute UTM coordinate in the GeoCoordinate point array of “Z13, 310400.0 4361600.0”, then
this will be transformed internally to a geocentric coordinate of (-1459854.51, -4715620.48,
4025252.11). Finally, we transform this absolute geocentric coordinate to a single-precision local
Cartesian coordinate system by subtracting the geoOrigin location to give (22.61, 26.44, 38.92).

6 Navigation Issues
The topic of efficient navigation of our terrain structures is crucial. Without a means to interact
with the data in a timely and appropriate manner, our work will be of limited practical value.
There are a number of dimensions to the issue of navigating large, planetary models. We will
discuss some of the most important issues here.

6.1 Navigating Deep LOD Hierarchies
Normally, LOD is used to switch between two or three representations of a model [11]. In our
case, we will require at least around 17 levels of detail to produce a multi-resolution model of the
earth down to 1 m accuracy. One problem is that the VRML97 specification does not specify
when files should be loaded or unloaded, e.g. when an Inline node should load the file specified
by its url field [7]. This behavior can therefore vary between different browsers. Currently, we
find that most VRML browsers load all Inline scenes at once. This is a sensible approach for
small scenes with a few Inline nodes; however, if we have a dataset that is 1 TB in size, the
browser will attempt to load all these data into memory. In order to circumvent the obvious
problems associated with this behavior, we have developed two different approaches for
navigating deep LOD hierarchies:

Anchor/LOD tree files: We observe that loading around three or four terrain levels of detail
gives an acceptable tradeoff between download time and interactivity. We therefore produce
Tree files that each contain a small LOD hierarchy, with each tile being an Anchor node to a
higher-resolution tree file. This approach uses standard VRML97 nodes to enable navigation
of deep LOD hierarchies; but it has the disadvantage of requiring the user to click over areas
to receive higher resolution, and then only the small region of interest is visible.

QuadLOD tree files: A more sophisticated approach is to employ a Java script to manage the
loading and unloading of data. We therefore produced the QuadLOD node. This node
implements a specialized quad-tree LOD facility where the four higher-resolution children of
a tile are loaded only when the user enters a specific proximity volume around the tile. These
children are also unloaded when the user leaves this volume. In addition, we cull nonvisible
tiles from the scene graph and implement a simple LRU tile caching mechanism to reduce

network downloads. We can therefore produce tree files that each contain a single QuadLOD
reference. Using this solution, users can navigate arbitrarily deep into a multi-resolution
dataset with efficient file and memory management being performed on the fly.

6.2 Terrain Following
We have already noted that the earth is round, not flat. As we navigate over the earth’s surface we
should therefore expect to follow a curved flight path. However, the default navigation methods
such as WALK and FLY propel the user only along a linear flight path parallel to the X-Z plane.
We therefore desire a navigation method that will maintain a particular height above the surface
of the earth. To do this we need to know the up vector for a particular region of terrain. VRML
implicitly assumes that the Y-axis is up, but when dealing with a curved surface the actual vector
varies continuously, for example, it could be modeled by the 3-D normal to the plane that is
tangent to the reference ellipsoid at the region in question.

6.3 Altitude-based Velocity
The velocity at which the user can navigate should be dependent upon that user’s height above
terrain. For example, when flying through a valley at a height of 100 m above the terrain, a
velocity of 100 m/s could be considered relatively fast. However, when viewing the entire globe
from space at an altitude of 20,000 km, zooming in at the same speed would be painfully slow.
We should therefore scale the velocity of the user’s navigation to achieve a constant pixel flow
across the screen.

6.4 Active Maps
When flying low over an area of terrain, it is often difficult to maintain a context of position in
the world. We therefore employ a map display that is managed by a Java applet. Through the
EAI, it is possible to obtain the location of the user in the geographic environment, e.g. from the
position_changed eventOut of a ProximitySensor placed around the entire scene. We can then
project this 3-D geocentric coordinate onto the map display so that the user can easily ascertain
the location in the world. In addition, we can allow the user to click over the map and then move
the viewpoint directly to that location. This can be done by updating and binding a Viewpoint
node in the VRML scene graph.

7 Metadata
Metadata are simply data about data. In our context, this means information that describes a
particular terrain dataset or element of that dataset, such as a name, location, resolution, size,
source attribution, data accuracy, format, currentness, or copyright notices. The issue of how best
to represent metadata is one that has received much attention recently. The Federal Geographic
Data Committee (FGDC) has produced an extensive standard for storing metadata relating to
digital geospatial data [12]. A lot of time and effort has been invested in this SGML-based
standard, referred to as the Content Standard for Digital Geospatial Metadata (CSDGM). We
would like to provide support for this work, but we also do not want to require this as the only
representation, because CSDGM can be complex to produce. Indeed, the FGDC sees the
description of terrain data using CSDGM as a function performed largely by some data librarian
body.

We therefore propose the use of a new node, GeoInformation, that provides the ability to specify
a url field to locate a CSDGM file, if available. In addition, this node enables an arbitrary list of
keyword/value pairs to specify a minimum searchable set of metadata inside the VRML file. We
specify some standard keywords that should be used, but allow developers to include additional
keyword/values to support their own applications. We have based our keyword names on the

fields suggested for the Denver Core, a set of metadata elements identified by the Metadata
Summit in February 1996:

 1. Theme_Keywords
 2. Place_Keywords
 3. Bounding_Coordinates
 4. Abstract
 5. Purpose
 6. Time_Period_of_Content
 7. Currentness_Reference
 8. Geospatial_Data_Presentation_Form
 9. Originator
 10. Title
 11. Language
 12. Resource_Description

8 Conclusions
We have presented solutions to facilitate the visualization of massive, data-rich, georeferenced
objects. This was done with the introduction of various new nodes: QuadLOD (to manage the
progressive loading/unloading of tiled data), GeoTile and GlobalState (to fuse and allow selection
between georeferenced features), GeoCoordinate and GeoElevationGrid (to enable specification
of coordinates in geographic coordinate systems), GeoOrigin (to define a coordinate frame for
offsetting absolute coordinates to single-precision), and GeoInformation (to encapsulate metadata
for a dataset).

These nodes are available from http://www.ai.sri.com/~reddy/geovrml/protos/index.shtml. In
addition, we have released the source code to the library and utilities that we developed for
generating tiled pyramids of source data, and for producing the VRML terrain representation that
we have described here (http://www.ai.sri.com/TerraVision/tsmApi/). Sample terrain datasets are
also provided to illustrate these concepts (http://www.ai.sri.com/VRMLSets/). It is hoped that by
providing these materials we will help to foster further innovation in this area.

We feel that our work to encode geographic information using VRML has been largely successful
and fulfills all of the goals that we enumerated earlier. Through our development of these tools,
we have identified key areas where the VRML specification could be extended to improve
support for demanding application areas such as geographic representation:

1. Double-precision support : As we have already noted, single-precision is insufficient for
modeling features on the earth down to 1 m resolution or beyond. We have therefore
developed custom solutions to this problem through various Java scripts. However, this level
of support would be more efficiently implemented at the browser level, and we recommend
that future versions of the VRML format include some degree of support for double-
precision.

2. Control over file loading/unloading : Because VRML does not specify when an Inline
node’s URL is to be loaded, we have been forced to develop alternative nodes that provide
this functionality. This would seem to be a facility that could be easily incorporated into
future versions of the specification and would greatly benefit the development of large,
distributed worlds.

3. Relative URLs : VRML’s handling of relative URLs proved problematic for our data
representation because of the complex hierarchy of files. For example, relative URLs are
expanded differently if a GeoTile file is loaded via a standard LOD node or by our new Java-

based QuadLOD node. We therefore had to resort to encoding all URLs as absolute
addresses, thus making the terrain hierarchy not easily portable to another server.

References
1. Gore, A. (1998). “The Digital Earth: Understanding Our Planet in the 21st Century”. Speech

delivered at the California Science Center (CSC), Los Angeles, CA. 31 January 1998.
2. Moore, K. (1997). “Interactive Virtual Environments for Fieldwork”. British Cartographic

Society Annual Symposium 1997, University of Leicester. 12-14 September.
3. Abernathy, M. and Shaw, S. (1998). “Integrating Geographic Information in VRML Models”.

Proceedings of the Third Symposium on the Virtual Reality Modeling Language, Monterey,
CA. February 16-19, pp. 107-114.

4. Falby, J.S., Zyda, M.J. Pratt, D.R. and Mackey, R.L. (1993). “NPSNET: Hierarchical Data
Structures for Real-Time Three-Dimensional Visual Simulation”. Computer and Graphics
17(1):65-69. Pergamon Press, UK.

5. Hitchner, L. E. and McGreevy, M. W. (1993). “Methods for User-Based Reduction of Model
Complexity for Virtual Planetary Exploration”. Proceedings of the SPIE: the International
Society for Optical Engineering, vol. 1913, pp. 622-36.

6. Leclerc, Y. G. and Lau, S. Q. (1995). “TerraVision: A Terrain Visualization System”.
Technical Note 540, AI Center, SRI International, 333 Ravenswood Avenue, Menlo Park, CA
94025. Available electronically from: http://www.ai.sri.com/pubs/technotes/aic-tn-
1994:540/document.ps.gz

7. ISO/IEC 14772-1:1997 (1997). “The Virtual Reality Modeling Language”. December 1997.
http://www.vrml.org/Specifications.

8. IEEE 754-1985 (1985). “IEEE Standard for Binary Floating-Point Arithmetic”. IEEE
Standards Publication.

9. Snyder, J. P. (1987). “Map Projections – A Working Manual”. U.S. Geological Survey
Professional Paper 1395, U.S. Government Printing Office, Washington, DC.

10. Dana, P. (1998), “Geographer’s Craft Project Web Page”, Department of Geography,
University of Texas at Austin.
http://www.utexas.edu/depts/grg/gcraft/notes/mapproj/mapproj.html.

11. Marshall, D., Story, D., and Maxwell, D. (1997). “Authoring Compelling and Efficient
VRML 2.0 Worlds”. SIGGRAPH ’97 Course #28, August 1997.

12. FGDC-STD-001-1998. (1998). “Content Standard for Digital Geospatial Metadata”. Version
2.0, FGDC, USGS, 590 National Center, Reston, CA 20192.
http://fgdc.er.usgs.gov/standards/.

Acknowledgements
This work has been funded in part under the following DARPA programs: MAGIC-II
(Multidimensional Applications Gigabit Internet Consortium), sub-contract 12165SRI under
contract no. F19628-95-C-0215, and BADD (Battle Assessment and Data Dissemination),
contract no. MDA972-97C-0037. . DARPA has approved this paper for public release,
distribution unlimited. Terrain imagery and elevation data supplied by the U.S. Geological
Survey, EROS (Earth Resources Observation System) Data Center.

