
A Language-Based Approach to Construct Structured and Efficient
Object-Based Distributed Systems

Markus Pizka and Claudia Eckert
Munich University of Technology
Department of Computer Science

80290 Munich, Germany
fpizka,eckertcg@informatik.tu-muenchen.de

— This project is sponsored by the DFG (German Research Council) as part of the SFB #342 —

Abstract

Classical object properties such as encapsulation ease
the construction of distributed systems. The object paradigm
supports modeling of real world problems in a natural way
and delivers units of distribution to the resource manage-
ment level. To enhance the performance of distributed sys-
tems, more detailed application-specific information like po-
tential communication dependencies should be exploited.

To fulfill this requirement, we propose a top-down
driven, language-based approach to construct structured
distributed systems. We introduce the object-based dis-
tributed programming language INSEL, that supports ad-
vanced structuring concepts. Structural dependencies be-
tween passive and active objects are determined at the ap-
plication level and exploited by the resource management
system to transform INSEL programs into efficient executa-
bles.

1. Introduction

Object technology has gained wide acceptance in the
community of software developers constructing large-scale
application systems as well as operating systems (OSs).
Object-orientation supports component reuse, object inter-
action via well-defined interfaces, inheritance and encapsu-
lation to name only a few important features. Current re-
search focuses on the development and efficient realization
of distributed object-based systems to keep pace with the
rapid changes in hardware technology. Networks of work-
stations (NOWs) together with high-speed interconnections
like ATM offer great amounts of storage and computing
resources. Great efforts are still needed to cope with the
challenging demands coming along with the transit from
centralized to distributed computing. The most important

issues and requirements concern two main areas: provid-
ing appropriate programming environments and performing
efficient resource management.

From the program developers point of view, a program-
ming environment is required, that offers concepts, features
and tools to simplify the development of large-scale dis-
tributed applications. This enables application developers
to use the available computing power in a comfortable and
easy way. The developer should not be bothered dealing ex-
plicitly with any realization details such as using socket ad-
dresses or port numbers of services to realize distributed ob-
ject communication, binding object names or keeping track
of current load distribution. Details of the underlying hard-
ware configuration and the OS being used should be hidden
for programmers. Moreover, application developers should
not be forced to handle new concepts (e.g. different RPC
semantics or object naming schemes) and tools (e.g. in-
terface definition languages) coming along with execution
environments. Hence, homogeneity of concepts offered by
the programming environment is required. Interoperabil-
ity between application objects should be supported in a
transparent way. To cope with the complexity of large-scale
software products, structuring features are essential. Facil-
ities like class hierarchies, that are part of object-orientated
programming environments typically use flat object hierar-
chies that are insufficient and need to be enhanced.

For the user of a distributed application, efficient execu-
tion is the predominant requirement. Complex distributed
applications like banking systems, massive parallel com-
puting or multi-media applications occupy large amounts
of system resources and claim individual OS support like
security, fast context switching or real-time processing.
Therefore, execution environments are needed, offering dis-
tributed object management services that can be customized
to application-specific requirements and that are able to dy-
namically adapt their policies, depending on changes in

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

overall resource utilization and application-specific needs.
Advances in the area of global resource management are
strongly needed to ensure efficient execution of large-scale
distributed applications, demanding huge amounts of re-
sources. At the OS level, objects serve as units for resource
management. We state that further structuring of the set
of objects enables better global resource management deci-
sions.

The remainder of the paper is organized as follows. Sec-
tion 2 investigates the benefits and deficiencies of exist-
ing distributed object-based systems ranging from well-
known computing environments like OSF/DCE [17] and
OMG/CORBA[16] to object-oriented distributedOSs. Sec-
tion 3 explains the fundamentals of our top-down driven
approach that aims to overcome some of the revealed defi-
ciencies by providing new language and structuring concepts
which are introduced in Section 4 and 5. Our resource man-
agement system, is presented in Section 6. Considerations
regarding interoperability are presented in Section 7. Sec-
tion 8 plots the current status of our project, before we give
some concluding remarks in Section 9.

2. Related Work

The aim of this section is to investigate existing dis-
tributed environments and platforms and to elaborate their
benefits and deficiencies with respect to the requirements
stated above. From the lessons learned, we will derive our
proposed solution, which is heavily based on using structur-
ing features in a systematic way to overcome some of the
shortcomings detected.

2.1. Comfortable Programming Environments

Computingenvironments for distributedapplications like
OSF/DCE [17] or ANSA [2] offer tools and services to sup-
port a procedural programming paradigm providing a RPC
mechanism. Products based on the Common Object Re-
quest Broker Architecture (CORBA) [16] specification of
the Object Management Group (OMG) aim to support the
development and integration of object-oriented software in
heterogeneous environments, emphasizing interoperability
of application-level objects as well as reuse of components.

Benefits: The construction of client-server-style applica-
tions benefits from these computing environments because
client-side code can deal basically with application-specific
issues rather than with low-level mechanisms, like socket
addresses and TCP/IP details. Facilities like late binding as
well as separation of interface specification and object im-
plementation in CORBA reduces the efforts needed to ex-
tend and adapt existing applications to changing functional
requirements. Undoubted, CORBA and OODCE mark im-
portant milestones on the way to comfortable and simplified

programming of distributed systems.

Deficiencies: Programming within these environments is
not as easy as it should be. New concepts are introduced
by each of these environments. CORBA introduces, for
instance, the notion of object references or an exception
handling feature, whereas DCE introduces, for example, a
thread concept to enhance passive entities with an activity.
Synchronization problems stemming from these enhance-
ments must be solved by the programmer himself. In addi-
tion, the software developer is burdened with name servers
(e.g. traders in ANSA or directory servers in OSF/DCE) to
search available services or to register own services. He has
to cope with interface definition languages (e.g. DCE-IDL,
OMG-IDL) to specify interfaces. Remote object accesses
must be handled in a different way than local onces, by first
binding client-stubs.

Hence, these distributed computing environments still
load a heavy burden on the programmer. Due to the het-
erogeneity of the concepts, he has to spend a considerable
amount of time to learn how to handle these concepts and
tools correctly and how to combine them as far as possible
with his well-known programming language concepts and
paradigms. Heterogeneity seems to be an unwanted source
for programming errors that could be avoided by supporting
a conceptual homogeneous environment. Such an environ-
ment should offer adequate object models and programming
paradigms as well as structuring concepts to cope with the
complexity of large-scale applications.

2.2. Efficient Resource Management

Performance issues with respect to efficient resource
management have not been a major issue in the design and
implementation of the environments mentioned above. Con-
sider the CORBA environment. Transparent resource man-
agement is the task of the Object Request Brokers (ORBs)
but actually existing ORBs limit their services to locating
objects and marshaling parameters. If, for instance, an ORB
is able to exploit application-specific informations, like ac-
cess patterns, the realization of these accesses might be
optimized using the available resources more efficiently. As
an efficient resource management is the intrinsic task of an
operating system it seems worth to have a look at current
research activities in this area.

Distributed Object-Oriented OSs: Object-oriented tech-
nology enables customizing OSs to application needs at a
pre-execution time (e.g. Choices [4]) but an application-
specific adapted resource management requires greater ef-
forts. Work performed with so called reflective architectures
(e.g. Apertos [23]) show a promising way: the OS offers
different policies to perform resource management, for in-
stance different scheduling algorithms. Each application

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

is enabled to select a policy which properly matches its
specific needs. Based on the reflection facility, OS and ap-
plications may interact to adapt resource management poli-
cies dynamically. To come to proper decisions, appropriate
information about the application is needed. Such infor-
mation can be gained by analyzing structural dependencies
between application-level objects. But unfortunately, due
to the lack of structuring facilities of the underlying pro-
gramming languages the potential to perform analysis and
efficient application-specific resource management can not
be exhausted within these approaches.

To summarize, a programming environment is required
that offers appropriate concepts to develop well-structured
distributed systems on a high-level of abstraction. In addi-
tion, the structural dependencies must be exploited by the
underlying execution environment, for instance by ORBs
in the CORBA context. To meet these requirements we
propose a top-down, language-based approach.

2.3. Other Language Based-Approaches

Several well known research projects, such as CO-
MANDOS [6], GUIDE [18] and ORCA [3] — to name
only few — tried to provide homogeneous distributed pro-
gramming environments by following a language-based ap-
proach. Projects like COMANDOS and GUIDE lack sup-
port for parallelism at the language level. Due to additional
compatibility issues the programmer has to use general pur-
pose OS services that hardly match language requirements.

With ORCA major steps towards application-specific re-
source management were taken. Tools, such as the compiler
are tailored to ORCA and enable static and dynamic ana-
lyzes. These analyzes are used by the resource management
system to optimize accesses to shared objects. Unfortu-
nately, to ease these tasks, the language is burdened with
restrictions like missing support for pointers.

3. Fundamentals of the MoDiS Approach

The acronym MoDiS stands for Model oriented
Distributed Systems and emphasizes that abstract concepts
and models [11] are the foundation of our project. It is best
characterized as a top-down driven, language and object-
based approach to develop distributed systems.

3.1. Bottom-Up Vs. Top-Down Orientation

Bottom-up constructed application programming inter-
faces inherently suffer from inadequate services offered to
the application level. This is due to the fact that bottom-
up construction of OS services and programming interfaces
aims to enhance the simple functionality provided by the

hardware to more powerful services offered to the applica-
tion level, with little consideration of concrete requirements
of applications or properties of programming languages.
This usually leads to general purpose resource management
features and some general basic services, which are not
matched to application needs. For example, UNIX sys-
tems offer heavy-weight processes to the application level,
which are inadequate to realize fine-grain parallelism (in
this paper we do not differentiate between concurrency and
parallelism). To meet the demand of more flexibility, sys-
tems like Mach [10] introduced threads. But again, this is
another fixed and general purpose abstraction lacking flexi-
bility. For example, in Mach 3.0 it is not possible to create a
really light-weightactivity that only executes a short compu-
tation in parallel without having the overhead of a relatively
large fixed size stack portion and a predefined port name
space for communication.

To overcome theses deficiencies we follow a top-down
oriented approach, deriving low-level facilities from require-
ments of the application level. Within the MoDiS project,
we developed abstract concepts to construct structured dis-
tributed systems. Top-down orientation in our sense means,
that the construction of a distributed system starts with the
specification of the system at a high level of abstraction,
using our programming language INSEL, which provides
language concepts that are well adapted to our abstract
concepts. A system specified in this manner consists of
a structured set of objects with conceptionally well defined
properties. The structures within the system describe the
dependencies between the different objects of the system.

Realization of such a system on a given hardware plat-
form is done by stepwise refinement of the abstract proper-
ties towards more concrete ones. With each transition from
one level of abstraction n to a lower level of abstraction
n� �, mappings from more abstract properties to concreter
ones have to be found [12]. The potentialities of the target
abstraction levels determine different realization alternatives
for these transitions. For example, to realize the creation of
a large passive object with a huge amount of data, at cer-
tain levels of abstraction, the resource management system
has to choose between different alternatives, as e.g. stor-
ing in local or remote main or secondary memory or maybe
even a mixed solution. Each of these different realization
techniques would have advantages and disadvantages, de-
pending on the context in which they are used. Since the
process of realization started with an abstract model of the
system consisting of abstract objects and structural depen-
dencies, these structures can now be used by the resource
management to come to appropriate decisions.

Some of these transformation steps are performed at
compile-time, others have to be done dynamically at run-
time. Hence, the process of refinement encloses the com-
plete life-cycle of a distributed system. This is a signifi-

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

Application4
Application2

API i1

i2
i3

integrated distributed system

system services

operating

single INSEL-program

Application 1

App 3

Figure 1. Holistic view of a distributed system

cant difference to common systems which for instance often
separate compilation from lower levels of resource manage-
ment (e.g. scheduling decisions). By tightly coupling these
steps of transformations we are able to preserve application-
specific informations for all levels of abstraction to enable
efficient resource management.

The process of transformation ends at a very low level of
abstraction where only rudimentary functionality is needed
to fulfill the requirements. In our project, these low-level
services are provided by a new micro-kernel, called DYCOS
[7]. It fits into our top-down approach, by not imposing any
major restrictions on the utilization of physical resources,
but only providing a more comfortable interface to comput-
ing, communication and storage resources than bare hard-
ware does.

Besides efficient resource management, our top-down
approach eases the task of programming distributed systems,
since the programmer specifies the distributed system at a
high level of abstraction with a homogeneous repertoire of
language concepts. The programmer does not have to cope
with the details of the physical realization such as deciding
about the placement of a specific object or explicitly using
OS services like threads and semaphores.

3.2. Language-Based Approach

We combine top-down orientation with a language-based
approach that leads to a single system spanning OS func-
tionalities and user-level applications. With the notion of
’system’ we refer to a structured set of objects that real-
izes OS functionalities and user-level applications. Figure
1 illustrates this integrated view of a distributed system.
Applications hook into the running system by connecting
to interface objects (i� to i�). Different interface objects
provide different potentialities to utilize OS services.

Language-based means that we use our programming lan-
guage INSEL (Section 4) to develop OS services as well as
user-level applications. This has important consequences:
1) No additional heterogeneous concepts are introduced by
OS services. 2) User-level objects and OS services are ac-
cessed in a uniform manner. 3) OS services are themselves
structured according to our formal concepts. 4) Well-defined
structural dependencies among all objects of the system are
recorded and can be considered for global resource man-
agement decisions. This encloses dependencies between
objects of a single application as well as inter-application
dependencies and even dependencies between applications
and OS level objects.

We state that this integrated view together with struc-
turing concepts offers new opportunities for system-wide
resource management. Without the knowledge of global
dependencies, a distributed OS has to choose between two
possible resource management strategies. First, it could try
to optimize the realization of certain applications regard-
less of influences on other applications that are running in
the system at the same time, which could violate fairness
requirements. Second, it could concentrate on balancing
workloads. This does not take any application-specific re-
quirements into account, which might lead to considerably
weak performance of specific applications. Since neither
of these strategies is satisfactory, a combination of both is
required that can be achieved by combining a top-down and
a language-based approach.

4. INSEL Concepts

According to our formal concepts [11], we derivated
language concepts for distributed programming. INSEL
(Integration and Separation Language) is an imperative,
object-based and type-safe high-level programming lan-
guage with an Ada-like syntax [1]. We chose an object-
based style of programming since objects support reuseabil-
ity, structuring of complex systems and modeling of real
world problems in a natural way. At the OS level, objects
can serve as units of management and distributionand there-
fore facilitate global resource management.

We did not introduce a completely new programming
paradigm or choose the functional style of programming as
in SISAL [5], since we intend to keep distributed program-
ming as simple as possible.

INSEL provides language concepts, to explictly deter-
mine sequential and parallel computations, on a high level
of abstraction, without any references to the OS or the phys-
ical execution environment such as number of processors.
This transparency enables adaptability of INSEL applica-
tions to varying hardware configurations.

INSEL distinguishesbetween named and anonymous ob-
jects. Named objects are known at compile-time. Anony-

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

mous objects are dynamically created in the path of a compu-
tation using a NEW operator. Pointers to anonymous objects
can be duplicated or passed between objects in the system,
which makes resource management difficult and less effi-
cient. To reduce these awkward properties, INSEL does not
support the creation of a reference to a named object as it
is possible in C++ or Ada. INSEL does as well not support
the explicit deletion of objects. An INSEL object is auto-
matically deleted if its computation has ended and it is no
longer accessible by any other object.

4.1. Generator Concept

All INSEL objects are created as instances of class de-
scribing components, called generators. The interface and
implementation of an object is fully determined by its gen-
erator. INSEL does not yet differentiate between interface
and implementation of objects as it is done for example in
CORBA.

Our generators can be compared to classes in C++ [21]
with the difference that generators are integrated in the sys-
tem just like any other object. This is a contrast to other
object-oriented languages, where classes are static compo-
nents, that are organized separately from the flat hierarchy
of the objects. Languages like C++ or Eiffel [15, 13] pro-
vide hierarchical structuring of classes, through inheritance.
They often support a hierarchical organization of the class
name space by providing nesting of class definitions. But
instances of these classes are organized in a flat hierarchy,
uncoupled from structural dependencies, implied by class
hierarchies and naming schemes. This is different in IN-
SEL, where the structuring of generators predetermines de-
pendencies between object instances.

4.2. Object Model

INSEL is object-based in the sense that it supports en-
capsulation but no inheritance. INSEL objects can be either
passive or active. Active INSEL objects are called actors.
Objects of both kinds can be created dynamically at run-
time. Each compound object has a declaration and a possi-
bly empty statement part, both determined by its generator.
The declaration part might contain declarations of local ob-
jects, methods, or nested generators. The statement part can
be compared with a constructor in common object-oriented
languages.

Actors serve for the explicit specification of parallelism
on a high level of abstraction. The actor concept defines ab-
stract properties of active objects. The programmer does not
specify any properties referring to the physical realization
of an actor such as a specific machine or a specific thread or
tasking concept. By creating an actor, a new flow of control
is established, that executes the statement part of the new

actor in parallel to the flow of control of its creator. An actor
terminates if it has reached the end of its statement part and
all its dependent objects have terminated.

Semantics of passive INSEL-objects are similar to those
of other OO-languages. By creating a passive object, the
flow of control of the creator switches to the newly created
passive object to execute its statement part. When the end of
this computation is reached, the passive object terminates,
the flow of control switches back to the creator, which can
later on interact with the terminated object via its access
methods.

Object interaction
Both active and passive objects encapsulate data and ser-

vices to access the data. The interface of an object is deter-
mined by exported access methods. Two different possibili-
ties for the interactionof INSEL objects exist. First, they can
directly interact in a client-server style. Second they can co-
operate indirectly by using shared objects. Hence, INSEL
supports message passing as well as the shared memory
paradigm, which is a contrast to platforms like Orca [3] or
CORBA which only allow for message passing style of pro-
gramming. We found that both paradigms are necessary to
enable a natural style of distributed and parallel program-
ming.

The execution semantics for all requests to an object
is solely at-most once and all requests are served syn-
chronously. We do not offer any asynchronous style of
communication, because this would introduce the necessity
to cope with difficult error situations. A service request to
an actor is served in the same way as one to a passive object,
with the exception, that when requesting a service from an
actor, the caller and the callee synchronize using operation-
oriented rendezvous semantics. The caller has to wait for
the callee to accept the request. After accepting the request,
the callee performs the calculation, returns the result and
both the caller and the callee continue their computations in
parallel. This is the only synchronization technique avail-
able in INSEL to coordinate parallel activities. We do not
provide any other low-level and error prone mechanisms like
semaphores.

Figure 2 illustratessome of the concepts, described in this
section. (1) starts the definition of a generator for actors of
class system. (2) declares the interface of passive objects
of class D t, which solely consists of the access method
get. (3) defines the implementation of class D t which
comprises a declaration (4) and a statement part (5). (6)
declares a generator for pointers to anonymous objects of
class D t. (7) defines a generator for actors of class T t (in-
terface and implementation), which offer the service coop.
(8) defines the statement part of objects of class system.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

TASK system IS -- (1)
DEPOT SPEC D_t ... -- (2)
FUNCTION get ...

DEPOT D_t (x: IN INTEGER) IS -- (3)
v : ARRAY[1..x] OF INTEGER; -- (4)
FUNCTION get ...

RETURN x;
...

BEGIN ... END D_t; -- (5)

TYPE DP_t IS ACCESS D_t; -- (6)

TASK T_t IS -- (7)
c : INTEGER;
e : D_t;
dp : DP_t;
ENTRY coop IS
BEGIN

... count := count + 1; ...
END coop;

BEGIN
dp := NEW D_t(42);
... ACCEPT coop; ...

END

d: D_t(8);
t: T_t;

BEGIN -- (8)
OUTPUT(d.get);
t.coop; ...

END;

Figure 2. Sample INSEL program

5. System Structures

The programmer implicitly determines structural depen-
dencies within an INSEL program by nesting of generators,
ordering of declarations, definition of pointer generators and
so on. In section 6 we will elaborate on how this information
can be exploited to improve the performance of distributed
applications.

5.1. Definition Structure

Nesting of generators and objects establishes a hierarchi-
cal name space. For each INSEL objectO, the set of visible
and accessible objects and generators is determined by the
execution environment – U �O�. The definition structure
serves as a base to compute U �O�.

Definition 5.1 (Definition Structure)
An object O is definition dependent on object P — ��O�P �
� the generator for O is contained in the declaration part
of object P .

U �O� is calculated by tracing levels of nesting, which is
done by transitively following the definition structure and
collecting informations about visible objects and generators
on each level of nesting. Given a certain object O, we
first investigate � to locate the generator G of O, which is
a local component of an object P . All components of P
that are declared before G, according to the sequence of
declarations at the same level of nesting, are visible to G
and added to U �O�. We continue to compute U �O� by
recursively descending the �-structure, e.g. next step would
be, to analyze object H, which is given by ��P�H�. The
computation ends when an object is reached, that is not
definition dependent on any other object (the root object).

5.2. Execution Structure

The execution structure is composed of three relations,
that describe dependencies among the parallel and sequential
flow of controls within the system. This delivers important
information to the load managing system and the scheduler.

Along with the creation of a new actor A, a new flow of
control is established that executes the statement part ofA in
parallel to the computation of its creator. This relationship
is recorded by the �-structure.

Definition 5.2 (� – structure)
Object A operates in parallel to object O — ��A�O�� A

is an actor and was created by O.

The execution of the statement part of a newly created
passive object is sequentially embedded in the flow of con-
trol of the creator. Requests to passive objects are as well
executed by sequentially embedding the operations of the re-
quested service into the flow of control of the caller. These
sequential relationships are recorded by the �-structure.

Definition 5.3 (� – structure)
An object O is sequentially dependent on an object P —
��O�P �� the flow of control has moved from object O to
object P .

The third component of the execution structure is the
�-dependency. It describes communication dependencies
between actors that synchronize to realize requests of ser-
vices with rendezvous semantics.

Definition 5.4 (� – structure)
ActorA communicates with another actorB — ��A�B��
A requested a service from B, B has accepted the service
and both,AandB are synchronized to perform the requested
service.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

5.3. Locality Structure

Actors or passive objects, which are declared in the dec-
laration part of an object O can be expected to be mostly
used by O and its nested objects. Therefore, this kind of lo-
cation dependency gives hints to the runtime and operating
system, to co-locate objects on either the same node or at
least close to each other.

Definition 5.5 (� – structure)
An object O is local to an object P — ��O�P � � O is a
named object and is declared in the declaration part of P .

5.4. Structure of Pointer Generators

Efficient memory management of objects that are dynam-
ically created in the path of a computation using the NEW-
Operator is difficult. This is due to the fact that pointers
can be passed around and even duplicated, which disables
an easy stack-like memory management. We try to facilitate
the management of such anonymous objects by tracking the
location of generators for pointers.

Definition 5.6 (� – structure)
Object O is �-dependent on object P — ��O�P ��O is an
anonymous object andP is the location where the generator
that is needed to create pointers to O is declared.

5.5. Termination Structure

Combining the � and the � structures described above,
we defined a termination dependency for passive and ac-
tive INSEL-objects, which simplifies memory management
considerably [8] [22].

Definition 5.7 (� – structure)
Object O is termination dependent on object P —

��O�P ��

�
��O�P � � O is a named object
��O�P � � O is an anonymous object

We basically use the termination dependency to ensure that
no object is deleted as long as it could potentially be accessed
by another object. For example: ��O�P � determines that
objectP must have terminated its computation, before object
O can be deleted. It also determines that the prerequisite
condition to delete object P is the termination and deletion
of object O.

Figure 3 illustrates some of our structural dependencies.
It shows a snapshot of a simple INSEL system at runtime,
that evolved from executing the program listed in figure 2.
By starting the execution of the program, a root actor r
was created, which is of class system. r elaborated its
declaration part and created object d and actor t. Both
are location and termination dependent on r. In turn, t

has created object e and an anonymous object a’ of class
D t, which is termination dependent on r because of its
�-dependency on r. Currently r and t are synchronized,
that means r requested a service from t and t has accepted
to serve this request.

6. Resource Management

The INSEL resource management system aims to trans-
form an abstract distributed system given as an INSEL pro-
gram into a low-level representation that can efficiently be
executed on a distributed hardware configuration.

In the following subsections we will first present our
basic approach to develop a distributed resource manage-
ment system that adapts to changing requirements and pro-
vides scalability to varying sizes of the distributed system
and the hardware configuration. After that we will demon-
strate some practical benefits of our concepts to structure
distributed systems.

6.1. Management Architecture

Based on the termination dependency, we cluster objects
into actor contexts (see figure 3), which are essential units of
management. Each actor context consists of one actor and all
of its termination dependent passive objects. By associating
an abstract manager with each actor context, we construct a
reflective manager architecture. The task of each manager
is to enforce actor context-specific resource management. It
is obvious that managers need application-level information
to adapt to the requirements of actor contexts. This infor-
mation is provided by analyzing our structural relationships
at compile-time as well as at runtime. The interaction be-
tween application and management layer is accomplished
completely transparent to the application.

It is important to notice that these managers are abstract
in that they are not necessarily objects that are linked to actor
contexts. Such a rigid implementation of managers would
introduce an enormous management overhead, which would
disable a flexible realization of fine-grained parallelism. In-
stead, a manager might just be given by a simple data struc-
ture or it might itself be a rather complex object, comprising
own activities and objects. For example, if an actor A does
not contain any local (analyzing the �-structure) generators
for pointers, then the associated manager does not have to
be prepared for heap management. Another technique is to
predetermine the �-structure at compile-time based on ana-
lyzing the execution environment U �A�. If this shows, that
A has no potentialities to communicate with other actors,
then communication facilities are omitted, that in turn leads
to a more light-weight manager implementation. A minimal
manager is completely realized as inline code generated by
the INSEL compiler and only supports stack handling for its

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

actor context

structural dependency

anonymous
class D_t

root actor

ε

π

γ

λ

d

r

t

ε

λεε λ
κ

,

passive object

offers services
actor that

not offer any services
actor that does

e

actor context T actor context R

a’

Figure 3. Snaphshot of an INSEL system

associated actor context. More advanced managers provide
services to maintain consistency of replicated objects or to
perform access controls or load balancing.

6.2. Global Memory Management

Our memory management system is realized in a decen-
tralized manner by our manager architecture, using a 64 bit
single address space. This flat address space is roughly di-
vided into three main areas as shown in figure 4 (based on
our sample program listed in figure 2): code, stacks and
heaps. Each manager is responsible to fulfill the memory
requirements of its associated actor context. In our exam-
ple (see figure 3), the clustering of objects to actor contexts
leads to two actor contexts, R and T. The manager of actor
context R is responsible for realizing root object r and the
anonymous object a’. To realize named objects, each man-
ager maintains an own stack within the global stack area.
Hence, object d is realized on the stack that is maintained
by the manager of actor context R. A realization of anony-
mous objects on stack is usually not feasible, because their
number and sizes are seldom determined at compile-time.
Therefore, managers associated with actor contexts that con-
tain generators for pointers (analyzing the �-structure) also
maintain an own heap within the global heap area, where
termination dependent anonymous objects (as shown in our
example with objecta’) are placed. In contrast, the manager
of actor context T does not maintain its own heap, since the
actor context does not contain any generators for pointers.
Conflicts arising from stacks growing to the beginningof an-
other stack are solved by communication between managers,
according to the �-portion of the execution dependency. For
example, if the manager for T detects a shortage of memory,
it communicates with the manager of R to claim additional
memory for its stack.

This management scheme is decentralized and does not
contain a potential bottleneck. The managers operate mostly

independently and in parallel, except for claiming or freeing
portions of memory. It also adapts to the requirements of
the INSEL system, because the number and the potential-
ities of managers depend on the number and the require-
ments of actor contexts. This flexible scheme is possible,
through utilizing the �- and �-dependencies to calculate the
�-dependency and exploiting this information for the clus-
tering of termination-dependent objects to actor contexts.

6.3. Transparent utilization of different DSM
strategies

INSEL supports cooperation via shared objects. Due to
the physical distribution of memory resources, some means
to enforce some kind of Distributed Shared Memory [14]
have to be established. As investigated in [9], knowledge of
access characteristics such as producer-consumer relation-
ships helps to chose between different kinds of consistency
protocols, like release or strong consistency. This signifi-
cantly improves the performance of DSM systems. In [22] it
has been shown how the required information can be gained
by using our structural dependencies.

7. Considerations regarding interoperability

It should be evident that the philosophy behind the
MoDiS project differs from those, underlying the work per-
formed in the context of distributed objects platforms as
investigated in section 2. Our approach seems to result
in a kind of closed INSEL-world, being incompatible to
existing applications using conventional programming lan-
guages (e.g. C, C++) or being unable to interoperate with
existing distributed objects platforms. We do admit that,
until now, issues like portability, compatibility and interop-
erability have been of minor importance for us. Our work
focuses on the development of concepts and tools to simplify

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

CODE STACKS HEAPS0

dp

2
64

-1

r t d d c e a’

manager of actor context R manager of actor context T

Figure 4. Partitioning of the global address space

the complex task of programming distributed applications as
well as on the development of a system architecture, which
provides efficient resource management. Nevertheless, we
claim that our closed INSEL-world could be opened to cope
with the additional issues of interoperability as well. In
the following, we will just sketch an idea of how an INSEL-
system could be integrated into an open system environment.

To interoperate with other systems, a special INSEL ob-
ject has to be designed and implemented. This INSEL inter-
face object or bridge has to provide services comparable with
an object request broker known from CORBA. It serves as
a link between the INSEL world and the outside world. It is
important to note, that such an INSEL bridge will introduce
interoperabilityon a inter-system basis. It will not allow any
intra-system interoperability, that is the usage of other pro-
gramming languages than INSEL to implement objects that
are to be executed within the INSEL system. The introduc-
tion of such a feature would require more general resource
management services, which would be an antagonism that
contradicts our objective targets. To export INSEL services
to the outside world, the INSEL bridge has to provide a ser-
vice to register an INSEL object as being usable from the
outside world. Registering means, that an IDL specification
of the exported object has to be derived automatically from
the generator definition of the INSEL object and an interop-
erable object reference has to be created which can be used
by outside clients. A client uses the interface specification
provided by the bridge object to compile a client-stub which
enables to interact with INSEL server objects as it would
interact with local objects, that is by invoking their opera-
tions. All server requests are mediated through the INSEL
bridge which has to provide a binding between the request
and the INSEL implementation of the requested service. As
the request is executed within the INSEL world, all features
explained in this paper can be exploited to improve the per-
formance of service executions. Hence, the INSEL bridge
can be viewed as a solution to the performance problems
mentioned by Vinoski in [20], coming along with common
CORBA implementations.

To summarize, by tightly integrating facilities such as

ORBs into a holistic system architecture, spanning lan-
guages, tools and OS services, considerable improvements
in performance are enabled. Knowledge about language
specific structural dependencies would help distributed ob-
jects platforms to realize interoperability efficiently, while
providing transparency to the programmer.

8. Current Status and Future Work

Currently three prototype implementations of our pro-
gramming language INSEL exist. One is an interpreter
integrated in an analyzation and visualisation tool, called
DAViT. It is capable of visualizing all of our structures of
a distributed INSEL application at runtime. It serves as a
learning tool for collecting practical experiences with our
structuring and programming concepts.

DAViT runs on top of a HP-UX workstation cluster, inter-
connected trough a 10 MBit ethernet network. For the same
platform we realized another implementation, called EVA
[19], which concentrates on load distribution. EVA trans-
lates INSEL programs into semantic equivalent C++ code,
which in turn is being compiled and linked with additional
C++ libraries, for runtime support. Our third implementa-
tion, AdaM [22] performs a translation of INSEL into C.
It focuses on distributed memory management techniques
and strategies, such as migration and replication of passive
objects. It was also our first attempt to exploit micro-kernel
technology for our approach. AdaM is based on Mach 3.0
running on an ethernet cluster of i486 computers.

AdaM and EVA themselves are written in C and C++.
They are experimental implementations, in that they trans-
late complete INSEL applications, link them with runtime
support libraries and execute them. Those prototype im-
plementations enabled us to collect first experiences with
our concepts and their implementation. Naturally they are
missing important OS features, as management of users,
I/O-system, accounting and so on. We now aim to integrate
our experiences with load distribution, memory manage-
ment and micro-kernel technology into a complete INSEL
OS architecture.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

From our experimental implementations we also learned
that existing tools to construct software systems do not match
our requirements, since they are mostly tailored for UNIX
environments. We are currently implementing new tools
as for instance a native INSEL to machine-code compiler
and a new dynamic linker. Using these tools, we will first
implement some basic services of a distributedOS in INSEL
(distributed scheduling, dynamic loader, etc.). The main
task of this base system will be to support the dynamical
extension of the running system at runtime.

We are going to implement our system on a cluster of
14 Sun Ultrasparc workstations, interconnected by a 100
MBit/s FastEthernet. In a first step, we will still base parts
of our services on Sun Solaris facilitites. In a second step,
we will replace the remaining Solaris services with our own
micro-kernel DYCOS.

9. Conclusion

In this paper we presented an approach to overcome two
considerable difficultiesof distributedobject-based systems.
First, our approach provides a homogeneous and fully trans-
parent programming interface to the programmer. It allows
the programmer to solely concentrate on specifying algo-
rithms without being bothered with resource management
tasks, as for instance implementing communication facili-
ties or requesting addresses of objects. Second, we demon-
strated that distributed applications, specified on such a high
level of abstraction can efficiently be executed. This task is
accomplished by consequently exploiting structural depen-
dencies for resource management.

The key to these features is the unique combination
of top-down orientation with a language-based approach.
Starting with abstract concepts to construct structured dis-
tributed object-based systems, we develop language con-
cepts and well-adapted resource management tools. This
means that all of our concepts and strategies enclosing for
instance compiler technology down to low-level services of-
fered by our micro-kernel DYCOS, are perfectly adapted to
the requirements of our abstract concepts.

Interoperability with other distributed OSs is feasible, by
incorporating interface components, comparable to ORBs.
Such components should be enhanced with facilities to ex-
ploit application-specific structural dependencies for effi-
cient realization of objects and requests.

References

[1] Ada. The Programming Language Ada Reference Manual,
volume 155 of LNCS. Springer–Verlag, Berlin, 1983.

[2] ANSA. An engineers introduction to the architecture. Tech-
nical Report TR-03-02, APM Ltd., Cambridge, England,
November 1989.

[3] H. E. Bal. Report on the programming language Orca. Tech-
nical report, Dept. of Mathematics and Computer Science,
Vrije Universiteit Amsterdam, 1994.

[4] R. H. Campbell and N. Islam. Choices: A Parallel Object-
Oriented Operating System. In G. Agha, P. Wegner, and
A. Yonezawa, editors, Research Directions in Concurrent
Object-Oriented Programmi ng. MIT Press, 1993.

[5] D. C. Cann. Sisal 1.2: A brief introduction and tutorial.
Technical report, Lawrence Livermore National Laboratory,
1992.

[6] C. Consortium. The ComandosDistributed Application Plat-
form. 1992.

[7] C. B. Czech. Designing reconfigurable microkernels for
distributed operating environments. submitted to SPDP ’96.

[8] C. Eckert and H.-M. Windisch. A new approach to match
operating systems to application needs. In Proceedings of
7th IASTED - ISAMM, pages 499–503, October 1995.

[9] J. B. C. et al. Implementation and performance of munin.
Technical report, Computer System Laboratory, Rice Uni-
versity, Houston, Texas, 1991.

[10] M. A. et al. Mach: A New Kernel Foundation For UNIX
Development. Technical report, CS Department, Carnegie
Mellon University, Pittsburgh, PA 15213, August 1986.

[11] P. S. et al. Concepts for the construction of distributed sys-
tems. SFB-Bericht 342/09/96 A TUM-19618, Munich Insti-
tute of Technology, March 1996. german.

[12] S. Groh. Designing an efficient resource management for
parallel distributed systems by the use of graph replacement
system. In Proceedings of PDPTA 96, August 1996.

[13] L. Gunaseelan and R. L. Jr. Distributed Eiffel: A Language
for Programming Multi–Granular Distributed Objects on the
Clouds Operating System. In Intern. Conf. on Comp. Lang.,
San Francisco, April 1992.

[14] K. Li and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems. ACM Transactions on Computer Systems,
7(4):321–359, November 1989.

[15] B. Meyer. Object-oriented Software Construction. Prentice–
Hall International (UK) Ltd., 1988.

[16] OMG. The common object request broker: Architecture and
specification. Technical report, Object Management Group,
July 1995.

[17] OSF. Introduction to OSF DCE. Englewood Cliffs, NJ:
Prentice Hall, 1992.

[18] S. K. R. Balter, J-P. Banâtre. Construction des systèmes
d’exploitation réparties, volume Collection didactique. IN-
RIA, July 1991.

[19] R. Radermacher. An Execution Environment with Integrated
Load Balancing for Distributed and Parallel Systems. PhD
thesis, Munich Institute of Technology, 1996. german.

[20] D. C. Schmidt and S. Vinoski. Object interconnections. SIGS
C++ Report magazine, May 1995.

[21] B. Stroustrup. The C++ Programming Language. Addison–
Wesley, Reading, MA, 2nd edition, 1991.

[22] H.-M. Windisch. Improving the efficiency of object invo-
cations by dynamic object replication. In Proceedings of
PDPTA 95, pages 680–688, November 1995.

[23] Y. Yokote. Kernel Structuring for Object–Oriented Oper-
ating Systems: The Apertos Approach. Technical report,
Sony Computer Science Laboratory Inc., 3-14-13 Higashi-
gotanda, Shinagawa-ku, Tokyo, 141 JAPAN, July 1993.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

