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Weighted least squares is a standard compensation technique for non-

constant error variance (heteroscedasticity), which is common in political
science data. By assigning individual weights to the observations the het-
erescedasticity can be removed by design. The square root of the inverse
of the error variance of the observation is typically used as weight. The
key idea is that less weight is given to those observations with a large error
variance. This forces the variance of the residuals to be constant. Weighted
least squares is an example of the broader class of generalized least squares
estimators. The idea was first presented by Aitken (1935).

Theory

The ordinary linear model has the form y = Xβ + ε, where y is a n × 1
outcome vector with continuous measure, X is a n×k invertible matrix with
explanatory variables down the columns and a leading column of ones, β is
a k× 1 parameter vector to be estimated, and ε is a n× 1 error vector with
assumed mean zero. The ordinary least squares estimator of β is achieved
by minimizing the squared error terms and is produced by: (X′X)−1X′y.
In presence of heteroscedasticity the ordinary least squares estimator of β is
not BLUE: the best linear unbiased estimator. The term “best” here means
it achieves the minimum possible variance.

Weighted least squares allows one to reformulate the model and gener-
ate estimators which are in principle BLUE. The introduction of a weight
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matrix Ω into the calculation of β̂ removes the heteroscedasticity from the
model. The Ω matrix is created by taking the error variance of the ith case
(estimated or known), νi, and assigning it to the ith diagonal Ωii = 1

νi
= ωi,

leaving the off-diagonal elements as zero. So large error variances are re-
duced by premultiplying the model terms by this reciprocal.

We can premultiply each term in the standard linear model setup by
the square root of the Ω matrix (that is, by the standard deviation). This
“square root” is actually produced from a Cholesky factorization: if A is a
positive definite symmetric (A′ = A) matrix, then there must exist a matrix
G such that: A = GG′. A matrix, A, is positive definite if for any nonzero
p×1 vector x, x′Ax > 0. In our case, this decomposition is greatly simplified
because the Ω matrix has only diagonal values (all off-diagonal values equal
to zero). Therefore the Cholesky factorization is produced simply from the
square root of these diagonal values. Premultiplying gives:

Ω
1
2 y = Ω

1
2 Xβ + Ω

1
2ε. (1)

Instead of minimizing squared errors in the usual manner, we now min-
imize (y −Xβ)′Ω(y −Xβ), and the subsequent weighted least squares es-
timator is found by β̂ = (X′ΩX)−1X′Ωy. The weighted least squares esti-
mator gives theoretically the best linear unbiased estimate (BLUE) of the
coefficient estimator in the presence of heteroscedasticity.

Weighted Least Squares and Feasible Weighted Least Squares

In this setup it is required that the variance of the error, νi, has to be known.
In principle there are two possibilities; νi is derived from the underlying data
generating process or νi is estimated.

An example for the first is the linear probability model in which the
structure of heteroscedasticity is known. In a binary model the variance
is Var(εi) = Xiβ(1 − Xiβ). This gives an expression of the form of het-
eroscedasticity and allows to estimate a linear model with WLS. The weights
are directly computed by using the OLS estimates of β to compute ˆVar(εi).
Because β̂OLS is an unbiased estimator ˆVar(εi) is also unbiased. A possi-
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ble obstacle here can be that the linear probability model may produce a
ŷi which lies outside of the [0, 1]−interval and therefore produces negative
weights (Goldberger, 1964).

Often the form of heteroscedasticity is not known and rather ν̂i than νi

is used. By relying on an estimate of νi the WLS estimator is no longer
unbiased (Wooldridge 2003: 268). But it is still a consistent estimate and
asymptotically more efficient than the OLS estimator. This is often referred
to as feasible weighted least squares. This implies a two-step procedure. In a
first step a linear model is estimated using OLS and based on ε̂OLS one can
derive ν̂ and therefore Ω̂. The FWLS estimate is obtained by minimizing
(y−Xβ)′Ω̂(y−Xβ). The next section illustrates a feasible weighted least
squares estimation.

Example

This illustration is based on political data from Swiss cantons in 1990 (Vat-
ter et al. 2004). The outcome variable is the number of cantonal employees
per 1000 inhabitants. The two predictor variables are the degree of propor-
tionality in the electoral system and the cantonal GDP. The results from
standard OLS estimation of the linear model do not allow rejection of the
null-hypothesis for either of the explanatory variables at standard thresh-
olds.
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Table 1: Comparison of OLS and WLS
Variable OLS WLS

GDP 0.00014 0.00007
(0.74) (1.13)

PR -1.95035 -1.47071
(0.46) (2.15)

Intercept 26.13945 24.45942
(2.40) (12.74)

N 26 26
Breusch-Pagan 5.68 .
(p−value) (0.017) .

Note: Outcome variable is number
of public employees per 1000 habitants.
Absolute t−values are in parentheses.

Based on the results presented in Table 1 the conclusion is that PR
has no effect on the number of public employees. It is possible to test for
heteroscedasticity by using e.g. the Breusch-Pagan test (Breusch and Pagan
1979; Cook and Weisberg, 1983). In this example the squared residuals (ε̂2i )
are regressed on the predicted values of the outcome (ŷi). If the residuals
have a common variance, the explanatory power of the regression is low. The
null-hypothesis of the test states a constant error variance. In the example
here the test value is 5.68 (χ2 with one degree of freedom) what corresponds
to a p−value of 0.017. Based on this the null-hypothesis can be rejected.
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Figure 1: Outcome Variable vs. OLS Errors
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In Figure 1 the residuals from the OLS estimation are plotted against the
outcome variable. There is a strong positive trend which visually confirms
the Breusch-Pagan test result.

The WLS approach is an effective way to address the heteroskedasticity
in such cases. Based on the estimation results of the OLS procedure it is
possible to derive Ω̂, where Ω̂ii = 1

ε̂2i
and ε̂ is the estimated error of the OLS

procedure. The second column in Table 1 reports the results from the WLS
procedure Ω̂

1
2 y = Ω̂

1
2 Xβ+ Ω̂

1
2ε. The GDP of a canton still does not have a

reliable effect on the outcome variable. But in the WLS procedure the effect
of the degree of PR on the number of cantonal employees is significant at
conventional levels and negative.

Software Issues

Weighted least squares or actually feasible weighted least squares is im-
plemented in all major software packages. Here, the three most common
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packages, R, Stata, and SAS are considered. At this point a general cau-
tionary note is due. Throughout this text the weight matrix was defined as
Ω and its diagonal elements as 1

νi
, where νi was the variance of the error of

observation i. Unfortunately some authors as well as some programs refer
to the variance-covariance matrix as Ω and therefore their weight matrix
is Ω−1. Therefore it is important to carefully inspect the associated doc-
umentation, including the use of the variance versus standard deviation as
weights.

In R, the package MASS offers the function lm.gls which will estimate a
model using FWLS. The required weight matrix is Ω but there is an option
to use the variance-covariance matrix (in our notation Ω−1) as the weight
matrix (inverse=TRUE).

In Stata the command vwls allows to estimate a WLS. The weights are
here

√
νi and have to be specified (option , sd(...)). This can be easily

done by estimating a model with OLS, saving the absolute value of the
residuals and then using them as weights.

Finally, in SAS the command REG in connection with the statement
WEIGHTS estimates a model with WLS. Here, the weights are the reciprocal
of the variance of the residuals of each observation from the OLS estimation.
Therefore the weights are the Ωii.

Remarks

Weighted least squares allows to estimate linear models in the presence of
heteroscedasticity. By pre-multiplying the observations by a weight matrix,
Ω, the error variance becomes constant.

There are also other possible remedies to heteroscedasticity. First, het-
eroscedasticity may be the result of a mis-specified model and may require
the researcher to change the model. Second, the OLS estimates are still
unbiased and it is possible to use robust standard errors such as the Huber-
White sandwhich estimator (Huber, 1967; White, 1980) to correct for het-
eroscedasticity. Weighted least squares estimation is a standard regression
tool for social scientists and others, and is used in iteratively weighted least
squares to estimate generalized linear models (Gill, 2007).
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