
VIRENT BioForm MIX[™] Xylenes

Overview

The BioForming® process converts plant-derived feedstocks into a BioFormate® product that is analogous to petroleum reformate. Similarly to conventional petroleum reformate, Virent's Bioreformate product can be used as a gasoline blendstock or processed to high purity aromatic chemicals using conventional aromatics processing technology. Virent's products are indistinguishable from the petrochemical analogs, except for C-14 dating for bio-content. Using conventional aromatics processing Virent has produced renewable paraxylene, mixed xylenes, toluene, benzene and Aromatic 100.

Key Properties

Composition

BioForm™ MIX xylenes meets or exceeds typical industry specifications for xylenes. Common impurities are present at levels at or below those in conventional petrochemical xylenes.

Interchangeable

BioForm MIX is a direct drop-in replacement for petrochemical xylenes, and can readily be interchanged with conventional petrochemical xylenes in most applications.

Low Ethylbenzene

BioForm MIX has a high xylene content with an ethylbenzene level significantly below that found most commercial products, which can approach 20% or more.

Green House Gas (GHG) Reduction

BioForm MIX helps meet sustainability goals. Depending on the feedstock used to produce BioForm MIX, it will reduce the GHG up 70% versus petrochemical xylenes. Results from radio carbon dating of paraxylene produced from the BioForm MIX confirm the carbon is bio-based.

TSCA Listing

The components present in BioForm MIX are TSCA listed. Product registrations in other regions, including REACH, will be obtained prior to commercialization. Consult the SDS for additional information.

Property	Method	Typical Industry Specification	VIRENT Turing(2)	
		•	Specification	Typical ⁽²⁾
Total C8	ASTM	>95.5 –	> 98.5%	99.7%
Aromatics	D4492 ⁽²⁾	98.5%		
Ethylbenzene	ASTM D4492 ⁽²⁾	≤ 20% ⁽³⁾	≤ 1%	0.02%
Toluene	ASTM D4492 ⁽²⁾	≤0.5%	≤ 0.5%	0.2%
Benzene	ASTM D4492 ⁽²⁾	≤ 0.01% ⁽⁴⁾	≤ 0.01%	Not detected
C9+ Aromatics	ASTM D4492 ⁽²⁾	≤0.5 – 2%	<1.0%	0.03%
Nonaromatic hydrocarbons	ASTM D4492 ⁽²⁾	≤0.3 – 1.5%	≤ 0.3 %	0.1%
Sulfur	ASTM D5453	< 10 ppm ⁽³⁾	< 1 ppm	Pass ⁽⁵⁾
Appearance	ASTM D2090	Clear and sediment-free	Clear and sediment-free	Pass
Color, maximum	ASTM D1209 Pt-Co Scale	20	20	< 5
Mean Biobased Content	C-14	N/A	> 99%	100% ⁽⁶⁾
(1) Mothed modification available upon request				

- (1) Method modification available upon request
- (2) Production Lot C0301D-OP2798-32
- (3) If specified. Not included in many published specifications.
- (4) Most stringent common specification.
- (5) Estimated based on feedstock and conversion products.
- (6) Based on paraxylene analysis.

Applications

Mixed xylenes is directly used as a solvent for paints, paint thinners, inks, adhesives, lacquers, and other applications. However, the vast majority of mixed xylenes are separated into the individual isomers such as paraxylene, a key building block for the production of many polyesters including polyethylene terephthalate (PET).

For additional information:

+1 (608) 237-8608 product_samples@virent.com

