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Abstract. There is now a great deal known about the atomic mechanisms of solid–state phase
transformations, and this knowledge can be exploited to determine the distribution of crystal
orientations. It is possible to estimate accurately, the crystallographic texture, transformation
strains and details of the microstructure, particularly in the context of steels. The concepts have
now been applied to design metallic alloys which compensate automatically for the residual
stresses which develop in engineering components when they are cooled heterogeneously from
elevated temperatures. Such materials are now in commercial use and represent an innovation
resulting directly from phase transformation theory.

Introduction

A polycrystalline material is said to be crystallographically textured when the distribution of
crystal orientations relative to an external frame of reference is non–random. Texture can arise
for many reasons, for example, plastic and elastic deformation, magnetic fields, recrystallisation,
etc. but the focus of the present paper is on phase transformations.

When a crystal forms in the solid-state, constrained by the surrounding parent phase, it
tends to do so in a way which minimises the excess free energy. The process may involve the
development of an orientation relationship which minimises the total interfacial and elastic
strain energies. Or alternatively, there may exist constraints on atomic mobility which control
the crystallography of transformation and place restrictions on the nature of interfaces that
can or cannot exist. To consider this problem in detail it is necessary to define the mechanisms
of transformation on the basis of evidence, summarised in Fig. 1. A detailed explanation can
be found elsewhere [1] but it is important for the present purpose to recognise that there are
transformations which produce displacements consistent with the crystallographic theory of
martensite [2, 3, 4]. These are the displacive transformations which result in a shape deformation
that is an invariant–plane strain with a large shear component and a dilatation normal to the
habit plane of the plate–shaped product that grows. The reconstructive transformations on the
other hand can have arbitrary morphology and their growth involves diffusion fluxes which do
not result in a shape deformation other than the minor component that is the change in density
on transformation.

One consequence is that the displacive product is confined to the austenite grain in which
it nucleates, because the synchronised movement of atoms during growth cannot be sustained
across a grain boundary. In contrast, a reconstructive product is built up by a random motion
of atoms by diffusion and hence is not limited by the grain boundaries of the parent phase,
Fig. 2.

We now proceed to explain how the texture might be calculated for both kinds of transfor-
mation mechanisms.

Harshad Bhadeshia


Harshad Bhadeshia
Solid State Phenomena Vols. 172-174 (2011) pp 13-24



Fig. 1: Summary
of the transforma-
tion mechanisms
for some of the
key transforma-
tion products of
austenite. The
scheme is based
on a consistent
interpretation of
a large amount of
experimental and
theoretical evi-
dence as described
in [1, 5].

Fig. 2: An illustration of the fact that martensite, bainite
and Widmanstätten ferrite, all grow in the form of plates

which do not cross austenite (γ) grain boundaries because
it is not possible to sustain a disciplined motion of atoms
through a change in γ–grain orientation. In contrast, the
growth of allotriomorphic ferrite or pearlite occurs by a
reconstructive mechanism involving long–range diffusion
so that the growing particle is not confined to the grain
in which it nucleates.

Displacive Transformations

The need to minimise strain energy requires in this case that the product is in the form of a
thin plate [6]. This in turn leads to three unique characteristics associated with each crystal
which forms in a given austenite grain:

• the habit plane on which each plate grows, i.e., the major interface between the parent
and product lattices – in general has irrational indices;

• there exists a strictly respected orientation relationship, which in general is irrational;

• there is a deformation caused by transformation, described as an invariant–plane strain
shape with a large shear component and a dilatation normal to the habit plane.

It is important to realise that these three features are mathematically connected and cannot
be varied independently. This is in contrast to the general description of a bicrystal, defined by
five degrees of freedom, two for the interfacial plane and three for the relative orientation, as
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illustrated in Fig. 3. In that illustration, the interface plane can be altered without changing the
orientation relationship, and vice–versa. The reason for the connections implicit in displacive
transformation products are described in the next section.

Fig. 3: An illustration of the fact
that the orientation relationship be-
tween crystals can be independently var-
ied without altering the plane of the in-
terface and vice–versa. If the two crys-
tals belong to same crystal class (of
which there are seven) then the orien-
tation relation can be described by an
axis and an angle of rotation about that
axis. The interface plane is specified by
an axis normal to the plane. Since each
axis can be written as a unit vector we
need specify only two of its components.
Thus, the total degrees of freedom re-
quired to specify the bicrystal is five.

Crystallographic Theory

When austenite (γ, cubic–close packed crystal structure) transforms into martensite (α′, body–
centred cubic or body–centred tetragonal), bainite or Widmanstätten ferrite, the change in
crystal structure is achieved by a homogeneous deformation known as the Bain strain B. The
Bain correspondence is illustrated in Fig. 4 but the orientation illustrated is not observed ex-
perimentally. The deformation also does not satisfy the minimum requirement of displacive
transformation, that at least one line must be left invariant to ensure sufficient coherency in the
γ/α′ interface so that it can move without a need for diffusion. This can be seen in Figs. 5a, b;
the austenite is represented as a sphere which, as a result of the Bain strain B, is deformed
into an ellipsoid of revolution which represents the martensite. There are no lines which are left
undistorted or unrotated by B. There are no lines in the (0 0 1)γ plane which are undistorted.
The lines ab and cd are undistorted but are rotated to the new positions a′b′ and c′d′. Such
rotated lines are not invariant. However, the combined effect of the Bain strain B and the
rigid body rotation R is indeed an invariant–line strain (ILS) because it brings cd and c′d′ into
coincidence (Fig. 5c). This is why the observed irrational orientation relationship differs from
that implied by the Bain strain. Indeed, the rotation required to convert B into an invariant
line strain precisely corrects the Bain orientation into that which is observed experimentally.

As can be seen from Fig. 5, there is no rotation which can make B into an invariant–plane
strain since this would require two non–parallel invariant–lines. It follows that austenite cannot
be transformed into martensite by an invariant–plane strain. And yet, the observed shape
deformation leaves the habit plane undistorted and unrotated, i.e., it is an invariant–plane
strain.

The phenomenological theory of martensite crystallography solves this remaining problem
(Fig. 6). The Bain strain converts the structure of the parent phase into that of the product



Fig. 4: Two face–centred cubic unit cells
of austenite, together with a body–centred
tetragonal cell of austenite. The Bain
strain (not illustrated here) involves a com-
pression of the body–centred tetragonal
cell of austenite along [001]γ and a uniform
expansion on the (001)γ plane.

Fig. 5: (a) and (b) show the effect of the Bain strain on austenite, which when undeformed is
represented as a sphere of diameter ab = cd in three-dimensions. The strain transforms it into
an ellipsoid of revolution. (c) shows the ILS obtained by combining the Bain strain with a rigid
body rotation through an angle θ.

phase. When combined with an appropriate rigid body rotation, the net homogeneous lattice
deformation RB is an invariant–line strain (step a to c in Fig. 6). However, the observed shape
deformation is an invariant–plane strain P1 (step a to b), but this gives the wrong crystal
structure. If a second homogeneous shear P2 is combined with P1 (step b to c), then the
correct structure is obtained but the wrong shape since

P1P2 = RB (1)

These discrepancies are all resolved if the shape changing effect of P2 is cancelled macroscopi-
cally by an inhomogeneous lattice–invariant deformation, which may be slip or twinning.

The theory explains all the observed features of the martensite crystallography. The orien-
tation relationship is predicted by deducing the rotation needed to change the Bain strain into
an invariant–line strain. The habit plane does not have rational indices because the amount of
lattice–invariant deformation needed to recover the correct the macroscopic shape is not usually
rational. The theory predicts a substructure in plates of martensite (either twins or slip steps)
as is observed experimentally. The transformation goes to all the trouble of ensuring that the
shape deformation is macroscopically an invariant–plane strain because this reduces the strain



energy when compared with the case where the shape deformation might be an invariant–line
strain.

Fig. 6: The crystallographic the-
ory of martensitic transforma-
tion.

Given the tenets of the crystallographic theory via equation 1, the information required to
describe a single plate of martensite, bainite or Widmanstätten ferrite is similar to the data
listed in Table 1.

Table 1: Typical crystallographic set for displacive transformation for aγ/aα′ = 1.2557 [7].

Habit plane pγ Shape change (γ P γ)




−0.168640
−0.760394
−0.627185









0.992654 −0.033124 −0.027321
0.026378 1.118936 0.098100
−0.027321 −0.123190 0.898391





Orientation (γ J α′)




0.575191 0.542067 0.097283
−0.550660 0.568276 0.089338
−0.008610 −0.131800 0.785302





[1̄ 0 1]γ||[−0.920611 − 1.062637 1.084959]α′

(1 1 1)γ ||(0.015921 0.978543 0.971923)α′

Using the Crystallographic Set

Displacive transformations cause deformation so those crystallographic variants which best
comply with external stress will be favoured. The deformation occurs on the habit plane (unit



normal p) in a displacement direction (unit vector d). The dominant strain is the shear (s)
parallel to the habit plane which in steels is about 0.26 with the dilatational strain (δ) being
of the order of 0.03. The total deformation is expressed as a 3 × 3 matrix P:

(γ P γ) = I + m[γ;d](p; γ∗) (2)

where m is the magnitude of the shape deformation and γ and γ∗ represent the real and
reciprocal bases of the austenite. The matrix P thus completely defines the deformation system.
Note that there will always be 24 different variants since the orientation relationship is irrational.
The mechanical free energy due to the interaction of the stress with the shape deformation is
given by [8]:

U = σNζ + τs (3)

rigourous where σN is the stress component normal to the habit plane, τ is the shear stress
resolved on the habit plane in the direction of shear and ζ and s are the respective normal and
shear strains associated with transformation. The energy U can be used as a rigorous variant
selection criterion when the stresses applied are less than those required to cause plasticity in
the austenite prior to its transformation [9, 10, 11, 12, 13].

The conclusions that can be reached from the discussion in this section are:

• In calculating transformation texture is is necessary to use a a self–consistent crystallo-
graphic set, rather than make independent assumptions about the orientation relationship
and shape deformation as is sometimes done. The set must be such that the lattice defor-
mation BR is an invariant–line strain; the analysis in [14] does not satisfy this criterion.

• The deformation due to martensitic transformation is an invariant–plane strain P. It is
this which should be used to calculate the interaction energy (variant selection) rather
than, for example, the Bain strain [15].

Transformation Plasticity

Fig. 7: The deformation of an initial vector u by the formation of bainite. (a) An austenite grain
prior to transformation, with the ultimate location of a plate of bainite marked. (b) Following
displacive transformation. [11]

Consider an arbitrary vector u traversing a grain of austenite prior to transformation, as
illustrated in Fig. 7a. This vector makes an intercept ∆u with a domain of austenite that



eventually ends up as a plate of bainite. As a consequence of the transformation, the vector u
becomes a new vector v given by [11]:

v = P∆u + (u− ∆u) (4)

When considering the formation of large number of bainite plates in many austenite grains, u
traverses a polycrystalline sample of austenite so this equation must be generalised as follows
[11]:

v =
n

∑

k=1

24
∑

j=1

Pk
j∆uk

j +

(

u −
n

∑

k=1

24
∑

j=1

∆uk
j

)

(5)

where j = 1 . . . 24 represents the 24 crystallographic variants possible in each austenite grain,
and k = 1 . . . n represents the n austenite grains traversed by the vector u. In this scenario of
a large number of bainite plates, the intercepts ∆uk

j can be approximated by fk
j u where fk

j is
the fraction of sample transformed by variant j in austenite grain k.

The deformation caused by a particular plate j in austenite grain k, i.e., (γk Pj γk) ≡
Pk

j . The remaining 23 such matrices for grain 1 of austenite can be deduced from this using
symmetry operations. They can then be expressed in the reference frame of the sample using a
similarity transformation as follows:

(S Pk
j S) = (S R γk)(γk Pj γk)(γk R S) (6)

where (S R γk) is the rotation matrix relating the basis vectors of the kth austenite grain to
the sample axes, and (γk R S) is the inverse of that rotation matrix. In this way, the calculation
described in equation 4 can be conducted in the sample frame of reference.

Some calculations illustrating the anisotropy of strains as a function of the number of crys-
tallographic variants of martensite allowed are presented in Fig. 8 for pure shear and compres-
sion. That displacive transformations produce highly anisotropic strains when variant selection
is significant has been demonstrated experimentally [16, 17, 18]. The mechanism by which a
polycrystal of austenite behaves in this manner is illustrated in Fig. 9.

(a) (b)

Fig. 8: to transformation along the [1 0 0]S direction (labelled longitudinal, along the stress
axis), and the transverse directions [0 1 0]S and [0 0 1]S. (a) Pure shear. (b) Compressive stress
[11]d.

An important outcome of the analysis is that the method not only predicts the crystal-
lographic orientations to be expected [7, 19, 11, 20] but also the transformation strains and
the specific orientations of the habit planes of martensite. There is often a distinction made
in the literature between stress–induced and strain–induced transformation, where the former



Fig. 9: (a) Polycrystaline austenite. (b)
Polycrystalline austenite partially trans-
formed into plates of martensite which
on a macroscopic scale are randomly dis-
persed so that an isotropic volume change
is observed. (c) Polycrystalline austenite in
which variants which comply with an exter-
nal stress are favoured. The transformation
strains now become anisotropic.

is driving by the mechanical free energy embodied in equation 3, and the latter by the intro-
duction of nucleating defects within the austenite. However, the vast majority of experiments
designed to study strain–induced transformation are conducted where the stress and strain are
simultaneously applied; such experiments can for reasonably large strains, be explained purely
on the basis of the mechanical driving force associated with stress–affected transformation
[9, 7, 10, 12, 13, 21]. This makes it easier to calculate the orientations of the transformation
products because the theory for strain–induced transformation is not as clear because it re-
quires a relationship to be established between the number density and potency of additional
nucleation sites introduced by deformation.

One example of the comparison between calculated and measured transformation textures
is illustrated in Fig. 10, with the calculations being conducted both with and without variant
selection. The former is clearly more representative of the measured texture, although it should
be borne in mind that the comparison with experimental data is solely in the prediction of
orientation rather than intensity of orientation.

(a) (b) (c)

Fig. 10: 100α′ pole figures for transformation of Cube oriented austenite grains. (a) Experimen-
tal data [22]. (b) Calculations allowing only favoured variants of martensite to form in each
austenite grain. (c) Calculations allowing all possible variants of martensite to form in each
austenite grain.



Application

Residual stresses due to transformations are often introduced unintentionally during fabrication
[23, 23]. Jones and Alberry [24] conducted experiments to illustrate the role of transformations
on the development of residual stress in steels. Using bainitic, martensitic and stable austenitic
steels, they demonstrated that transformation plasticity during the cooling of a uniaxially con-
strained sample from the austenite phase field, acts to relieve the build up of thermal stress
as the sample cools. In contrast, the non–transforming austenitic steel exhibited a monotonic
increase in residual stress with decreasing temperature, as might be expected from the thermal
contraction of a constrained sample. When the steels transformed to bainite or martensite, the
transformation strain compensated for any thermal contraction strains that arose during cool-
ing. Significant residual stresses were therefore found to build up only after transformation was
completed, and the specimens approached ambient temperature. Fig. 11 illustrates the sequence
of events when a specimen constrained when it is fully austenitic, is cooled continuously. It is
evident that is evident that the transformation plasticity due to variant selection plays a key
role in compensating for the development of stress, but the stress–state at ambient temperature
is non–zero if the transformation is exhausted before it has cooled completely.

The key therefore is to design welding alloys in which the transformation becomes exhausted
only when ambient temperature is reached. This is a large and exciting subject and the reader
is referred to an extensive literature which includes major reviews [24, 25, 26, 27, 23, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38].

Fig. 11: Variation in stress when
a sample of austenite is allowed
to cool whilst being constrained.
The initial rise is stress is con-
trolled by thermal contraction,
followed by compensation due to
transformation plasticity.

Reconstructive Transformations

Reconstructive transformations are not confined to the grains in which they nucleate, they may
form in contact with 1–4 austenite grains depending on the exact location of the nucleus, and
the interfaces can be varied independently of the orientation relationship.

The following excerpt is based on a review [39], and highlights the fact that the number of
degrees of freedom available to form crystal orientation relationships becomes unmanageable
when dealing with reconstructive transformations in polycrystalline austenite:

“The number of parameters required to describe the locations of N crystals in an aggre-
gate with respect to a frame of reference is 3N . An equiaxed grain in the form of a Kelvin
tetrakaidecahedron will have fourteen faces, so that the number of bicrystal orientations that
must be described per grain becomes 1

2
×14×3N = 21N . Each of these interfaces will have two

degrees of freedom so the parameters become 14×2×21N = 588N . A typical grain size is about
10µm so a cubic centimetre of material will contain N = 1012 grains so that its full description



requires about 1015 parameters! If the volume of each grain also needs to be specified than the
problem become intractable.”

Conclusions

There is limited progress in the calculation of transformation textures. In the case of displacive
reactions, it is possible to apply the crystallographic theory of martensite combined with the
concept of mechanical driving force to calculate the product orientations that develop from a
known set of parent orientations. It is not, however, possible to predict the expected intensities in
pole figures or orientation distribution functions. This requires a coupling of the crystallographic
theory with kinetic models. This has yet to be done.

The results of such analyses, given that they include both habit plane and transformation
strain data, can and are being exploited in the design of commercial welding alloys.

Reconstructive transformations have so much more freedom to develop that the number of
parameters that must be included in any theory is daunting. For this reason, it is likely that
the gap between experiments and theory will remain large for the foreseeable future.
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