
Example printout

Results of annual simulation

Installed collector power:		5.60 kW
Installed solar surface area (gross):		8 m²
Irradiation on collector surface (active):	8,735.97 kWh	1,092.00 kWh/m ²
Energy delivered by collectors:	2,536.27 kWh	317.03 kWh/m ²
Energy delivered by collector loop:	2,225.05 kWh	278.13 kWh/m ²
DHW heating energy supply:		2,566.43 kWh
Solar energy contribution to DHW:		2,006.69 kWh
Energy from auxiliary heating:		975.0 kWh
Natural gas (H) savings:		290.5 m ³
CO2 emissions avoided:		614.22 kg
DHW solar fraction:		67.3 %
Relative savings of supplementary energy (DIN EN	
12977):		67.8 %
System efficiency:		23.0 %

Site Data

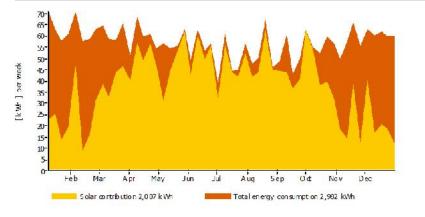
Climate data

Location: Climate data record: Total annual global irradiation: Latitude: Longitude: Domestic hot water

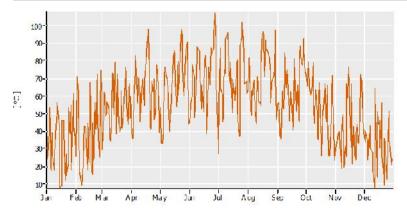
Average daily consumption: Desired temperature: Consumption profile:

Cold water temperature:

Circulation:


LONDON CITY AIRPORT LONDON CITY AIRPORT 991.562 kWh/m² 51.5 ° 0.5 °

0.16 m³ 50 °C Detached house (evening max) February: 10.5 °C August: 14 °C no


System	
Collector loop	
Manufacturer:	Standard
Туре:	Standard flat-plate collector
Number:	8.00
Total gross surface area:	8 m²
Total active solar surface area:	8 m²
Inclination (Tilt Angle):	47 °
Orientation:	180 °
Azimuth:	0 °
Dual coil indirect hot water tank	
Manufacturer:	Standard
Туре:	Dual coil indirect hot water tank
Volume:	0.35 m³
Auxiliary heating	
Manufacturer:	Standard
Туре:	Gas-fired boiler
Nominal output:	9 kW
Legend	
With test report	ATT IED
Solar Keymark	1

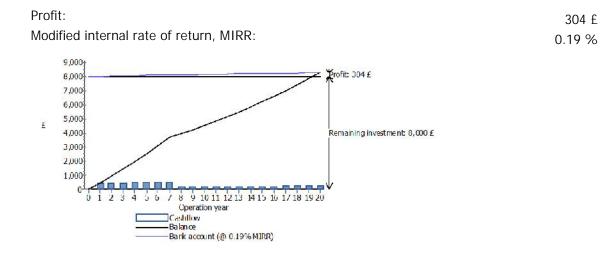
Solar energy consumption as percentage of total consumption

Daily maximum collector temperature

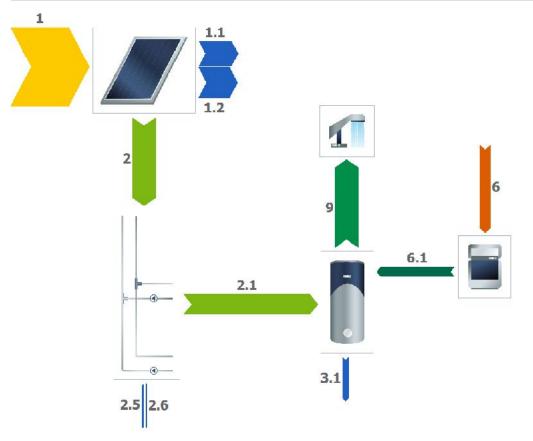
These calculations were carried out by T*SOL 2016 (R1) - the simulation program for solar thermal heating systems The results are determined by a mathematical model calculation with variable time steps of up to 6 minutes. Actual yields can deviate from these values due to fluctuations in climate, consumption and other factors. The system schematic diagram above does not represent and cannot replace a full technical drawing of the solar system.

Valentin Software GmbH

Photo Plan Geometry 3D 1



Financial analysis	
System	
Active solar surface:	8 m²
System yield:	2,006.69 kWh
Annual fuel savings:	290.5 m ³ Natural gas (H)
Financial analysis parameters	
Life span:	20 Years
Interest on capital:	2.5 %
Reinvestment return:	2.5 %
Energy cost escalation rate:	3.0 %
Running cost escalation rate:	1.5 %
Allowances	
Amount:	0.160 £/kWh
Payout Duration:	7 Years
Adjustment:	1.0 %/a
Financing	
Total investments:	8,000 £
Subsidies:	0 £
Loan capital:	0 £
Remaining investment:	8,000 £
Running costs in first year:	0 £
Savings in first year:	145 £
Allowances in first year:	321 £
Financial analysis	
Cost of solar energy:	0.189 £/kWh
Capital return time:	
Amortization period:	
Profitability	
Return on assets:	77.7 %
Return on equity:	77.7 %
Internal rate of return rate, IRR:	
Net present value:	-2,932 £



Reinvestment premise

Energy balance schematic

Legend

1	Irradiation on collector surface (active)	8,736 kWh
1.1	Optical collector losses	2,745 kWh
1.2	Thermal collector losses	3,455 kWh
2	Energy from collector array	2,536 kWh
2.1	Solar energy to storage tank	2,225 kWh
2.5	Internal piping losses	248 kWh
2.6	External piping losses	63 kWh
3.1	Tank losses	635 kWh
6	Final energy	1,224 kWh
6.1	Supplementary energy to tank	975 kWh
9	DHW energy from tank	2,566 kWh

Glossary

1	Irradiation on collector surface (active) Solar energy irradiated onto tilted collector area (active surface area)
1.1	Optical collector losses Reflection and other losses
1.2	Thermal collector losses Heat conduction and other losses
2	Energy from collector array Energy output at collector array outlet (i.e. before piping)
2.1	Solar energy to storage tank Energy from collector loop to storage tank (minus piping losses)
2.5	Internal piping losses Internal piping losses
2.6	External piping losses External piping losses
3.1	Tank losses Heat losses via surface area
6	Final energy Final energy supply to system. This can be supplied from natural gas, oil or electricity (not including solar energy) and takes efficiency into account.
6.1	Supplementary energy to tank Supplementary energy (e.g. boiler) to tank
9	DHW energy from tank

Heat from tank (exluding circulation) for DHW consumption

Climate	
Data record:	LONDON CITY AIRPORT
Location:	LONDON CITY AIRPORT
Latitude:	51.5 °
Longitude:	0.5 °
Total annual global irradiation:	992 kWh/m²
Diffuse radiation percentage:	59.1 %
Mean outside temperature:	12.36 °C

Hot water consumption DHW consumption

Average daily consumption: Annual consumption: Max daily consumption: Desired temperature: Cold water temperature: Annual energy requirement: Days in operation: Not operating: Circulation

- No circulation present -

Consumption profile

Profile:

Detached house (evening max)

Collector loop (CL 1)

10.5 °C / 14.0 °C 2,560 kWh 365 Days -No limitation-

0.160 m³ 58.4 m³ 0.190 m³ 50.0 °C

Volume flow: Heat transfer medium: water with Heat capacity: Control:	40 l/h 40 % Polypropylene glycol 3588 J/(kg*K)
The collector loop pump control is dependent on the difference be temperature and the tank reference temperature.	tween the collector outlet
Switch on above a difference of:	8 K
Switch off below a difference of:	3 K

Collector array	
Total gross surface area	8 m²
Total active solar surface area	8 m²
Number of collectors:	8
Installation:	
Inclination (Tilt Angle):	47 °
Azimuth angle:	0 °
Annual irradiation onto the collector active solar surface	
Without shade:	8,945 kWh
With shade:	8,736 kWh
Piping:	
One-way length of piping system	
inside:	8 m
outside:	0 m 1 m
between collectors:	200 mm/Collector
Thermal conductivity of insulation	
inside:	0.045 W/(m⋅K)
outside:	0.045 W/(m⋅K)
between collectors:	0.045 W/(m⋅K)
Nominal diameter of piping	
inside and outside:	15 mm
between collectors:	10 mm
(Corresponds to a flow velocity of approx 0.5 m/s)	
Insulation thickness	
inside:	20 mm
outside:	20 mm
between collectors:	20 mm

Flat-plate collector	
Manufacturer:	Standard
Туре:	Standard flat-plate collector
Heat capacity:	
Specific heat capacity:	6000 J/(m²*K)
Heat losses:	
Simple heat transfer coefficient:	3.8 W/(m²K)
Quadratic heat transfer coefficient:	0.03 W/(m ² K ²)
Heat transfer coefficients based on collector flow temperature:	No
Optical losses:	
Conversion factor:	78 %
Incident angle modifier (IAM) for diffuse radiation:	83 %
Incident angle modifier for direct irradiation	
with an incident angle of 50°:	88 %
Size:	
Gross surface:	1 m²
Active solar surface:	1 m ² (Absorber area)

Shade: A tree	
Shade from above	none
Reduction of diffuse radiation:	1.2 %

Standard Dual coil indirect hot water tank 350 I 1.80

Manufacturer:

Height/Diameter:

Type:

Volume:

Dual coil indirect hot water tank

17/11/2015 Page 13 from 20

	1
	100 mm 0.065 W/(m⋅K)
Height: 100 % 0 % -without-	Losses: 0.25 W/K 0.25 W/K
Height: 2 % 40 %	Losses: 0.25 W/K 0.25 W/K
Height: 60 % 95 %	Losses: 0.25 W/K 0.25 W/K
	W/K per tank volume W/K per tank volume
Desi	red DHW temp + 0 K none
Height: 19 % 90 % 75 % 75 %	Switching temp.: 90 °C -3 K 3 K
	100 % 0 % -without- Height: 2 % 40 % Height: 60 % 95 % 1 1 1 Desi Height: 19 % 90 %

Standard

9.0 kW

Gas-fired boiler

Manufacturer: Type: Nominal output: Boiler type: Temperature range:

T*SOL 2016 (R1) Valentin Software GmbH modulating boiler 5 K / 20 K / 40 K

Page 14 from 20

17/11/2015

Gas-fired boiler

Return mixing valve:	none
Energy source:	Natural gas (H)
Efficiency:	85 %
with a return temperature of:	60 °C
Efficiency:	85 %
with a return temperature of:	30 °C
Efficiency of domestic hot water supply:	55 %
Efficiency based on the higher heating value (HHV), Hs:	80 %
with a return temperature of:	60 °C
Efficiency based on the higher heating value (HHV), Hs:	100 %
with a return temperature of:	30 °C
Efficiency of DHW supply, Hs:	50 %
Hi (LHV):	37512 kJ/m ³
Not operating:	-No limitation-

Results of annual simulation												
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
DHW system Savings Natural gas (H) in m ³												
Savingsi	vatura	i gas (H) In r	ns								
290.5	11.2	12.2	20.6	27.2	31.1	36.5	36.5	38.0	32.7	23.7	12.7	8.1
CO2 emissions avoided in kg												
614.2	23.6	25.7	43.5	57.5	65.8	77.2	77.2	80.3	69.2	50.2	26.9	17.2
DHW sola	DHW solar fraction in %											
67.3	36.5	42.7	69.3	84.2	86.2	92.6	93.1	92.3	84.7	70.2	42.9	26.9
System efficiency in %												
23.0	31.7	26.0	25.8	22.8	19.4	19.9	19.3	21.2	23.4	27.3	29.1	29.6
							17.5	21.2	23.4	27.5	27.1	27.0
Solar energy contribution to DHW in kWh												
2,007	99	108	182	220	209	214	209	218	194	170	112	72
E - Solar loop to tank in kWh												
2,225	106	116	196	241	238	243	241	246	216	184	121	78
Energy: A	Aux. he	eating	in kWł	٦								
975	172	145	81	41	33	17	15	18	35	72	149	196
Climate	!											
Outside t	emper	ature	in °C									
12.4	6.5	6.4	8.3	10.8	14.4	17.6	19.3	19.2	16.5	13.0	9.3	6.6
Global ra	diatior	۱ - hor	izonta	l in kW	/h/m²							
992	21	34	72	112	143	150	148	127	86	56	27	17
Position	ofsun	- altitu	ude in	0								
12.5	3.8	6.4	10.8	16.3	20.9	23.3	22.1	18.1	12.8	7.8	4.4	3.0
Position												
0.1	0.4	0.1	0.0	0.2	0.0	0.4	1 4	0.1	0.0	0.0	0.0	0.1
0.1 Wind spe	0.4	0.1	-0.2	-0.3	0.2	0.4	1.4	-0.1	-0.3	0.0	-0.2	0.1
wind spe	eu III I	11/ 3										
4.0	4.7	4.2	4.4	3.9	4.1	3.8	4.0	3.6	3.6	3.8	3.8	4.0

T*SOL 2016 (R1)

Valentin Software GmbH

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
CLEARNE	SS IN	DEX in	%									
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hot water consumption DHW heating energy supply in kWh												
DHVV Nea	iting e	nergy	suppry	III KVV	/[]							
2,566	252	230	231	220	197	189	170	189	186	215	237	251
DHW heating energy requirement in kWh												
2,566	252	230	231	220	197	189	170	189	186	215	237	251
Circulatio	on loss	es in k	Wh									
0	0	0	0	0	0	0	0	0	0	0	0	0
Cold water temperature in °C												
12.3	10.7	10.5	10.8	11.4	12.3	13.2	13.8	14.0	13.7	13.0	12.2	11.3
DHW temperature in °C												
49.9	49.9	49.9	49.9	49.9	50.0	49.9	49.9	49.9	49.8	49.9	49.9	49.9
Preset DHW consumption in m ³												
58.4	5.5	5.0	5.1	4.9	4.5	4.4	4.1	4.5	4.4	5.0	5.4	5.6
DHW - co	nsum	ption i	n m ³									
51.0	5.3	4.7	4.7	4.2	3.5	3.4	3.1	3.5	3.7	4.5	5.1	5.4
Calarda												
Solar lo Max colle		emper	ature i	n °C								
					47.0	E1 /	ED 2	EO 0	14 1	27.2	20.4	20.0
38.4	21.3	25.7	35.1	43.8	47.9	51.4	52.3	50.9	46.1	37.2	28.6	20.0
Collecto	or loo	q										
Energy fr			loop (CL 1)	in kWł	1						
2,225	106	116	196	241	238	243	241	246	216	184	121	78
Collector	loop e	efficier	ncy (CL	. 1) in	%							
25.5	34.0	27.9	27.7	24.9	22.1	22.6	22.3	24.0	26.1	29.6	31.4	32.1
Collector		eferen										
31.9	16.0	18.3	24.0	34.8	44.4	47.2	50.1	46.6	39.2	25.9	19.5	15.6
				0.10			2011			_0.7		

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
T Coll ou	t (CL 1) in °C	n P									
45.8	33.1		41.0	45.9	50.2	54.1	54.6	52.8	51.3	43.7	36.2	30.6
Volume flow (CL 1) in m ³												
502.1	24.7	26.7	46.0	52.8	51.3	51.4	51.0	56.7	47.9	42.0	31.1	20.4
Control factor (CL 1) in %												
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Collector array												
spec. DNI (CL 1) in kWh/m ²												
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
G opt. los	ss dedu	uct. (C	L 1) in	kWh/	m²							
748.9	27.9	36.7	61.2	82.6	91.0	90.3	91.3	86.6	71.4	54.1	34.2	21.7
Specific global radiation onto inclined surface area (CL 1) in kWh/m ²												
1,118.1	41.4	54.2	90.1	121.3	135.5	135.3	136.6	129.3	106.0	86.0	50.3	32.2
Spec. global radiation onto inclined, shaded surface (CL 1) in kWh/m ²												
1,092.0	39.0	51.9	88.2	120.6	134.6	134.3	135.5	128.2	103.4	77.7	48.1	30.4
Irradiatio	on on g	gross s	urface	area -	unsha	ded- (CL 1) i	n kWh)			
8,945	331	434	720	971	1,084	1,083	1,093	1,034	848	688	402	258
Irradiatio	on on g	gross s	urface	area	(CL 1)	in kWł	١					
8,736	312	415	706	965	1,077	1,074	1,084	1,026	827	622	385	244
Irradiatio	on on a	actives	solar s	urface	area -	unsha	ded- (CL 1) i	n kWh			
8,945	331	434	720	971	1,084	1,083	1,093	1,034	848	688	402	258
Irradiatio	on on a	actives	surface	e area	(CL 1)	in kW	h					
8,736	312	415	706	965	1,077	1,074	1,084	1,026	827	622	385	244
Optical lo	osses (CL 1) i	n kWh									
2,745	89	121	216	304	349	352	354	333	256	189	111	70
Losses -	extern	al pipi	ng (CL	1) in l	<wh< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wh<>							
63	2	3	5	7	8	8	8	7	6	4	3	2
Losses -	interna	al pipir	ng (CL	1) in k	Wh							
248	4	8	15	25	33	36	39	36	27	16	7	3

T*SOL 2016 (R1)

Valentin Software GmbH

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Thermal					3			5				
			(
3,455	111	167	274	388	449	435	442	403	323	229	143	90
Collector	outlet	temp	eratur	e (CL í	l) in °()						
23.1	10.9		18.5		30.3	33.5	35.0	33.8	28.6	21.6	15.0	10.2
Collector temperature (CL 1) in °C												
22.7	107	13.2	10.0	247	20.0	22.0	24 5	<u></u>	20.2	21.2	1 / 7	10 1
22.7	10.7		18.2			33.0	34.5	33.3	28.2	21.3	14.7	10.1
Max colle	ector te	empera	ature ((CLI)	In °C							
36.7	20.4	24.3	32.8	41.6	46.2	49.3	50.3	48.9	44.2	35.0	27.2	19.3
Pump en						.,		,				
	0.9) (02.71										
126	6	7	11	13	13	13	13	14	12	11	8	5
Dual coil indirect hot water tank												
Tank loss												
635	27	30	46	60	74	75	81	76	63	48	32	25
Change in internal energy in kWh												
4	4		0	0	0	0	,		0	-		0
-1	-1	1	0	3	0	-3	6	-1	2	-7	1	-2
Average	tempe	rature	in °C									
43.2	31.5	34.0	39.5	46.6	51.9	53.5	55.0	53.0	47.9	40.6	34.1	30.4
								00.0		10.0	01.1	00.1
00113011 0	Sensor: collector loop reference temperature in °C											
31.8	16.0	18.3	24.0	34.8	44.4	47.1	50.1	46.6	39.1	25.8	19.5	15.6
31.8 Sensor: c		18.3					50.1	46.6	39.1	25.8	19.5	15.6
		18.3					50.1	46.6	39.1	25.8	19.5	15.6
Sensor: c 56.9	51.8	18.3 or loop 52.7	switc 53.3	h-off t 57.9		ature	50.1 in °C	46.6				15.6 51.8
Sensor: c	51.8	18.3 or loop 52.7	switc 53.3	h-off t 57.9	emper	ature	50.1 in °C					
Sensor: c 56.9 Auxiliary	51.8 beatir	18.3 or loop 52.7 ng sens	53.3 53.7	h-off t 57.9 in °C	emper 62.5	62.8	50.1 in °C 63.6	61.8	57.6	54.0	52.6	51.8
Sensor: c 56.9 Auxiliary 56.6	51.8 heatir 51.3	18.3 or loop 52.7 ng sens 52.2	53.3 53.7 53.1	h-off t 57.9 in °C 57.5	emper 62.5 62.1	ature	50.1 in °C 63.6					
Sensor: c 56.9 Auxiliary	51.8 heatir 51.3	18.3 or loop 52.7 ng sens 52.2	53.3 53.7 53.1	h-off t 57.9 in °C 57.5	emper 62.5 62.1	62.8	50.1 in °C 63.6	61.8	57.6	54.0	52.6	51.8
Sensor: c 56.9 Auxiliary 56.6 Sensor: a	51.8 heatir 51.3 uxiliar	18.3 or loop 52.7 ng sens 52.2 ry heat	53.3 53.7 53.1 53.1	h-off t 57.9 in °C 57.5 f in °C	emper 62.5 62.1	62.8 62.7	50.1 in °C 63.6 63.3	61.8 61.5	57.6 57.5	54.0 53.7	52.6 52.1	51.8
Sensor: c 56.9 Auxiliary 56.6 Sensor: a 56.6	51.8 heatir 51.3 nuxiliar 51.3	18.3 or loop 52.7 ng sens 52.2 ty heat 52.2	53.3 53.3 53.1 53.1 ting of 53.1	h-off t 57.9 in °C 57.5 f in °C 57.5	emper 62.5 62.1	62.8	50.1 in °C 63.6 63.3	61.8	57.6	54.0	52.6	51.8
Sensor: c 56.9 Auxiliary 56.6 Sensor: a	51.8 heatir 51.3 nuxiliar 51.3	18.3 or loop 52.7 ng sens 52.2 ty heat 52.2	53.3 53.3 53.1 53.1 ting of 53.1	h-off t 57.9 in °C 57.5 f in °C 57.5	emper 62.5 62.1	62.8 62.7	50.1 in °C 63.6 63.3	61.8 61.5	57.6 57.5	54.0 53.7	52.6 52.1	51.8
Sensor: c 56.9 Auxiliary 56.6 Sensor: a 56.6	51.8 heatir 51.3 nuxiliar 51.3	18.3 or loop 52.7 ng sens 52.2 ty heat 52.2	53.3 53.3 53.1 53.1 ting of 53.1	h-off t 57.9 in °C 57.5 f in °C 57.5	emper 62.5 62.1	62.8 62.7	50.1 in °C 63.6 63.3	61.8 61.5	57.6 57.5	54.0 53.7	52.6 52.1	51.8
Sensor: c 56.9 Auxiliary 56.6 Sensor: a 56.6 E-Electric	51.8 heatir 51.3 nuxiliar 51.3 c heate 0	18.3 or loop 52.7 ng sens 52.2 cy heat 52.2 er rod i 0	switc 53.3 sor on 53.1 ting of 53.1 in kWh	h-off t 57.9 in °C 57.5 f in °C 57.5 n 0	emper 62.5 62.1 62.1 0	62.8 62.7 62.7	50.1 in °C 63.6 63.3 63.3	61.8 61.5 61.5	57.6 57.5 57.5	54.0 53.7 53.7	52.6 52.1 52.1	51.8 51.2 51.2
Sensor: c 56.9 Auxiliary 56.6 Sensor: a 56.6 E-Electric O Consump	51.8 heatir 51.3 huxiliar 51.3 c heate 0	18.3 or loop 52.7 ng sens 52.2 ry heat 52.2 er rod i 0 atural	switc 53.3 50r on 53.1 ting of 53.1 in kWr 0 gas (F	h-off t 57.9 in °C 57.5 f in °C 57.5 0 	emper 62.5 62.1 62.1 0	62.8 62.7 62.7 0	50.1 in °C 63.6 63.3 63.3 0	61.8 61.5 61.5 0	57.6 57.5 57.5 0	54.0 53.7 53.7 0	52.6 52.1 52.1 0	51.8 51.2 51.2 0
Sensor: c 56.9 Auxiliary 56.6 Sensor: a 56.6 E-Electric 0	51.8 heatir 51.3 nuxiliar 51.3 c heate 0	18.3 or loop 52.7 ng sens 52.2 cy heat 52.2 er rod i 0	switc 53.3 sor on 53.1 ting of 53.1 in kWh	h-off t 57.9 in °C 57.5 f in °C 57.5 n 0	emper 62.5 62.1 62.1 0	62.8 62.7 62.7	50.1 in °C 63.6 63.3 63.3	61.8 61.5 61.5	57.6 57.5 57.5	54.0 53.7 53.7	52.6 52.1 52.1	51.8 51.2 51.2

T*SOL 2016 (R1)

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Desired temperature auxiliary heating in °C												
50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
solar tank losses in kWh												
218	7	8	13	21	29	29	32	28	22	14	9	6
Gas-fir	Gas-fired boiler											
Energy from boiler in kWh												
00												
975	172	145	81	41	33	17	15	18	35	72	149	196
Primary	energy	/ equiv	alent i	n kWł	١							
1,224	203	170	95	51	43	31	28	33	60	98	181	230
Consum	ption N	latural	gas (F	H) in m	ן ³							
117.5	19.4	16.3	9.1	4.9	4.1	3.0	2.7	3.2	5.8	9.4	17.3	22.1
Return	tempera	ature i	n °C									
	FF 4	F 4 F	F()	F(0	F (0	F(0	F / F	F7 /	F/ /		F 4 0	
55.4	55.1	54.5	56.3	56.8	56.9	56.8	56.5	57.6	56.6	55.9	54.8	54.7
Supply 1	tempera	ature i	n °C									
(20	(2.0	(20	(20	(20	(20	(20	(20	(20	(20	(20	(20	(2.0
63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0