
The Continuing Future of C++ Concurrency

Anthony Williams

Just Software Solutions Ltd
http://www.justsoftwaresolutions.co.uk

8th June 2016

http://www.justsoftwaresolutions.co.uk

The Continuing Future of C++ Concurrency

C++14
C++17
Technical Specifications:

Concurrency
Parallelism
Transactional Memory

Concurrency in C++14

New in C++14

Only one new concurrency feature:
std::shared_timed_mutex

std::shared_lock<>

C++14: std::shared_timed_mutex

Multiple threads may hold a shared lock

OR

One thread may hold an exclusive lock

std::shared_timed_mutex: shared locks

std::map<std::string,std::string> table;
std::shared_timed_mutex m;
std::string find_entry(std::string s){
std::shared_lock<

std::shared_timed_mutex> guard(m);
auto it=table.find(s);
if(it==table.end())

throw std::runtime_error("Not found");
return it->second;

}

std::shared_timed_mutex: exclusive locks

std::map<std::string,std::string> table;
std::shared_timed_mutex m;

void add_entry(
std::string key,std::string value){
std::lock_guard<

std::shared_timed_mutex> guard(m);
table.insert(std::make_pair(key,value));

}

The timed part of std::shared_timed_mutex

std::shared_timed_mutex m;
void foo(){
std::shared_lock<
std::shared_timed_mutex> sl(

m,std::chrono::seconds(1));
if(!sl.owns_lock())
return;

do_foo();
}

std::shared_timed_mutex performance

Not always an optimization:
profile, profile, profile
The std::shared_timed_mutex itself is a point
of contention

Concurrency in C++17

New in C++17

Two new concurrency features:
std::shared_mutex (non-timed)
Variadic std::lock_guard<>

Plus: the Parallelism TS v1 has been merged, so there
are parallel versions of most STL algorithms.

std::shared_mutex

std::shared_mutex omits the lock-with-timeout
operations form std::shared_timed_mutex. It is
simpler and faster on some platforms.

Variadic std::lock_guard

In C++11 and C++14, std::lock_guard can only be
used with a single mutex.

In C++17, you can use std::lock_guard to lock
multiple mutexes in one go, using the same
mechanism as std::lock() to avoid deadlock.

std::lock_guard<std::mutex,std::mutex>
guard(m1,m2);

Technical Specification for C++
Extensions for Concurrency

Concurrency TS v1

Continuations for futures
Waiting for one or all of a set of futures
Latches and Barriers
Atomic Smart Pointers

Concurrency TS v2: Proposals Under Consideration

Executors and Schedulers
Distributed Counters
Concurrent Unordered Containers
Concurrent Queues
Safe concurrent stream access
Resumable functions and coroutines
Pipelines

Concurrency TS namespace

The concurrency TS provides functions and classes in
the std::experimental namespace.

In the slides I’ll use stdexp instead, as it’s shorter.

namespace stdexp=std::experimental;

Continuations and stdexp::future

A continuation is a new task to run when a future
becomes ready
Continuations are added with the new then
member function
Continuation functions must take a
stdexp::future as the only parameter
The source future is no longer valid()
Only one continuation can be added

Continuations and stdexp::future

int find_the_answer();
std::string process_result(
stdexp::future<int>);

auto f=stdexp::async(find_the_answer);
auto f2=f.then(process_result);

Exceptions and continuations

int fail(){
throw std::runtime_error("failed");

}
void next(stdexp::future<int> f){
f.get();

}
void foo(){
auto f=stdexp::async(fail).then(next);
f.get();

}

Using lambdas to wrap plain functions

int find_the_answer();
std::string process_result(int);

auto f=stdexp::async(find_the_answer);
auto f2=f.then([](stdexp::future<int> f){
return process_result(f.get());});

Continuations and stdexp::shared_future

Continuations work with
stdexp::shared_future as well
The continuation function must take a
stdexp::shared_future

The source future remains valid()
Multiple continuations can be added

stdexp::shared_future continuations

int find_the_answer();
void next1(stdexp::shared_future<int>);
int next2(stdexp::shared_future<int>);

auto fi=stdexp::async(find_the_answer).
share();

auto f2=fi.then(next1);
auto f2=fi.then(next2);

Waiting for the first future to be ready

when_any waits for the first future in the supplied set
to be ready. It has two overloads:

template<typename ... Futures>
stdexp::future<stdexp::when_any_result<
std::tuple<Futures...>>>
when_any(Futures... futures);

template<typename Iterator>
stdexp::future<stdexp::when_any_result<
std::vector<

std::iterator_traits<Iterator>::
value_type>>>

when_any(Iterator begin,Iterator end);

when_any

when_any is ideal for:
Waiting for speculative tasks
Waiting for first results before doing further
processing

auto f1=stdexp::async(foo);
auto f2=stdexp::async(bar);
auto f3=when_any(
std::move(f1),std::move(f2));

f3.then(baz);

Waiting for all futures to be ready

when_all waits for all futures in the supplied set to be
ready. It has two overloads:

template<typename ... Futures>
stdexp::future<std::tuple<Futures...>>
when_all(Futures... futures);

template<typename Iterator>
stdexp::future<std::vector<

std::iterator_traits<Iterator>::
value_type>>

when_all(Iterator begin,Iterator end);

when_all

when_all is ideal for waiting for all subtasks before
continuing. Better than calling wait() on each in turn:

auto f1=stdexp::async(subtask1);
auto f2=stdexp::async(subtask2);
auto f3=stdexp::async(subtask3);
auto results=when_all(
std::move(f1),std::move(f2),
std::move(f3)).get();

Small improvements

The TS also has a couple of small improvements to the
stdexp::future interface:

make_ready_future() — creates a
stdexp::future that is ready, holding the supplied
value
make_exceptional_future() — creates a
stdexp::future that is ready, holding the supplied
exception
is_ready() member function — returns whether or
not the future is ready

Latches and Barriers

A Latch is a single-use count-down
synchronization mechanism: once Count threads
have decremented the latch it is permanently
signalled.
A Barrier is a reusable count-down synchronization
mechanism: once Count threads have
decremented the barrier, it is reset.

Atomic Smart Pointers

std::shared_ptr<T> and std::weak_ptr<T>
are not bitwise-copyable, so you can’t have
std::atomic<std::shared_ptr<T> > or
std::atomic<std::weak_ptr<T> >.

The TS provides
stdexp::atomic_shared_ptr<T> and
stdexp::atomic_weak_ptr<T> instead.

Concurrency TS:
Proposals Under Consideration

Executors and Schedulers

An executor schedules tasks for execution
Different executors have different scheduling
properties
e.g Thread Pools, Serial executor

Distributed Counters

Distributed counters improve performance by reducing
contention on a global counter.

Counts can be buffered locally to a function or a
thread
Updates of the global count can be via push from
each thread or pull from the reader

Concurrent Unordered Containers

The current proposal is for a
concurrent_unordered_value_map.

No references can be obtained to the stored
elements
Many functions return optional<mapped_type>

As well as simple queries like find there are also
member functions reduce and for_each

Concurrent Queues

A concurrent queue is a vital means of inter-thread
communication.

Queues may or may not be lock-free
May be fixed-size of unlimited
May be closed to prevent additional elements
being pushed
You can obtain a “push handle” or “pop handle” for
writing or reading
Input and output iterators are supported

Safe concurrent stream access

The standard streams provide limited thread safety —
output may be interleaved
void thread_1(){
std::cout<<10<<20<<30;

}
void thread_2(){
std::cout<<40<<50<<60;

}

output may be
104050206030

Safe concurrent stream access

We need a way to group output from several inserts:
basic_ostream_buffer<char>

void thread_1(){
basic_ostream_buffer<char> buf(
std::cout);

buf<<10<<20<<30;
} // buf destroyed
// contents written to std::cout

Resumable functions and coroutines

Coroutines expose a “pull” interface for callback-style
implementations.

Resumable functions automatically generate async
calls from code that waits on futures.

Both provide alternative ways of structuring code that
does asynchronous operations.

Pipelines

The pipeline proposal is a way of wrapping concurrent
queues and tasks:

queue<InputType> source;
queue<OutputType> sink;
pipeline::from(source) |
pipeline::parallel(foo,num_threads) |
bar | baz | sink;

Further proposals

There are more proposals not covered here.

See the C++ committee website
http://www.open-std.org/jtc1/sc22/wg21/

and the ISO C++ Foundation https://isocpp.org.

http://www.open-std.org/jtc1/sc22/wg21/
https://isocpp.org

Technical Specification for C++
Extensions for Parallelism

Parallelism TS

Parallelism TS v1 (merged to C++17):
Parallel algorithms
Mapreduce
Lightweight Execution Agents
SIMD and Vector algorithms

Parallelism TS v2:
Task Blocks

Parallel Algorithms

The v1 TS (and thus C++17) provides a new set of
overloads of the standard library algorithms with an
execution policy parameter:

template<typename ExecutionPolicy,
typename Iterator,
typename Function>

void for_each(
ExecutionPolicy&& policy,
Iterator begin,Iterator end,
Function f);

Execution Policies

The execution policy may be:

std::sequential — sequential execution on the
calling thread
std::par — indeterminately sequenced execution
on unspecified threads
std::par_vec — unsequenced execution on
unspecified threads

execution_policy objects

execution_policy objects may be used to pass the
desired sequencing as a parameter:

void outer(execution_policy policy){
sort(policy,data.begin(),data.end());

}
void foo(){
outer(std::par);

}

Supported algorithms

The vast majority of the C++ standard algorithms are parallelized,
and a few more besides:
adjacent_difference adjacent_find all_of any_of copy copy_if copy_n
count count_if equal exclusive_scan fill fill_n find find_end
find_first_of find_if find_if_not for_each for_each_n generate
generate_n includes inclusive_scan inner_product inplace_merge is_heap
is_heap_until is_partitioned is_sorted is_sorted_until
lexicographical_compare max_element merge min_element minmax_element
mismatch move none_of nth_element partial_sort partial_sort_copy
partition partition_copy reduce remove remove_copy remove_copy_if
remove_if replace replace_copy replace_copy_if replace_if reverse
reverse_copy rotate rotate_copy search search_n set_difference
set_intersection set_symmetric_difference set_union sort
stable_partition stable_sort swap_ranges transform
transform_exclusive_scan transform_inclusive_scan transform_reduce
uninitialized_copy uninitialized_copy_n uninitialized_fill
uninitialized_fill_n unique unique_copy

Parallelism TS v2: Task Blocks

Task blocks allow for managing hierarchies of tasks:

Nested task blocks within an outer task block can
run in parallel
All nested task blocks created within a task region
are complete when the region exits
Task blocks can be nested

Transactional Memory for C++

Transactional Memory

Two basic types of “transaction” blocks: synchronized
blocks and atomic blocks

Synchronized blocks introduced with the
synchronized keyword
Atomic blocks introduced with one of
atomic_noexcept, atomic_commit or
atomic_cancel

Synchronized blocks

Synchronized blocks behave as if they lock a global
mutex.
int i;
void foo(){
synchronized {
++i;

}
}

Atomic blocks

Atomic execute atomically and not concurrently with
any synchronized blocks.
int i;
void bar(){
atomic_noexcept {
++i;

}
}

Atomic blocks may be concurrent

Atomic may execute concurrently if no conflicts
int i,j;
void bar(){
atomic_noexcept { ++i; }

}
void baz(){
atomic_noexcept { ++j; }

}

Atomic blocks and exceptions

The atomic blocks differ in their behaviour with
exceptions:

atomic_noexcept — escaping exceptions cause
undefined behaviour
atomic_commit — escaping exceptions commit
the transaction
atomic_cancel — escaping exceptions roll back
the transaction, but must be transaction safe

Questions?

Just::Thread

just::thread provides a complete implementation of the C++14
thread library and the C++ Concurrency TS.

Just::Thread Pro gives you actors, concurrent hash maps,
concurrent queues and synchronized values.

My Book

C++ Concurrency in Action:
Practical Multithreading

http://stdthread.com/book

http://stdthread.com/book

