The Continuing Future of C++ Concurrency

Anthony Williams

Just Software Solutions Ltd
http://www. justsoftwaresolutions.co.uk

8th June 2016

http://www.justsoftwaresolutions.co.uk

The Continuing Future of C++ Concurrency

o C++14

o C++17

e Technical Specifications:
e Concurrency

e Parallelism
e Transactional Memory

Concurrency in C++14

New in C++14

Only one new concurrency feature:
@ std: :shared_timed_mutex

@ std: :shared_lock<>

C++14: std: :shared timed mutex

Multiple threads may hold a shared lock

OR

One thread may hold an exclusive lock

std: :shared_timed mutex: shared locks

std: :map<std::string,std::string> table;
std: :shared_timed mutex m;
std::string find_entry(std::string s) {
std: :shared lock<
std: :shared_timed mutex> guard (m);
auto it=table.find(s);
if (it==table.end())
throw std::runtime_error ("Not found");
return it->second;

std: :shared timed_mutex: exclusive locks

std: :map<std::string,std::string> table;
std: :shared timed mutex m;

void add_entry (
std::string key,std::string value) {
std::1lock_guard<
std: :shared_timed_mutex> guard(m);
table.insert (std: :make_pair (key,value));

The timed part of std: : shared_timed_mutex

std: :shared_timed_mutex m;
void foo () {
std: :shared_lock<
std::shared_timed_mutex> sl (
m, std: :chrono::seconds (1)) ;
if(!sl.owns_lock())
return;
do_foo();

std::shared _timed_ mutex performance

e Not always an optimization:
profile, profile, profile

e The std: :shared_timed_mutex itself is a point
of contention

Concurrency in C++17

New in C++17

Two new concurrency features:
e std::shared_mutex (non-timed)
e Variadic std: :lock_guard<>

Plus: the Parallelism TS v1 has been merged, so there
are parallel versions of most STL algorithms.

std: :shared_mutex

std: :shared_mutex omits the lock-with-timeout
operations form std: : shared_timed_mutex. ltis
simpler and faster on some platforms.

Variadic std: :lock_guard

In C++11 and C++14, std: : lock_guard can only be
used with a single mutex.

In C++17, you can use std: : lock_guard to lock
multiple mutexes in one go, using the same
mechanism as std: : lock () to avoid deadlock.

std::lock_guard<std::mutex, std: :mutex>
guard (ml,m2) ;

Technical Specification for C++
Extensions for Concurrency

Concurrency TS v1

e Continuations for futures

e Waiting for one or all of a set of futures
e Latches and Barriers

e Atomic Smart Pointers

Concurrency TS v2: Proposals Under Consideration

e Executors and Schedulers

e Distributed Counters

e Concurrent Unordered Containers

e Concurrent Queues

e Safe concurrent stream access

e Resumable functions and coroutines
e Pipelines

Concurrency TS namespace

The concurrency TS provides functions and classes in
the std: :experimental namespace.

In the slides I'll use stdexp instead, as it's shorter.

namespace stdexp=std::experimental;

Continuations and stdexp: : future

e A continuation is a new task to run when a future
becomes ready

e Continuations are added with the new then
member function

e Continuation functions must take a
stdexp: : future as the only parameter

e The source future is no longer valid ()
e Only one continuation can be added

Continuations and stdexp: : future

int find_the_answer();

std::string process_result (
stdexp::future<int>);

auto f=stdexp::async(find_the_answer);

auto f2=f.then (process_result);

Exceptions and continuations

int fail () {
throw std::runtime_error ("failed");

}

voilid next (stdexp::future<int> f) {
f.get();

}

void foo () {
auto f=stdexp::async(fail) .then (next);
f.get();

Using lambdas to wrap plain functions

int find_the_answer () ;
std::string process_result (int);

auto f=stdexp::async(find_the_answer);
auto f2=f.then([] (stdexp::future<int> f) {
return process_result (f.get());});

Continuations and stdexp: :shared_future

e Continuations work with
stdexp: :shared_future as well

e The continuation function must take a
stdexp::shared_future

e The source future remains valid ()
o Multiple continuations can be added

stdexp: :shared_future continuations

int find_the_answer () ;
void nextl (stdexp::shared_future<int>);
int next2 (stdexp::shared_future<int>);

auto fi=stdexp::async(find_the_answer).
share () ;

auto f2=fi.then (nextl);

auto f2=fi.then (next2);

Waiting for the first future to be ready

when_any waits for the first future in the supplied set
to be ready. It has two overloads:

template<typename ... Futures>
stdexp::future<stdexp::when_any_result<
std::tuple<Futures...>>>

when_any (Futures... futures);

template<typename Iterator>
stdexp::future<stdexp::when_any_result<
std::vector<
std::iterator_traits<Iterator>::
value_type>>>
when_any (Iterator begin, Iterator end);

when_any is ideal for:
e Waiting for speculative tasks

e Waiting for first results before doing further
processing

auto fl=stdexp::async (foo);
auto f2=stdexp::async (bar);
auto f3=when_any (

std: :move (fl), std: :move (£2));
f3.then (baz);

Waiting for all futures to be ready

when_all waits for all futures in the supplied set to be
ready. It has two overloads:

template<typename ... Futures>
stdexp::future<std::tuple<Futures...>>
when_all (Futures... futures);

template<typename Iterator>
stdexp::future<std::vector<
std::iterator_traits<Iterator>::
value_type>>
when_all (Iterator begin, Iterator end);

when_all

when_all is ideal for waiting for all subtasks before
continuing. Better than calling wait () on each in turn:

auto
auto
auto
auto

fl=stdexp::async (subtaskl);
f2=stdexp::async (subtask?2);
f3=stdexp::async (subtask3);
results=when_all (

std::move (fl),std: :move (f2),
std: :move (£3)) .get () ;

Small improvements

The TS also has a couple of small improvements to the
stdexp: : future interface:

e make_ready_future () — creates a
stdexp: : future that is ready, holding the supplied
value

e make_exceptional_future () — creates a
stdexp: : future that is ready, holding the supplied
exception

e is_ready () member function — returns whether or
not the future is ready

Latches and Barriers

e A Latch is a single-use count-down
synchronization mechanism: once Count threads
have decremented the latch it is permanently
signalled.

e A Barrier is a reusable count-down synchronization
mechanism: once Count threads have
decremented the barrier, it is reset.

Atomic Smart Pointers

std: :shared_ptr<T>and std: :weak_ptr<T>
are not bitwise-copyable, so you can’t have
std::atomic<std::shared_ptr<T> > Or
std::atomic<std::weak_ptr<T> >.

The TS provides

stdexp::atomic_shared_ptr<T> and
stdexp: :atomic_weak_ptr<T> instead.

Concurrency TS:
Proposals Under Consideration

Executors and Schedulers

e An executor schedules tasks for execution

e Different executors have different scheduling
properties
e.g Thread Pools, Serial executor

Distributed Counters

Distributed counters improve performance by reducing
contention on a global counter.

e Counts can be buffered locally to a function or a
thread

e Updates of the global count can be via push from
each thread or pull from the reader

Concurrent Unordered Containers

The current proposal is for a
concurrent_unordered_value_map.

e No references can be obtained to the stored
elements

e Many functions return optional<mapped_type>

e As well as simple queries like £ind there are also
member functions reduce and for_each

Concurrent Queues

A concurrent queue is a vital means of inter-thread
communication.

e Queues may or may not be lock-free
e May be fixed-size of unlimited

e May be closed to prevent additional elements
being pushed

e You can obtain a “push handle” or “pop handle” for
writing or reading

e Input and output iterators are supported

Safe concurrent stream access

The standard streams provide limited thread safety —
output may be interleaved
void thread_1 () {

std: :cout<<10<<20<<30;

}
void thread 2 () {
std: :cout<<40<<50<<60;
}
output may be

104050206030

Safe concurrent stream access

We need a way to group output from several inserts:
basic_ostream buffer<char>

void thread_1 () {
basic_ostream buffer<char> buf (
std: :cout);
buf<<10<<20<<30;
} // buf destroyed
// contents written to std::cout

Resumable functions and coroutines

Coroutines expose a “pull” interface for callback-style
implementations.

Resumable functions automatically generate async
calls from code that waits on futures.

Both provide alternative ways of structuring code that
does asynchronous operations.

Pipelines

The pipeline proposal is a way of wrapping concurrent
queues and tasks:

queue<InputType> source;
queue<OutputType> sink;
pipeline::from(source) |
pipeline: :parallel (foo,num_threads) |
bar | baz | sink;

Further proposals

There are more proposals not covered here.

See the C++ committee website
http://www.open-std.orqg/jtcl/sc22/wg2l/
and the ISO C++ Foundation https://isocpp.orgq.

http://www.open-std.org/jtc1/sc22/wg21/
https://isocpp.org

Technical Specification for C++
Extensions for Parallelism

Parallelism TS

Parallelism TS v1 (merged to C++17):
e Parallel algorithms
e Mapreduce
e Lightweight Execution Agents
e SIMD and Vector algorithms

Parallelism TS v2:
e Task Blocks

Parallel Algorithms

The v1 TS (and thus C++17) provides a new set of
overloads of the standard library algorithms with an
execution policy parameter:

template<typename ExecutionPolicy,
typename Iterator,
typename Function>

void for each (
ExecutionPolicyé&& policy,
Iterator begin, Iterator end,
Function f);

Execution Policies

The execution policy may be:
o std::sequential — sequential execution on the
calling thread
e std::par — indeterminately sequenced execution
on unspecified threads
e std::par_vec — unsequenced execution on
unspecified threads

execution_policy objects

execution_policy objects may be used to pass the
desired sequencing as a parameter:

voilid outer (execution_policy policy) {
sort (policy,data.begin(),data.end());
}
void foo () {
outer (std: :par);

Supported algorithms

The vast majority of the C++ standard algorithms are parallelized,
and a few more besides:

adjacent_difference adjacent_find all_of any_of copy copy_if copy_n
count count_if equal exclusive_scan £ill fill_n find find_end
find_first_of find_if find_if not for_each for_each_n generate
generate_n includes inclusive_scan inner_product inplace_merge is_heap
is_heap_until is_partitioned is_sorted is_sorted_until
lexicographical_compare max_element merge min_element minmax_element
mismatch move none_of nth_element partial_sort partial_sort_copy
partition partition_copy reduce remove remove_copy remove_copy_if
remove_1if replace replace_copy replace_copy_1if replace_if reverse
reverse_copy rotate rotate_copy search search_n set_difference
set_intersection set_symmetric_difference set_union sort
stable_partition stable_sort swap_ranges transform
transform_exclusive_scan transform_inclusive_scan transform_reduce
uninitialized_copy uninitialized_copy_nuninitialized_fill
uninitialized_fill_n unique unique_copy

Parallelism TS v2: Task Blocks

Task blocks allow for managing hierarchies of tasks:
o Nested task blocks within an outer task block can
run in parallel

e All nested task blocks created within a task region
are complete when the region exits

e Task blocks can be nested

Transactional Memory for C++

Transactional Memory

Two basic types of “transaction” blocks: synchronized
blocks and atomic blocks
e Synchronized blocks introduced with the
synchronized keyword
e Atomic blocks introduced with one of
atomic_noexcept, atomic_commit Or
atomic_cancel

Synchronized blocks

Synchronized blocks behave as if they lock a global
mutex.
int 1i;
void foo () {
synchronized {
++1;

}

Atomic blocks

Atomic execute atomically and not concurrently with
any synchronized blocks.
int 1i;
void bar () {
atomic_noexcept {
++1;

Atomic blocks may be concurrent

Atomic may execute concurrently if no conflicts
int i, 3;
void bar () {
atomic_noexcept { ++i; }
}
void baz () {
atomic_noexcept { ++7; }

Atomic blocks and exceptions

The atomic blocks differ in their behaviour with
exceptions:
e atomic_noexcept — escaping exceptions cause
undefined behaviour
e atomic_commit — escaping exceptions commit
the transaction
e atomic_cancel — escaping exceptions roll back
the transaction, but must be transaction safe

Questions?

Just::Thread

Software

ust: :thread O
J OO O UST Solutions

Complete CHt Standard 'I‘luea&.hbtary Qo o O

just::thread provides a complete implementation of the C++14
thread library and the C++ Concurrency TS.

Just: : Thread Pro gives you actors, concurrent hash maps,
concurrent queues and synchronized values.

C++ Concurrency in Action:
Practical Multithreading

http://stdthread.com/book

INACTION

Practical Multithreading

Anthony Williams

[FTYTT

http://stdthread.com/book

