an_7 lntavviinke
NJCTIHIFQ HHICITUpNL
April 2019

This presentation covers Gen-Z interrupt functionality.

. .
Dlsclalmer

““““ is provided ‘as is’ with no warranties whatsoever, including any warranty of
merchantablllty, noninfringement, fitness for any particular purpose, or any warranty otherwise arising
out of any nroposa! cnpr!flcatgon or <:mn|n Gen-Z Consortium disclaims all liahilit ty for |nfr|nm=mpnf of
proprletary rights, relating to use of information in this document. No license, express or lmplled, by
estoppel or otherwise, to any intellectual property rights is granted herein.

Gen-Z is a trademark or registered trademark of the Gen-Z Consortium.

All other product names are trademarks, registered trademarks, or servicemarks of their respective
owners.

All material is subject to change at any time at the discretion of the Gen-Z Consortium
http://genzconsortium.org/

ot T
o
Q
]

S

o O

* Traditional 1/O interrupts have multiple issues:
¢ Limited scalability
* Unwarranted complexity / unused functionality

* Unwarranted overheads
* Multipleimplementation-specificvariantsthat deviated from the corresponding specification

Interrupts are used to inform an application or OS of a specific event. For example, a NIC
receives a packet that needs to be serviced by the OS network stack. Interrupts have
evolved over multiple decades, and due to a variety of reasons, there are a number of
issues:

* Some technologies support a limited number of interrupts which requires applications,
device drivers, etc. to share interrupts (increased complexity and overheads)

* Due to the way traditional interrupts have evolved, legacy functionality and legacy
software have created unwarranted complexity and a hodgepodge of functionality is no
longer needed.

* Interrupt processing is complex and difficult to control. In some cases, interrupt storms
occur which can make a system unresponsive or cause significant application jitter.

* Due to interrupt specification complexity and functionality with questionable value,
vendors do not consistently implement interrupts, and in some cases, components are
not even compliant with industry specifications. This leads to interoperability problems,
and in turn, to more complex OS / middleware software that tries to mitigate or hide
implementation differences from applications.

ividual interrupts

comanir(which are Inranl\/ danrarnh:nd within the |n|r|||<1'lr\/

n

Pty B YL, A Mo

use a separate data valueas an inputinto component-local interrupt generation
rchitected for support by ZMMUs at the Requester, the Responder, or both

ar
e S N I S Y o s bt
prry SOTtwaie aina lIdIUWdICIIIIPICIIICIILGLIUII)

* Gen-Z LPD interrupts are optimized for use by Logical PCI Devices (LPDs)
* LPD interrupt detailsare covered on a separate slide

* Gen-Z native interrupt operation
* Interrupt Target software (e.g., an OS) allocatesone or more interrupt vectors, each of which:
* s a Target-specific value, e.g., a 16-bit value that identifies the Target-specific interrupt
* Isencoded as an Address & communicated to the Interrupt Source
* Will ultimately be placed in the Address field of an interrupt request packet by the Interrupt Source
* Upon aninterrupt event, the Interrupt Source generates & transmits an interrupt request packet
Upon receiving the interrupt request packet, the interrupt Target:
* Applies optional access control and decodes the interrupt vector from the Address field
* Applies Target-specific logic to invoke the corresponding interrupt service routine (ISR)

* Interrupt Target acknowledges the interrupt request packet without waitingfor the ISR to complete

o

Gen-Z supports two types of interrupts: native and LPD (Logical PCI Device) interrupts.

Gen-Z native interrupts are optimized for simplicity, efficiency, and scalability. Legacy

functionality and complexity have been stripped away to leave a lean protocol that can be

easily and consistently implemented by hardware.

* By not supporting bit masks, interrupts can be scaled and do not need to be shared.

* By not supporting pending (aka polling) semantics, hardware and software complexity is
eliminated

* By not supporting data values, hardware and software complexity is eliminated and
scalability is improved

* Gen-Z native interrupts can be tied into ZMMU (Gen-Z memory management unit) at
the Requester, the Responder, or both. This simplifies interrupt management, reduces
software complexity, and improves performance.

* Gen-Z native interrupts have been reduced to the bare minimum in order to simplify
software and hardware, and enable consistent, interoperable implementations.

Gen-Z LPD interrupts use essentially the same packet protocol with some additional fields
required to enable a Gen-Z /O component to interrupt with an existing host’s PCl-based
infrastructure.

Example Interrupt Flow

Interrunt Interrunt
Interrunt nterrupt

interrupt vector is an interrupt
Target-specific N-bit value

Source Target

Allocate Interrupt Vector
* Interrupt vector is encoded
within an Address and provided

Communicate Interrupt Vector using a
e muest/ Write Request Packet to the Interrupt Source
l—
Configure Local Interrupt Vector Resource —n . Interrupt request packet targets
nda .
e Adknowedgmente_ | the Address provided by the

Interru |nf Ta rget

Time Passes

Component-

Internal Logic
Event Triggers Interrupt

Transmit Interrupt Request Packet '\‘

MeTUpt Request,

'\» Validate and Execute Interrupt Request

Packet
P=———Component-sse
s specific internal Commum(anon__, Initiate Interrupt Service

Processing
Transmit Acknowledgment Asynchronous

gmem/ to Interrupt Service Processing

This slide illustrates the sequence of protocol packets used to configure an interrupt and to
transmit an interrupt request packet.

1.

A device driver or OS on the interrupt target allocates an interrupt vector. This is a
target-specific value. For example, a processor uses an implementation-specific
mechanism to support interrupts. An OS invokes processor-specific software to create
an interrupt vector that is easily supported by the processor-specific interrupt logic.
Gen-Z native interrupts encode the interrupt vector within an Address that is
subsequently transmitted in an interrupt request packet.

The interrupt target communicates the interrupt vector to the interrupt source, e.g.,
software on the target writes the interrupt vector to an interrupt source-specific
location using a Gen-Z write request packet.

When an interrupt event is triggered at the interrupt source, the component generates
an interrupt request packet using the encoded interrupt vector within the Address field.
Upon receipt of the interrupt request packet, the interrupt target validates and
executes the packet, and transmits an acknowledgement. Asynchronous to the
acknowledgment, the interrupt target initiates the logic to invoke the corresponding
interrupt service routine.

Native Interrupt Generation & Reception Using ZMMUs

* Native Gen-Z interrupts may be handled
by a ZMMU at the Interrupt Source, the

 TRcmak A

interrupt Target, or both

Interrupt Source

Requester ZMMU

* Interrupt generation by Requester ZMMU Popeason "W‘
is focused more on messaging solutions vector [Toee TR S Ao e s

Address
Page Table Entry Address B’

* 1/O components can use component-
specific means to generate interrupt
request packets

* Interrupt Target allocates Responder PTE
entries based on Address with encoded

TS wasStTu TTSS VW [L 020 110}

interrupt vector

Interrupt Target

Responder ZMMU

* Interrupt Source causes an interrupt e
request packet to be generated through a i i ———
local CPU store operation e ,ﬁmmm‘
nterruptInstance 128 age Table ress Addr jterint fenues focket
* This enablesinterruptsto be generated — - st bl @M

easily & securely from application space

* This enablesinterruptsto scale out

Interrupts are not requested only by I/O components. Interrupts play an integral role in
messaging applications. Since Gen-Z does not require a NIC to exchange messages,
applications can use Gen-Z native interrupts to signal a destination component. With a
focus on simplicity, Gen-Z uses the Requester ZMMU to trigger an interrupt request packet.
The Requester PTE entry contains the Responder’s Address, which is encoded with the
Interrupt Target’s interrupt vector. To transmit an interrupt request, the application simply
issues a store (no need to trap to the OS kernel) to the corresponding Responder page, and
the Requester generates an interrupt request packet with the encoded Address field. Using
this approach, the interrupt can be easily created with minimal latency and overhead (i.e.,
delivers higher performance). Further, the interrupt request packet can contain an R-Key to
provide an additional level of access control to prevent rogue interrupt requests from being
executed.

* LPD interrupts carry more info than native Gen-Z interrupts
* Like native Gen-Z interrupts, carry a 64-bit Address field
* In addition, carry 32-bit Data & 16-bit LPD BDF fields

The 64-bit Address & 32-bit Data fields specify the interrupt vector

The 64-bit Address, 32-bit Data, & 16-bit LPD BDF fields
may be used for access control by the host platform, using platform-specific mechanisms

* LPD interrupts are intended to be generated only by LPDs
* Onlyarchitected packet format is Core 64 OpClass
* There’s no architected PTE format for Requester ZMMUs to use for LPD interrupt generation

LPD interrupt requests use the same interrupt request packet as a native Gen-Z interrupt,
but include the LPD field and the requisite data field required by PCI / PCle.

LPD interrupts are managed through the existing PCI / PCle MSI or MSI-X capabilities. The
LPD logic translates the MSI / MSI-X parameters into a Gen-Z interrupt with the LPD and
data fields present. This enables software compatibility. It also enables existing hardware,
e.g., an IOMMU, that uses a combination of the Address, Data, and PCI / PCle BDF (bus
number, device number, function number) to provide additional access control or to
translate the address to a component-local value.

As with PCl / PCle, LPD interrupts are generated by the /O device. Hence, there is no
architected mechanism to trigger interrupt generation; implementations use the existing
mechanisms used by PCI / PCle device drivers and hardware.

Core 64 Interrupt Packet Format

+3 ‘ +2 +1 ‘ +0 ‘
7]6|s|als]2]1 O‘7|6|5 4‘3|2|1‘0‘7|6|5‘4 3|2\1[0l7 6]5‘432]1‘0J
PCRC I Drfgf“ Ve I DaD [11:9]| LEN [6:3] I DAID [8:5] LEN [2:0] l DAID [4:0] <Byte 0
i | L L 1 L
SCID Tag ocL I 0{’2‘;‘]’9 <Byted
R1 ‘ Y | RO ‘RKITAl LP & ’ B ‘ 9 ’ 5[Deadline ‘ Access Key < Byte 8
N M|H|C|w
Address [63:32] < Byte 12
Address [31:0] < Byte 16
Data (present only if LP ==1b) < Byte 20
ECRC I PS | R2 <Byte 20 | 24

* TA indicates if the address has been translated or not
* Uindicates if an acknowledgment is required

LILaLTS

* LPindicates if the LPD field is present (not shown) and the associated data field is present

The Core 64 Interrupt request packet format is also used for the Control OpClass interrupts.

Specific fields of interest:

* LPindicates if the LPD field is present

* TAindicates if the address has been translated using Address Translation Services

* RKindicates if the R-Key field is present (used to provide additional access control and
isolation)

* U indicates if the interrupt is to be acknowledged or not. For example, if the component
is configured to support PCle Compatible Ordering (PCO), then an acknowledgment is
unnecessary since PCO requires the fabric to provide reliable delivery. As a reminder,
though PCO provides software compatibility, it prevents I/O components from taking full
advantage of the advanced capabilities that Gen-Z provides, e.g., multipath, resiliency,
etc.

Additional Gen-Z Interrupt Functionality

native & LPD interrupts support:
Keys—provide hardware-enforced interrupt isolation
Ensures onliy authorized appiications can trigger an interrupt at the interrupt Target
¢ Access Keys—provide hardware-enforced componentisolation
* Ensures only interrupt request packets from authorized components will be processed

e Mmam 7
* wen-4
e R-

¢ Single and multi-subnet topologies
* Interrupts can scale across any topology

Gen-Z interrupts provide additional hardware-enforced isolation not found in some

alternatives.

* R-Keys ensure only authorized applications can trigger an interrupt at the Interrupt
Target. This prevents a rogue or erroneous component from triggering interrupts when
it should not.

* Access Keys ensure only authorized components can communicate with the Interrupt
Target. This provides a first-line of defense against rogue or erroneous components.

Gen-Z interrupts can scale to any topology. Further, because Gen-Z interrupts are not
limited by the resource constraints like some alternatives, Gen-Z interrupts provide greater
scaling and simpler configuration and management.

=]
—

ank you

This concludes this presentation. Thank you.

10

