

Optimising Performance of Hybrid Cooling Towers A Cool Approach

Why do we need Hybrid Cooling Towers?

- ► Hybrid Cooling Towers reduce visible plume
- Visible plume is often misconstrued as pollution by the public and the media
- ▶ Planning regulations stipulate that certain sites require plume abatement
- ▶ When plume affects safety, such as reduced vision near an airport, or where grounding could lead to icing on roads

How Plume is formed

- ▶ When air leaving a cooling tower has become super saturated.
- ▶ Water droplets are formed and are visible as plume.

How does a Hybrid Cooling Tower work?

Why is this costing you money?

- ► The fan machinery is sized to achieve the design cooling duty and to pull enough air through the dry section to prevent pluming
- Cooling towers will only plume under certain ambient conditions, especially cold or damp conditions
- ► When conditions are not suitable for pluming energy is wasted pulling air through the dry section
- ▶ Dry heat exchanger fins get blocked with airborne debris and require regular cleaning and maintenance, thus reducing plume performance.
- ► Closing off the dry section allows all of the air flow to travel through the wet section, maximising cooling performance, and lowering the cold water temperature, which has a direct effect on generating capacity.

Existing Solutions for Hybrid Towers

Metal Roller Shutters

- ▶ Have to be manually deployed and retracted usually once per year.
- ► Each coil requires an individual shutter
- Expensive to maintain
- ▶ Due to infrequent use these are prone to seizing.
- ▶ Potentially unsafe to operate, no protection from moving parts

Louvres

- ► Can be actuated, but complicated mechanical linkages are prone to seizing over time
- ► Large pressure drop on air flow into dry section when open
- Expensive to maintain
- Potentially unsafe to operate, no protection from moving parts.

Introduction to Galebreaker

- Over 30 years experience
- ► Markets include industrial, agricultural, power and oil
- World wide market leader in conditioning air flow into cooling equipment
- Specialists in fabric design
- ▶ £6m turnover
- ▶ 40,000 ft² factory

Galebreaker and SPX

- ▶ 1998 First ACC Wind Shield project with SPX at Kings Lynn Power Station in UK
- ▶ 2011 First automated Rolling ACC Wind Shield at Kings Lynn Power Station
- ▶ 2013 Galebreaker Rolling Systems used to improve performance of a NCWD cooling tower
- ▶ 2014 Galebreaker Air Inlet Filters used on multiple FEP tower applications across Europe
- ▶ 2016 Development of rolling systems and PlumeLogic controller for Hybrid towers

Galebreaker®

Galebreaker Plume Management Screen

- Screen Material:
 - ▶ PVC Coated Polyester
 - Strong and lightweight
 - UV Stabilised
 - ► Flame retardant
- ► Easy maintenance
- ► Airborne debris protection
- Safe operation
- ► Reduced air inlet height
- ► Max. system length 45m, Max. system height 3.5m
- ► Resistant to wind speeds up to 90mph
- ► Saline and non-saline specifications available

PlumeLogic Controller

DHDCOOLING
REFURBISHMENT.MAINTENANCE.DESIGN.INSTALLATION

- Sensors measure local Relative Humidity and Dry Bulb Temperature
- Galebreaker PlumeLogic calculates optimum screen position
- Proportional deployment to maximise efficiency in changeable conditions
- Optimum airflow through wet section of tower without compromising plume abatement

Why Use PlumeLogic?

Does Colder Water Benefit Your Process?

YES NO

Increased Output for a Significant Proportion of the Year

Operate on VFD's or Shutdown Cells to Save on Running Costs

Galebreaker

Why Use PlumeLogic?

- Traditionally louvres will be shut for a couple of months of the year
- ► It is the plant operator's duty to judge when to close them
- PlumeLogic:
 - ► Removes ambiguity
 - ► Ensures plants either have the coldest water or the lowest running cost throughout the year
 - ▶ Is flexible for sites where a small amount of plume isn't an issue
- ▶ Options for further development with wet section air intake screens

Summary

DHDCOOLING
REFURBISHMENT.MAINTENANCE.DESIGN.INSTALLATION

- Completely automated system to maximise cooling tower performance
- Simple user interface to adjust operating frequency to suit all climates
- ► Easy installation supported directly from the coil frames requiring little or no modifications
- Externally protected to protect operators from moving parts
- External protection also acts as air inlet filter to reduce cleaning interval of coils
- ▶ 36 month warranty
- Improved plant efficiency

Any Questions?

Contact us dhdcooling.co.uk Tel: 01905 317370

Our partners

