$\xrightarrow{\square}$
 JENOPTIK

Form measuring systems from Jenoptik Geometrical tolerancing in practice

4itimen

Tolerance frame

Datum letter
Tolerance value in mm
Symbol for the toleranced characteristic
Indicating arrow
Toleranced element

Toleranced elements

Indicating arrow to contour line or subsidiary line (offset from dimension line):
if the tolerance refers to the line or area.

Indicating arrow as an extension of the dimension line:
if the tolerance applies for the axis or median plane or a point

as an extension of the dimension line:
if the datum is the axis, the median plane or an appropriately dimensioned point.

A filled in or empty datum triangle has the same meaning.

77777777 717177177
\qquad

Straightness

Roundness

Flatness

The tolerance zone is limited by two parallel planes at a distance t apart, the dimensions of which correspond to those of the toleranced area. The real workpiece area must be between the two parallel planes at distance t apart.

[0] Cylindricity

The tolerance zone for the cylinder envelope area limits the deviation of the roundness, the straightness of the envelope line and the parallelism of the envelope line to the cylinder axis. It is formed by two coaxial cylinders with the radial distance t

Angularity

The tolerance zone is limited by two parallel planes at a distance t apart at the nominal angle to the datum axis.

All points of the toleranced area must be between two parallel planes that are at a distance apart of 0.1 , and are angled at 20° to the datum axis.

(0) Coaxiality

The tolerance zone is limited by a cylinder of diameter t, the axis of which matches the datum axis.
The actual axis of the toleranced element must be within the tolerance zone.

\qquad

Radial run-out

In every radial section plane
perpendicular to the surface,
the tolerance zone is limited
by two concentric circles at a
distance t apart, the common
center point of which is on
the datum axis. The radial
run-out tolerance applies
generally for a full revolution
of the toleranced element
around the datum axis.

4 Axial run-out		
The tolerance zone is limited in every radial distance of two circles at a distance t apart. The circles are in a cylinder, the axis of which matches the datum axis. The diameter of the cylinder can adopt any value of the diameter of the plane face.	Example	Every circle line of the toleranced area must be between two parallel circle planes at a distance apart of 0.1 with their common center point on the datum axis A .

The tolerance zone is limited
by two coaxial cylinders at a
distance t apart, the axes of
which match the datum
axis. After several rotations
around the datum axis and

«¢ Total axial run-out		
The tolerance zone is limited by two parallel planes at a distance t apart, which are perpendicular to the datum (rotational) axis. After several rotations around the datum axis and radial shift of the transducer, all points of the surface of the tolerance plane face must be within the tolerance zone.	Example	The toleranced area must be between two parallel circle planes at a distance apart of 0.1 with their common center point on the datum axis A .

)bal presence.

Our service range

Metrology

Tactile metrology
Pneumatic metrology
Optical metrology

Product range

Roughness measurement
Contour measurement
Form measurement
Optical shaft measurement
Dimensional measurement
Optical surface inspection

Inspection process

In-process
Post-process
PLC
Final inspection
Measuring room

Service

System solutions
DAkkS-DKD calibration service
Consulting, training and service

Evaluation method

Effect and function of different evaluation methods on the roundness evaluation

MICl
Maximum Inscribed Circle
Maximum circle inscribed in the roundness profile for inside areas.

The method is used for form measurement of the inside diameter.

MZCI

Minimum Zone Circle

Concentric inner and outer perimeter circles with a minimum radial distance, and which enclose the roundness profile.
Individual profile peaks influence the center point considerably.
Gives the least possible form error.

LSCI

Least Square Circle
Circle through the roundness profile with minimum sum of profile deviation squares.

Individual profile peaks influence the center point only a little
Very suitable for stable datum formation.

MCCl

Minimum Circumscribed Circle
Minimum circle circumscribing the
roundness profile for outside areas.
The method is used for form measurement of the outside diameter.
\qquad

Filtering method

Definition according to ISO 11562 or ISO 16610-21 for roughness and form measurement.

Filter characteristic:	Gaussian amplitude transmission function
Amplitude damping at cut-off λ c:	50%

Number of points per wave

At least 7 points per wave must be selected.

Roundness
measurement:
Recommended
cut-off numbers:
Conversion of w/r
to wavelength:

Specification of cut-off in w/r (waves/revolution). The specification is independent of the workpiece diameter.
$15,50,150,500 \mathrm{w} / \mathrm{r}$
$\lambda c=D \times 3.14 /$ number of cut-offs

Straightness
measurement: \quad Specification of cut-off in mm
Recommended
cut-offs:
$0.25 ; 0.8 ; 2.5 ; 8.0 \mathrm{~mm}$

Standards of practical relevance

For measurement of roundness, straightness and flatness

ISO 1101	Geometrical Product Specifications (GPS) - Geometrical tole- rancing - Tolerances of form, orientation, location and run-out
ISO 12180-1	Geometrical Product Specifications (GPS), Cylindricity - Part 1 Vocabulary and parameters of cylindricity
ISO 12181-1	Geometrical Product Specifications (GPS), Roundness -Part 1 Vocabulary and parameters of roundness
ISO 12780-1	Geometrical Product Specifications (GPS), Straightness - Part 1 Vocabulary and parameters of straightness
ISO 12781-1	Geometrical Product Specifications (GPS), Flatness - Part 1 Vocabulary and parameters of flatness
VDI/VDE 2631 Sheet 1	Form measurement - Basic principals of the determination of form and positional deviations
VDI/VDE 2631 Sheet 2	Form measurement - Determination of the sensitivity of the signal transmittal chain
VDINDE 2631 Sheet 3	Form measurement - Filter characteristics and selection

Filter stages

Filter effect of different cut-off numbers on the roundness result.
Gauss filter 50 \%

No filter

$\operatorname{RONt}(\mathrm{MZCl})=1.49 \mu \mathrm{~m}$

Filter 150 W/R

$\operatorname{RONt}(\mathrm{MZCI})=1.04 \mu \mathrm{~m}$

Filter 50 W/R$0.91 \mu \mathrm{~m}$
$\operatorname{RONt}(\mathrm{MZCl})=0.91 \mu \mathrm{~m}$

Filter $15 \mathrm{~W} / \mathrm{R}$

$\operatorname{RONt}(\mathrm{MZCI})=0.71 \mu \mathrm{~m}$

Tolerances of form, orientation, location and run-out according to ISO 1101

Using the standardized tolerance specifications, tolerance zones are determined within which the toleranced elements (line, area, point, axis, median plane) of the workpiece must lie.
Form tolerance refers to the tolerance zone that limits the deviation of a form element from its ideal geometry (straightness, flatness, roundness, cylindricity) and is orientated exclusively to the toleranced element. Only the tolerances for profile any line and profile any surface require theoretically exact dimension specifications and datums.
A orientation tolerance refers to a tolerance zone with which the deviation from the general direction (parallelism, perpendicularity, angularity) between the toleranced element and the datum and form deviation of the toleranced element is limited.
Location tolerance refers to the tolerance zone which limits the deviation of the toleranced element (position, coaxiality, concentricity, symmetry) from its ideal geometrical location, which must be defined clearly by a datum or a system of datums.

A run-out tolerance refers to a tolerance zone which limits the form and position deviations of envelope areas or plane faces in relation to the rotational axis.

General tolerances according to ISO 2768 part 2

For workpieces produced by cutting
All dimensions in mm
Tolerance class H

Nominal		>10	>30	>100	>300	>1000
dimension range	$\ldots 10$	$\ldots 30$	$\ldots 100$	$\ldots 300$	$\ldots 1000$	$\ldots 3000$
$\square \square$	0.02	0.05	0.1	0.2	0.3	0.4
\square	0					
\square	0.2	0.3	0.4	0.5		
\square	0.5					
\square	0.1					

Tolerance class K

Nominal		>10	>30	>100	>300	>1000
dimension range	$\ldots 10$	$\ldots .30$	$\ldots .100$	$\ldots 300$	$\ldots 1000$	$\ldots 3000$
$\square \square$	0.05	0.1	0.2	0.4	0.6	0.8
\square	0.4					0.6
\square	0.6	0.8	1.0			
\square		0.2				
\square	0.8	1.0				

Tolerance class L

Nominal		>10	>30	>100	>300	>1000
dimension range	$\ldots 10$	$\ldots 30$	$\ldots 100$	$\ldots 300$	$\ldots 1000$	$\ldots 3000$
$\square \square$	0.1	0.2	0.4	0.8	1.2	1.6
\square		0.6		1.0	1.5	2.0
\square	0.6					
\square	0.6	1.0	1.5	2.0		
\square	0.5					

[^0]/// Tolerance value corresponds to the maximum value in comparison of the dimension tolerance of the distance dimension with the general tolerance for the straightness or the flatness of the form elements being inspected.

[^0]: \bigcirc Tolerance value corresponds to the diameter tolerance or maximum general tolerance for the radial run-out.

