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ABSTRACT

This paper considers the problem of choosing the best design alternative under a small simulation budget
where making inferences about all alternatives from a single observation could enhance the probability of
correct selection. We propose a new selection rule exploiting the relative similarity information between
pairs of alternatives and show its improvement on selection performance, evaluated by the probability of
correct selection, compared to selection based on collected sample averages. We illustrate the effectiveness
by applying our selection index on simulated ranking and selection problems using two well-known budget
allocation policies.

1 INTRODUCTION

In the simulation optimization setting, stochastic ranking and selection (R&S) refers to the problem of
selecting the best alternative through simulating samples of the performance measures on a finite set of
candidate alternatives (Fu et al. 2008). Given a fixed simulation budget, the goal is to design a selection
algorithm to achieve some objective, such as maximizing probability of correct selection (PCS) or minimizing
opportunity cost (OC). It is also known as the best arm identification problem in the bandit community. Most
of the current research focuses on designing a budget allocation policy to efficiently collect performance
samples. A few notable allocation policies include static allocation rules, such as OCBA (optimal computing
budget allocation) (Chen and Lee 2010), dynamic allocation rules balancing the exploration-exploitation
trade-off using the expected improvement and knowledge gradient (Kim and Nelson 2007; Frazier et al.
2009), and procedures that focus on designing stopping rules for saving resources (Luo et al. 2015). In
some scenarios, it makes sense to optimize for different objectives such as opportunity cost or probability
of selecting a good subset (Chen et al. 2008). In this work, we focus on probability of correct selection
(PCS), which is the most popular criterion. For an overview of ranking and selection problems, we refer
the readers to Kim and Nelson (2007) and Branke et al. (2007).

Much of the R&S literature treats the alternatives as independent of each other, and the samples
collected are only used to make inferences about properties of the corresponding alternative. Common
random numbers used to induce correlation in the performance samples can lead to better pairwise comparison
accuracy (see, e.g., Fu et al. (2007)), but the belief in alternative performances are usually still independent.
However, in many applications it makes sense to use samples collected on one alternative to infer about
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other alternatives. As a motivating example, consider the problem of selecting processing designs for
manufacturing semiconductor chips. The values of some governing variables for processing steps such as
oxidation, etching, and ion injection must be specified (Koehler and Owen 1996). Two designs with very
similar input values on those steps can naturally be expected to have similar performance; and if one of
the two is believed to be much inferior compared to some other designs, so should the other.

There are mainly two lines of research trying to address this phenomenon. One is to build a parametric
model incorporating the input information into the objective functions and learn the model parameters. One
popular choice is to assume the expected performance is a linear function of some input feature, and the
simulation budget can be allocated to efficiently learn the feature parameters (Powell and Ryzhov 2012).
This approach was applied to a drug discovery problem and showed promising results (Negoescu et al. 2011).
Similar approaches were also proposed in the closely related multi-armed bandit setting and achieved good
empirical performance even when the linear assumption is not met (Filippi et al. 2010). In this approach,
a new performance sample on one alternative could provide information about all alternatives by updating
the estimation of parameter values. Another line of research follows the Bayesian approach and treats the
similarities between alternatives as correlations in prior beliefs. Frazier et al. (2009) model the similarities
as assumed known correlations in a correlated normal prior, allocating the simulation budget using the
knowledge gradient policy. Qu et al. (2015) further extended the approach by assuming the correlations
are unknown and can be learned using a conjugate Bayesian learning model where the correlations have a
Wishart distribution. A related line of work is stochastic kriging, which constructs a metamodel to predict
the expected performance on all alternatives using similarity as correlation (Ankenman et al. 2010).

Despite the richness of literature on R&S, an important part of the problem remains relatively neglected:
the final selection rule. In Peng et al. (2016), the authors proposed to select the alternative with maximum
integrated posterior PCS rather than the one with the maximum sample average. Selection based on quantile
estimates has also been proposed largely to avoid sensitivity to outliers and to address a different design
objective than PCS (Gibbons et al. 1999). In our work, we assume the sample data are obtained through
some sampling allocation policy and focus on how to make a final selection based on the collected data.

Our approach is largely motivated by research outside the operations research and statistics communities.
The term spectral methods refers to a large family of methods constructing a similarity graph on the entity of
interest to bring the vague similarity information into rigorous mathematical formulation to improve decision
making. In image processing, a normalized graph cut approach for segmenting objects can be proven to be
equivalent to a spectral clustering on the pixel values (Shi and Malik 2000). In semi-supervised learning, a
similarity graph is constructed to transfer information on nodes of the graph to make classifications (Zhu
2005). Spectral clustering is a novel clustering approach capable of discovering structures within data that
cannot be detected by traditional K-means or K-mods clustering methods (von Luxburg 2007).

We propose a spectral selection index that is a transform of the collected data using a similarity graph
constructed from known information about all alternatives. This approach addresses the problem of making
inferences about all alternatives from new observations from the perspective of selection rather than that
of allocation. It provides an alternative to the parametric and Bayesian approaches. More interestingly,
our approach does not depend on the data collection process, and therefore can be implemented with any
existing simulation budget allocation policy. Our approach also has a provable improvement guarantee that
is missing in many existing R&S procedures. Numerical experiments show that our approach will give
good improvement under mild assumptions on the similarity graph.

This paper is organized as follows. Section 2 motivates our approach with a toy R&S problem. Section 3
introduces relevant graph-theoretic results and formulates our approach. Section 4 establishes a performance
guarantee of the proposed selection index. We illustrate the performance of our approach on two synthetic
problems in Section 5. Finally, we conclude in Section 6.
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2 A TOY MOTIVATING PROBLEM

Consider a toy ranking and selection problem with a fixed allocation policy: the three candidate alternatives
have normal random rewards with means 1,0,0 and the same standard deviation of 10. Each alternative is
allocated one simulation replication and the selection rule is to choose the alternative with the maximum
observed value. The probability of correctly selecting the first alternative can be computed to be 0.362, only
slightly better than a uniform random selection. However, if some prior information indicates that alternatives
2 and 3 should have similar performance, we may construct pairwise similarity between alternatives

s12 = 0, s13 = 0, s23 = 1.

Let y1,y2,y3 be the obtained samples in this allocation policy. Motivated by the fact that similar alternative
should have similar performance, we propose a new index z which minimizes the following expression

(z1− y1)
2 +(z2− y2)

2 +(z3− y3)
2 + s23 · (z2− z3)

2 + s12 · (z1− z2)
2 + s13 · (z1− z3)

3,

where the first three terms force zi, i≤ 3, to be close to the observed information yi, i≤ 3, and the remaining
terms force z2 and z3 to be closer as they have a non-zero similarity measure. Minimizing the above objective
we obtain z1 = y1, z2 =

2
3 y2+

1
3 y3, z3 =

2
3 y3+

1
3 y2, which is a new set of indices that are weighted averages

of their similar neighbours. Selecting based on the new index z, the probability of correct selection is found
to be 0.472. We call such a smoothed index the Spectral Index, as a similarity matrix (or graph) is used
for computing the new index to incorporate the known information to facilitate better selection.

3 SIMILARITY GRAPHS IN R&S

Let A = {1,2, . . . ,k} be the set of alternatives. The reward distributions are unknown with expected values
(µ1, ...,µk) and standard deviations (σ1, . . . ,σk). Without loss of generality, we assume that µ1 ≥ µ2 ≥
·· · ≥ µk. The optimal alternative is defined to be the one with the maximum expected performance and
denoted by i∗. Therefore in our setup, i∗ ≡ 1. In this section, we discuss how to use a spectral approach
to rigorously incorporate pairwise similarity information into an R&S procedure.

3.1 Graph Notation

Let S ∈ Rk×k
+ be the similarity matrix where the element si j ≥ 0 denotes the similarity measurement between

alternatives i and j, ∀i, j ∈A . The pairwise similarity information can be represented by a similarity graph
G = (A ,S), where vertex i represents alternative i and the edges between vertices i and j are weighted
by the similarity between the two connecting nodes si j. We will later show that the choice of the diagonal
elements of S is arbitrary and does not affect the final outcome; therefore for simplicity, we assume that
sii = 0, ∀i≤ k, meaning all diagonal elements of S (or self similarity) are 0. For the weighted graph G, the
degree of vertex i ∈A is defined by

di =
k

∑
j=1

si j,

which is a measurement of the total connectivity of this vertex and represents how similar it is to all other
alternatives.
Definition 1 (Degree Matrix) The degree matrix D of the similarity matrix S is a diagonal matrix with
degrees d1, ...,dk as its diagonal elements.

Definition 2 (Graph Laplacian) The unnormalized graph Laplacian matrix is defined as

L = D−S.
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The graph Laplacian is a key concept in spectral methods. Here, we presented the unnormalized
graph Laplacian. Other alternatives involve normalizing L using degree matrix D in various ways, such
as Lsym = D−1/2LD−1/2 or Lrw = D−1L. The normalized Laplacians have been shown to lead to better
performance in various tasks, such as spectral clustering (von Luxburg 2007) and semi-supervised learning
(Johnson and Zhang 2007) . We use the unnormalized Laplacian, since it will provide an intuitive explanation
to how similarity would affect the selection procedure. Notice that the diagonal elements of S will cancel
out in the computation of L. In our approach this means that self-similarity will have no effect on the final
outcome.
Lemma 1 (Proposition 1 of von Luxburg (2007)) The graph Laplacian L has two important properties:

1. L is symmetric and positive semi-definite.
2. The smallest eigenvalue of L is 0.

We refer readers to von Luxburg (2007) for the detailed proof.

3.2 Computing Similarity Graphs

Similar to spectral methods, another technique that uses a similarity matrix to represent the affinity on a
finite set of entities is kriging or Gaussian process regression. Both are Bayesian approaches assuming a
correlated normal prior with correlations determined by a similarity or kernel matrix. The posteriors are
updated using observed samples. In this part, we introduce some basic methods for constructing similarity
graphs.

The first type of matrix is based on expert knowledge. A similarity score si j can be manually assigned
for all pairs if k is moderate in size. Such examples appear in linguistics (Downey et al. 2017) and gene
enrichment analysis (Efron 2012).

More generally, the similarity could be computed from some features about the alternatives. Let x(i)
be an m-dimensional feature vector describing the characters of alternative i. In our motivating example,
x(i) could be a vector representing oxidization rates, etching time length and ion injection density for a
manufacturing design. Some popular choices are the ε , Gaussian and exponential similarity graphs, which
can be computed respectively by:

1. ε-graph:
si j = δ1{‖x(i)−x( j)‖2≤ε},

where 1{·} is the indicator function.
2. Gaussian graph:

si j = e−∑
m
n=1 θn(xn(i)−xn( j))2

.

3. Exponential graph:
si j = e−∑

m
n=1 βn‖xn(i)−xn( j)‖2 .

The δ ,ε,θ ,β are all input hyper-parameters determining the magnitude of the similarity. The ε-graph
will return a sparse similarity matrix S, meaning one alternative is only connected with its few closest
neighbors on the graph. The sparsity will also lead to faster numerical computations. Though a feature
vector is used to describe each alternative and compute their similarities, there is no assumption on the
parametric form of the expected performance relating to the features. In Section 5, the proposed graphs
will be evaluated through simulation.

4 SPECTRAL SELECTION INDEX

We assume the allocation is given by a policy Π. Let yi j, ∀i ∈A , j ≤ ni denote the samples collected in
the simulation process, where ni is the number of simulations allocated to alternative i after exhausting the
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total budget N. Denote ȳ as the vector of sample averages (ȳ1, ..., ȳk). Instead of choosing the alternative
with maximum sample average, we propose a spectral index z = (z1, . . . ,zk) as our selection criteria. Use
iȳN and izN to denote the final selected alternative given all observed data using the sample average and our
proposed selection index, respectively.

4.1 Smooth Index on Similarity Graph

The usage of sample averages as selection criteria is intuitive, since they generally provide an unbiased
estimator of the true expected performance. However, as our goal is to maximize PCS, comparing relative
performance is more critical than finding accurate estimates. This is also the basis of ordinal optimization
(Ho et al. 2008; Chen et al. 2013).

Given a similarity graph G and motivated by the fact that two similar alternatives should have similar
selection index, we try to find an index z : (A , ȳ)→ Rk that is a smooth function on G. Similar to the
approach in semi-supervised learning (Zhu 2005), we propose a spectral index z that is the solution to the
following optimization problem:

min
x∈Rk

k

∑
i=1
|xi− ȳi|p +

λ

2 ∑
1≤i, j≤k

si j|xi− x j|q. (1)

The first term forces xi to be close to the sample averages ȳi, and the second term forces two alternatives
with larger similarity to have closer index values. λ is a positive regularization coefficient that controls the
weight between the two terms. p,q are integers specifying the norms to use when enforcing the smoothness.
Kyng et al. (2015) provide algorithms for solving such an optimization problem with various choices of
p,q. In this work, we set p = q = 2, both for computational convenience and for developing intuitive
explanations. We have the following theorem for compact representation of the optimization problem.
Theorem 1 When p = q = 2 in Equation (1), the optimization problem can be expressed with the graph
Laplacian matrix L as

z = argmin
x∈Rk

(x− ȳ)′ (x− ȳ)+λx′Lx, (2)

where x′ denotes the transpose of x.

Proof. We can write the second term in Equation (2) using summations as

x′Lx = ∑
i, j≤k

xiLi jx j =
1
2

{
∑
i≤k

Liix2
i + ∑

j≤k
L j jx2

j + ∑
i6= j,i, j≤k

2Li jxix j

}

=
1
2

{
∑
i≤k

dix2
i + ∑

j≤k
d jx2

j −∑
i 6= j

2si jxix j

}
= ∑

i, j≤k
si j (xi− x j)

2 .

The (x− ȳ)′(x− ȳ) terms matches trivially with the first term in Equation (1).

Taking the derivative of the optimization objective and setting it to zero yields

z = (I +λL)−1ȳ, (3)

where I is the identity matrix of rank k.
Proposition 1 I +λL is symmetric and positive definite with minimum eigenvalue 1.

Proof. This is a direct consequence of Lemma 1 .
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Proposition 1 implies that our approach has stable numerical properties, as the condition number of
our linear system computation will not be too large.

The computation of z involves taking the inverse of the matrix I +λL, which could be expensive for
problems with a large number of alternatives. The fact that the minimum eigenvalue of the inverted matrix
is 1 usually means the condition number of the inverse computation will not be too large, giving stable
computing results. The solution in Equation (3) can also be obtained using an iterative approach. Denote
the t-th iterate by z(t) and its i-th element by z(t)i . We propose Algorithm 1 to calculate z iteratively.
Algorithm 1 (Iterative Updates) The spectral index z can be computed by:

1. Set z(0) = ȳ,
2. For t ≤ T , z(t) = z(t−1)+a

(
ȳ− (I +λL)z(t−1)

)
,

where a is a fixed stepsize.
Theorem 2 (Convergence of Algorithm 1) Let δ be the largest eigenvalue of L, then we have z(t)→ z as
t→ ∞ if 0 < a < 1

|1+λδ | .

Proof. By Proposition 1, z defined in Equation (3) is unique. Let r(t) be the residual at the t-th iteration
in Algorithm 1, i.e.,

r(t) = (I +λL)z(t)− ȳ.

It suffices to prove that ‖r(t)‖→ 0. We have

r(t+1) = (I +λL)z(t+1)− ȳ = (I +λL)z(t)− ȳ−a(I +λL)((I +λL)z(t)− ȳ)

= (I−a(I +λL))r(t) = (I−a(I +λL))t+1 r(0).

By Proposition 1 and the assumption that 0 < a < 1
|1+λδ | , the eigenvalues of the matrix I−a(I +λL) are

less than 1. Therefore,

‖r(t+1)‖ ≤ α
t+1‖r‖(0),

where α is the largest eigenvalue of I− a(I + λL), and we have 0 < α < 1. Thus, ‖r(t)‖ → 0, i.e.,
r(t)→ 0.

Remark 1 This approach for solving z will not only provide an alternative to the matrix inversion approach,
but also provide a mechanism for proving performance guarantees of our method. Notice that in each time
step t, the update for an alternative i ∈A is

z(t+1)
i = aȳi +(1−a)z(t)i +aλ ∑

j 6=i
si j

(
z(t)j − z(t)i

)
. (4)

The update is discounting the observed information ȳi and mixing in information from alternative j
according to the similarity si j, the regularization coefficient λ and update step size a. Algorithm 1 and
Theorem 2 lead to the following result.
Corollary 1 (Weighted Averages of Observed Information) The index z satisfies the following weighted
averaging property

zi =
ȳi +λ ∑ j 6=i si jz j

1+λdi
. (5)
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Proof. In Equation (4), as t→ ∞, we know that z(t+1)
i = z(t)i = zi,∀i≤ k from Theorem 2. Rearranging

the terms yields

a(1+λdi)zi = aȳi +aλ ∑
j 6=i

si jz j,

which is equivalent to Equation (5).

Corollary 1 will be the key to our performance proofs. The expression also provides two key intuitions
on the z index: (1) a vertex with a larger degree di will be less affected by its actual observations ȳi, (2)
the weighted averaging is the source of potential PCS gain: a sub-optimal alternative with unusually high
observed performance could be “dragged down” by its neighbours on the graph. In the next part, we define
a class of graphs that will lead to PCS improvement.

4.2 Performance Improvement

With z computed either from Equation (3) or Algorithm 1, we compare the following two rules for making
the final selection:

1. Using sample averages ȳ: iȳN = argmaxi∈A {ȳ1, ..., ȳk}
2. Using spectral index z: izN = argmaxi∈A {z1, ...,zk}

Let PCS(ȳ) and PCS(z) denote the PCS for each respective selection rule.
Definition 3 (Aligned Graph) A graph G is aligned if the similarities {si j}i, j∈A are monotonically decreasing
with |µi−µ j|,∀i 6= j; i, j ∈A and di = d1,∀i.

Though the similarities are functions of alternative feature vectors x(i), i ∈ A , rather than expected
performances µi, i ∈ A , we can still compare the similarity score between alternatives and their true
underlying gap of expected performance. An aligned graph would use the prior known feature information
x(i) to correctly capture the relative closeness of alternatives: if i and j have smaller gap in expected
performance, their similarity would be greater. It also requires the degree for all vertices to be the same,
which could be achieved by normalizing an existing graph Laplacian L (von Luxburg 2007). It may be a
strong assumption to expect that such a graph can be constructed without knowing the true performance,
but they will provide nice theoretical results and shed light on the intuition of our approach. The family
of graphs that are aligned will have provable nice performance improvement.
Theorem 3 (Order Preserving Updates) For an aligned graph G and performance sample averages with
correct ordering, i.e., ȳ1 ≥ ȳ2 ≥ ·· · ≥ ȳk ≥ 0, the spectral index defined in Equation (3) preserves correct
ordering, i.e., z1 ≥ z2 ≥, ...,≥ zk ≥ 0.

Proof. We establish the proof by induction.
At iteration 0, z(0) = ȳ. By assumption, we have z(0)1 ≥ z(0)2 ≥, ...,≥ z(0)k ≥ 0.
At iteration t > 0, assume z(t−1)

1 ≥ z(t−1)
2 ≥, . . . ,≥ z(t−1)

k ≥ 0 holds. To prove Theorem 3, using
Algorithm 1, we only need to prove that z(t)i ≥ z(t)i+1 holds ∀1 ≤ i ≤ k−1. Rearranging Equation (4), we
write out zt

i and zt
i+1 as

z(t)i = aȳi +(1−a−aλdi)z
(t−1)
i +aλ ∑

m6=i,i+1

(
si,mz(t−1)

m

)
+aλ si,i+1z(t−1)

i+1 ,

z(t)i+1 = aȳi+1 +(1−a−aλdi+1)z
(t−1)
i+1 +aλ ∑

m6=i,i+1

(
si+1,mz(t−1)

m

)
+aλ si,i+1z(t−1)

i .
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Under the condition that di = di+1 = d ∀i, taking the difference yields

z(t)i − z(t)i+1 = a(ȳi− ȳi+1)+(1−a−aλd−aλ si,i+1)(z
(t−1)
i − z(t−1)

i+1 )+aλ

(
∑

m6=i,i+1
si,mz(t−1)

m − ∑
m6=i,i+1

si+1,mz(t−1)
m

)
.

To show that z(t)t − z(t)i+1 ≥ 0, under the condition that ȳi ≥ ȳi+1, z(t−1)
i ≥ z(t−1)

i+1 and a is sufficiently small,
we only need to show that

∑
m6=i,i+1

si,mz(t−1)
m − ∑

m6=i,i+1
si+1,mz(t−1)

m ≥ 0.

Intuitively it makes sense as the former is a weighted average with higher weights placed on larger terms of
z(t−1)

m with an aligned graph. With di = di+1 and si,i+1 = si+1,i, we know that ∑m6=i,i+1 si,m = ∑m6=i,i+1 si+1,m,
which could be written as

∑
m<i

(si,m− si+1,m) = ∑
m>i+1

(si+1,m− si,m)≥ 0.

Then, using the assumption that z(t−1)
1 ≥ z(t−1)

2 ≥ ·· · ≥ z(t−1)
k , we have

∑
m<i

(si,m− si+1,m)z(t−1)
m ≥ ∑

m<i
(si,m− si+1,m)z(t−1)

i−1 ≥ ∑
m>i+1

(si+1,m− si,m)z(t−1)
i+2 ≥ ∑

m>i+1
(si+1,m− si,m)z(t−1)

m .

Rearranging the terms would yield the result

∑
m6=i,i+1

si,mz(t−1)
m > ∑

m 6=i,i+1
si+1,mz(t−1)

m .

We now conclude that z(t)i > z(t)i+1.

In the proof of Theorem 3 we assumed the step size a in Algorithm 1 is sufficiently small, meaning
during such implementations, the correct ordering will be preserved during all update steps. Theorem 3
establishes the correctness of spectral selection in cases with ni→ ∞ and ȳi→ µi, where selecting using z
will return the true optimal alternative. In cases where sample averages are incorrectly ordered, we expect
the extra information from the aligned graph will correct the ordering in the final spectral indices. Therefore,
our approach should work at least as well as sample averages, and we have the following conjectures.
Conjecture 1 (Selection Fixing) With an aligned graph, P{izN = 1|iȳN 6= 1}> 0 if all reward distributions
have unbounded support.

If the sample average for a sub-optimal alternative is the largest among all averages due to random
sampling, its neighbors on the aligned similarity graph G will be able to negate the random error, thus
making the spectral index more robust. This is the statistical intuition behind our approach: the spectral
index z is a smoothed version of sample averages ȳ using a similarity graph with better robustness.
Conjecture 2 (PCS Improvement) With an aligned graph, PCS(z)≥ PCS(ȳ).

In circumstances where an aligned graph is not available, such as due to lack of information, we still
expect the spectral index to improve PCS, i.e., an aligned graph is not necessary to achieve a better selection
performance.
Conjecture 3 (Unaligned Graph) For a given R&S problem with µ ,σ and simulation budget N, for any
budget allocation policy Π, there exist unaligned graphs G such that PCS(z)≥ PCS(ȳ).

We validate Conjecture 1 to Conjecture 3 in our numerical experiments.
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4.3 Information Collection on Graph

The constructed similarity graph motivates us to compute a selection index that utilizes the relative similarity
information and given performance samples. However, it is expected that a graph (possibly unaligned)
should also provide insight on how to allocate the simulation resources. A vertex i ∈ A with a higher
degree di is better connected on the graph; therefore, one sample on this alternative would provide more
information compared to a sample on a vertex with a small degree on the graph. This issue is partially
addressed as active learning on graphs (Zhu 2005) or experimental design for kriging approaches (Koehler
and Owen 1996). It is possible to develop variants of the Knowledge Gradient or Expected Improvement
dynamic allocation policies to consider the similarity graph on alternatives. We defer this to future work.

5 NUMERICAL EXPERIMENTS

We test our approach on two synthetic R&S problems implemented with both the equal allocation and
OCBA allocation policy. The final selection is made using both the sample averages and our proposed
index, and the PCS is computed for each policy. When implementing the OCBA policy, the allocation is
computed with the known parameters µi and σi, as our goal is to illustrate the benefit of employing the
spectral index for selection given an allocation policy.

In the first numerical experiment, we simulate a problem with the so-called least favorable configuration
and test our spectral index using a manually constructed aligned graph. The effect of different values of
hyper-parameter λ is also illustrated. The second simulation is performed using a commonly used test
problem, and we show that non-aligned graphs could give a spectral index that outperforms selection based
on sample averages.

5.1 Least Favorable Configuration

We refer to the setting where all suboptimal alternatives have identical expected performance as the least
favorable configuration, in the sense that none of the suboptimal ones can be easily identified (Fu et al.
2008). We simulate 5 alternatives each with i.i.d. normal reward samples with mean µi = I{i=1} and
σi = 4,∀i≤ 5, where I denotes the indicator function. For a total simulation budget N ranging from 50 to
1,500, we use both the equal allocation and the OCBA policy to allocate N and compute the PCS over
10,000 simulation replications. The similarity graph is constructed as

si j =

{
1, i 6= j,2≤ i, j ≤ 5
0, otherwise

. (6)

This similarity graph reflects the belief that the 4 sub-optimal alternatives are closer to each other, whereas
the optimal one is somewhat isolated. We test our approach using λ values of 0.1,0.5,1,2. Notice that the
graph is an aligned graph according to Definition 3; thus z is guaranteed to give a better PCS.

In Figure 1, we can see that the spectral index indeed dominates selection using sample averages for
both policies over all simulation budgets tested. With an aligned graph, larger values of λ means stronger
belief in the relative relationships in alternatives and indeed leads to better performance.

5.2 Non-Aligned Graph

For more complicated R&S problems, it might be difficult to construct an aligned graph as in the first
simulation experiment. However, it is often reasonable to believe the expected performances are smooth
with respect to (w.r.t.) to some features.

Consider a problem with 10 alternatives with normal rewards, with means µi =
1
4(i− 5.75)2,∀i ∈

{1,2, ...,10} and a common variance 10. We test the following similarity graphs:

1. ε-Graph: si j = 0.4×1|i− j|≤3. Only consider the effect of very close neighbours.
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Figure 1: PCS for equal allocation and OCBA policies.

2. Exponential Graph: si j = e−|i− j|,∀i, j ≤ 10
3. Gaussian Graph: si j = e−(i− j)2

,∀i, j ≤ 10

The configuration of the test problem is shown in Figure 2 . On the left, we can see that the expected
performance value µ is a smooth function of the alternative index, mimicking a smooth objective function
w.r.t. some input features. On the right, we present the similarities between the optimal alternative with
all other alternatives computed using the three graphs and present it with the gap in expected performance.
The similarity is not monotonically decreasing; therefore, none of the three graphs is aligned.
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Figure 2: R&S test with non-aligned graphs.

The PCS is estimated based on 1,000 simulation replications for budgets ranging from 50 to 3,000
with both equal allocation and OCBA allocation policy. We test our approach using λ = 0.2 and 0.3.
Though none of the three tested graphs are aligned, they still improve the selection performance for both
allocation policies, as shown in Figure 3.
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Figure 3: PCS with non-aligned graphs.

6 CONCLUDING REMARKS

We proposed a performance index that incorporates the similarity information between pairs of alternatives
in R&S and proved that the proposed index will give a better selection performance if reasonable similarity
information is available. Numerical experiments showed promising results on both theoretically good
problem instances and more general problem instances. The main contribution is to provide an easy way
for making inferences about all alternatives with samples from one alternative. The proposed approach is
very intuitive and computationally trivial compared to many proposed Bayesian approaches. The proposed
index does not affect the allocation policy procedures and therefore could be easily combined with any
allocation policy, as illustrated with our numerical experiments.
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