


**University College Cork, Ireland** Coláiste na hOllscoile Corcaigh





# From seaweed to samphire – what works for maraponics?

Gavin Burnell Daryl Gunning





### Introduction

• What is maraponics?

= marine aquaponics = RAS + IMTA
(integrated multi-trophic aquaculture)

#### Background

- Difficult to obtain licenses for mixed species culture in Ireland
- Hard to demonstrate nutrient recycling in oligo/mesotrophic open water IMTA
- RAS allows full control of inputs
- RAS allows behavioural observations
- Experiment with different species mix
- Reduced sampling variability (diurnal/tidal)



### Aims

 Measure the growth and survival of chosen macroalgae and invertebrates (Exp 1 & 2)

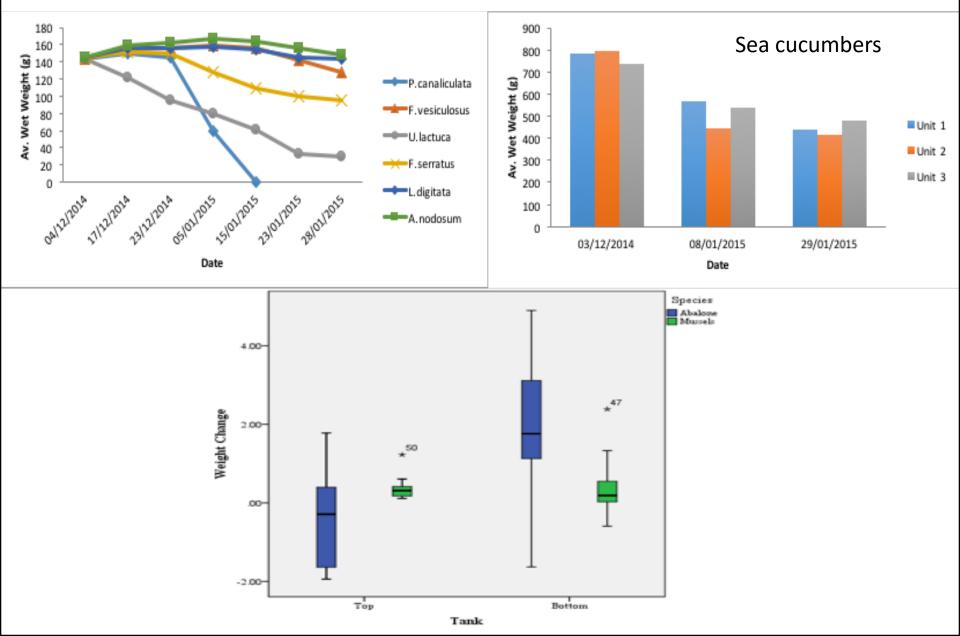
 Map the production and recycling of fatty acids through three trophic levels (Exp 1)

 Measure the performance of Sea Samphire on aquaculture waste water using aeroponics (Exp 3 & 4)

#### Exp 1 Integrated Bulk Carrier (IBC) - winter

- Assess growth rates of:
  - Seaweed (Laminaria digitata; Ulva lactuca, Ascophyllum nodosum; Fucus serratus; F. vesiculosus; Pelvetia canaliculata)
  - Blue mussel (*Mytilus edulis*); Cotton spinner sea cucumber (*Holothuria forskali*); & Japanese abalone (*Haliotis discus hannai*)
- Addition of salmon faeces, feed, and ammonia based on Winfish model (Ferreira *et al*. 2012)
- Monitor water quality parameters
- Conduct fatty acid analysis on maraponic components (salmon faeces and feed; seaweeds; flesh of mussels, sea cucumbers, & abalone)




### Exp 1 – Preliminary results

- Water quality parameters across each unit demonstrated little variation:
  - salinity: 31.7-32ppt
  - pH: 8-8.2
  - DO: 9.5-10.2mg/L
  - temperature: 13.8-14.8°C
  - mean ammonia levels showed slight variation between each system

IBC 1: 0.778 mg/L IBC 2: 0.578 mg/L IBC 3: 0.60 mg/L

- Stored water samples awaiting nitrite, nitrate etc. analysis

### Exp 1 – preliminary growth results



### Exp 1 Fatty Acid (FA) analysis

#### AIMS

- to determine FA composition of species growing in maraponic unit
- to map FAs through the trophic levels





FA analysis mussels



#### salmon feed/faeces markers such as 18:1n-9; 20:1n-9; 22:1n-11; and arachidonic acid (ARA) detected in mussels

W.H.O. currently recommend that ratio of  $\omega 6\!:\!\omega 3$  in the diet should be < 10

control mussels:  $\omega 6:\omega 3 = 0.2 \pm 0.0$ maraponic mussels:  $\omega 6:\omega 3 = 0.2 \pm 0.1$  (top tank)  $0.3 \pm 0.1$  (lower tank)



FA analysis abalone



salmon feed/faeces markers such as 20:1n-9; 22:1n-11; 18:2n-6 and DHA detected in abalone tissue

control abalone: docosahexanoic acid (DHA) = (0.0±0.1)

maraponics abalone: DHA = 0.8±0.4 (top tank) DHA = 3.9±1.2 (lower tank)

#### Ratio of ω6:ω3

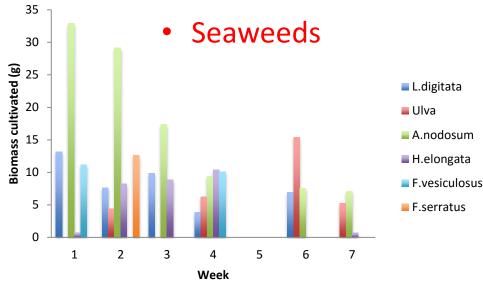
control abalone:  $\omega 6:\omega 3 = 0.4 \pm 0.0$ maraponic abalone:  $\omega 6:\omega 3 = 0.4 \pm 0.0$  (top tank)  $= 0.3 \pm 0.0$  (lower tank)

|                             | PRETRIAL           | TRIAL BOTTOM     | P-Value |                                    | PRETRIAL                       | TRIAL BOTTOM                    | P-Value  |
|-----------------------------|--------------------|------------------|---------|------------------------------------|--------------------------------|---------------------------------|----------|
| LIPID %                     | $1.4 \pm 0.4$      | $1.9 \pm 0.7$    | N.      | LIPID %                            | $0.3 \pm 0.1$                  | 0.3 ± 0.1                       | NS       |
| FATTY ACIDS                 |                    |                  |         | FATTY ACIDS                        |                                |                                 |          |
| 14:0                        | $1.5 \pm 0.7$      | $0.9 \pm 0.9$    | NS      | 14:0                               | $0.5 \pm 0.4$                  | $0.7 \pm 0.4$                   | NS       |
| 16:0                        | $3.6 \pm 1.2$      | $3.0 \pm 2.1$    | NS      | 16:0                               | $3.2 \pm 1.4$                  | $3.9 \pm 3.4$                   | NS       |
| 18:0                        | $4.1 \pm 0.9$      | $4.7 \pm 1.3$    | NS      | 18:0                               | $3.1 \pm 0.4$                  | $3.5 \pm 0.6$                   | NS       |
| 19:0                        | $1.4 \pm 0.4$      | $1.5 \pm 0.2$    | NS      | 19:0                               | $1.4 \pm 0.2$                  | $1.3 \pm 0.1$                   | NS       |
| 20:0                        | $1.8 \pm 0.1$      | $2.1 \pm 0.2$    | NS      | 20:0                               | $2.4 \pm 0.1$                  | $2.3 \pm 0.3$                   | NS       |
| 21:0                        | $1.6 \pm 0.3$      | $1.6 \pm 0.4$    | NS      | 21:0                               | $2.1 \pm 0.3$                  | $2.1 \pm 0.4$                   | NS       |
| 22:0                        | $1.9 \pm 0.4$      | $2.0 \pm 0.4$    | NS      | 22:0                               | $2.3 \pm 0.1$                  | $2.5 \pm 0.2$                   | NS       |
| Total SFA <sup>1</sup>      | <b>19</b> .7 ± 0.9 | $19.6 \pm 4.3$   | NS      | Total SFA <sup>1</sup>             | 17.3 ± 2.8                     | 18.8 ± 8.1                      | NS       |
| 16:1n-7                     | $3.3 \pm 0.6$      | $2.6 \pm 2.1$    | NS      | 16:1n-7                            | 1.1 ± 0.8                      | $1.1 \pm 0.4$                   | NS       |
| 18:1n-9                     | $3.4 \pm 2.3$      | 3.1 ± 1.5        | NS      | 18:1n-9                            | $3.3 \pm 0.5$                  | $3.8 \pm 1.3$                   | NS       |
| 18:1n-7                     | $4.4 \pm 0.3$      | $4.2 \pm 1.1$    | NS      | 18:1n-7                            | $2.2 \pm 0.4$                  | $2.0 \pm 0.3$                   | NS       |
| 20:1n-11                    | $4.5 \pm 0.3$      | 4.7 ± 1.1        | NS      | 20:1n-11                           | $8.2 \pm 0.4$                  | $7.3 \pm 1.6$                   | NS       |
| 20:1n-9                     | $1.8 \pm 0.8$      | $1.8 \pm 1.1$    | NS      | 20:1n-9                            | $0.2 \pm 0.1$<br>$0.6 \pm 0.8$ | $0.9 \pm 0.5$                   | NS       |
| 20:1n-7                     | $0.8 \pm 0.2$      | $1.0 \pm 0.3$    | NS      | 20:1n-7                            | 0.5±0                          | $0.9 \pm 0.3$<br>$0.4 \pm 0.1$  | NS       |
| 22:1n-11                    | $0.9 \pm 0.2$      | $1.0 \pm 0.4$    | NS      | 22:1n-11                           | 0.7±0                          | $0.4 \pm 0.1$<br>$0.6 \pm 0.1$  | NS       |
| 22:1n-9                     | $1.2 \pm 0.4$      | $1.4 \pm 0.3$    | NS      | 22:1n-9                            | $1.9 \pm 0$                    | $1.8 \pm 0.2$                   | NS       |
| 23:1n                       | $7.7 \pm 3.3$      | 5.9 ± 1.8        | NS      | 23:1n                              | $9.4 \pm 0.5$                  |                                 | NS       |
| 24:1n-9                     | $1.6 \pm 0.2$      | $1.8 \pm 0.4$    | NS      | 24:1n-9                            | $2.9 \pm 0.5$                  | $3.3 \pm 0.8$                   | NS       |
| Total MUFA <sup>2</sup>     |                    |                  | NS      | Total MUFA <sup>2</sup>            | $31.9 \pm 1.3$                 | $32.8 \pm 1.8$                  | NS       |
| 18:2n-6                     | 0.3 ± 0.2          | 0.3 ± 0.1        | NS      | 18:2n-6                            | 0.2 ± 0                        | $0.2 \pm 0.2$                   | NS       |
| 20:2n-6                     | $1.5 \pm 0.1$      | $1.6 \pm 0.2$    | NS      | 20:2n-6                            | $1.6 \pm 0.2$                  | $1.3 \pm 0.2$                   | NS       |
| ARA                         | $14.0 \pm 1.7$     | $12.9 \pm 4.0$   | NS      | ARA                                | $20.4 \pm 2.5$                 | $1.5 \pm 0.2$<br>$16.6 \pm 5.5$ | NS       |
| 22:5n-6                     | $1.2 \pm 0.4$      | $1.5 \pm 0.3$    | NS      | 22:5n-6                            | $20.4 \pm 2.5$<br>1.5 ± 0      | $10.0 \pm 0.3$<br>$1.3 \pm 0.4$ | NS       |
| Total n-6 PUFA <sup>3</sup> | $18.0 \pm 2.3$     | 17.0 ± 4.2       | NS      | Total n-6 PUFA <sup>3</sup>        |                                | $1.5 \pm 0.4$<br>20.2 ± 6.3     | NS       |
| 18:3n-3                     | 0.7 ± 0.2          | 0.7 ± 0.5        | NS      | 18:3n-3                            | $0.2 \pm 0.2$                  | 0.3 ± 0.2                       | NS       |
| 18:4n-3                     | $1.4 \pm 0.8$      | $1.0 \pm 0.8$    | NS      | 18:4n-3                            |                                |                                 | NS       |
| EPA                         | $16.1 \pm 3.5$     | 16.8 ± 4.9       | NS      | EPA                                | $0.3 \pm 0.1$                  | $0.4 \pm 0.2$                   | NS       |
| 22:5n-3                     | $0.6 \pm 0.2$      | $0.5 \pm 0.4$    | NS      |                                    | $12.1 \pm 1.3$                 | $10.2 \pm 4.1$                  | NS       |
| DHA                         | $2.3 \pm 0.3$      | $2.4 \pm 0.7$    | NS      | 22:5n-3                            | 0.3 ± 0                        | $0.2 \pm 0.1$                   |          |
| Total n-3 PUFA <sup>4</sup> | $22.0 \pm 4.4$     | $23.4 \pm 4.8$   | NS      | DHA<br>Total n-3 PUFA <sup>4</sup> | 1.1 ± 0.3<br>14.8 ± 0.8        | $0.8 \pm 0.4$<br>12.9 ± 4.8     | NS<br>NS |
| Total PUFA <sup>5</sup>     | 40.5 ± 6.4         | 41.3 ± 6.4       | NS      | Total PUFA <sup>5</sup>            | 40.0 ± 3.2                     | 33.9 ± 10.0                     | NS       |
| 18:0 DMA                    | 5.9 ± 1.0          | 6.1 ± 1.5        | NS      | 18:0 DMA                           | 8.0 ± 0.8                      | 8.7 ± 0.5                       | NS       |
| 19:0 DMA                    | $1.8 \pm 0.4$      | $1.7 \pm 0.7$    | NS      | 19:0 DMA                           | 2.5±0                          | $2.4 \pm 0.4$                   | NS       |
| Total DMA                   | 7.7 ±1.4           | 7.9 ± 2.0        | NS      | Total DMA                          | $10.5 \pm 0.7$                 | $11.2 \pm 0.8$                  | NS       |
| W6/W3                       | $0.8 \pm 0.1$      | 0.8 ± 0.2        | NS      | W6/W3                              | 1.7 ± 0.1                      | $1.6 \pm 0.4$                   | N        |
| 1 1                         | (1) 14 (2) 4       | 1 <b>1 1 1</b> 1 |         | 110/113                            | 1.7 ± 0.1                      | 1.0 ± 0.4                       |          |

۰.,

12 20 76 75 76 75 78 78 78 78 78 78

### FA analysis overall findings


- Lipid composition of salmon feed 5 times higher than salmon faeces
- Identified biomarkers:
  - 18:1n-9; 20:1n-9; 22:1n-11; 18:2n-6; ARA; & DHA
- Evidence that mussels and abalone feeding upon salmon feed and faeces
- Sea cucumbers greater variability between individuals
- Seaweed FA analysis awaiting completion

### Exp 2 IBC - summer

- Assess growth of:
  - Macroalgae: Himanthalia elongata; Ulva lactuca; Fucus vesiculosus.; F. serratus; Laminaria digitata; Ascophylum nodosum
  - > Purple sea-urchin: *Paracentrotus lividus*
  - > Abalone: Haliotis tuberculata and H. discus hannai
  - Blue mussel: Mytilus edulis
- Salmon waste and ammonia (no salmon feed)
- Excess seaweed biomass fed to abalone in top tray
- Nitrites and Nitrates also monitored 2-3 times per week



### Exp 2 – Preliminary results



#### Mussels and abalone

- Small level of growth seen in mussels (weight {av. + 0.3g} & width {av. +0.19})
- *H.tuberculata*: Length (av. + 2.64mm);
   Width (av. + 2.64mm); Weight (av. +1.56g)
- H.discus hannai: Length (av. + 1.47mm);
   Width (av. + 1.13mm); Weight (av. +0.77g)

#### • Sea urchins:

- 100% retention of tags & no mortalities\*
- Very small level of growth (NS)
- Mortalities only seen at end of trial

| <b>Baseline IBC Parameters</b> | Average            |
|--------------------------------|--------------------|
| Ambient Temperature            | 21.7°C ± 2.7       |
| Water Temperature              | 19.5°C ± 2.2       |
| рН                             | 7.936 ± 0.319      |
| Salinity                       | 35.4 ± 0.6         |
| Dissolved Oxygen               | 8.53mg/L ± 5.63    |
| Dissolved oxygen saturation    | 89% ± 16           |
| Ammonia                        | 1.11mg/L ± 0.85    |
| Nitrite                        | 0.132mg/L ± 0.116  |
| Nitrate                        | 1.351 mg/L ± 0.761 |
|                                |                    |

### Summary of Exp 1&2 results

sea cucumbers are NOT super heroes

## mussels and abalone can intake salmon feed/faeces

Various studies have determined the diet of abalone is mainly macroalgae based (Bansemer et al. 2014; Garcia-Carreno et al. 2003; & Mai et al. 1996)

#### seaweeds need more light in winter

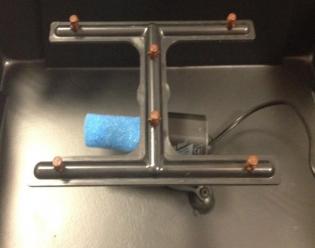




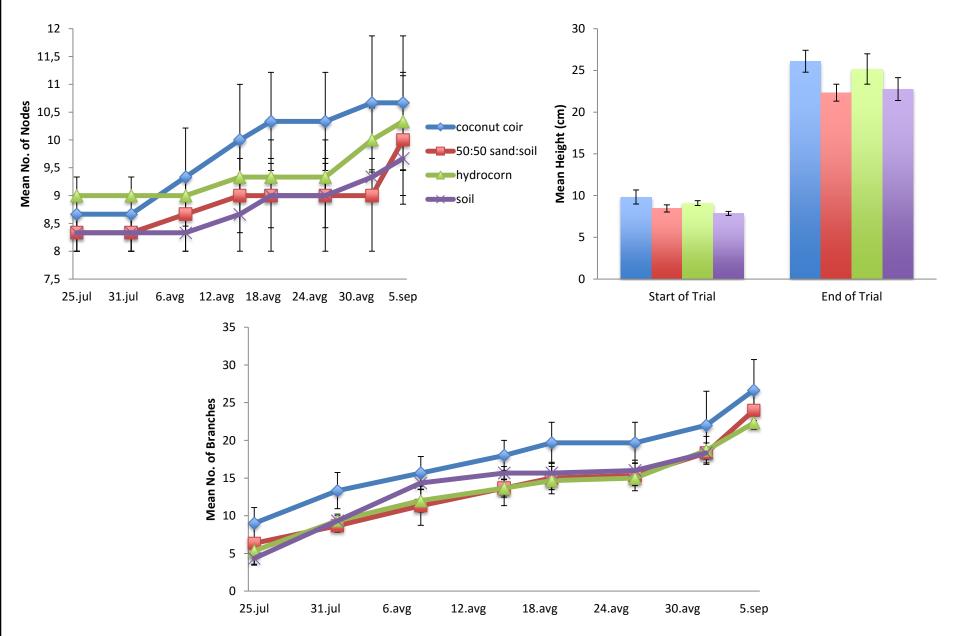
Growth of sea samphire (Salicornia europaea) in aeroponics systems

• Exp 3 (Growth media)

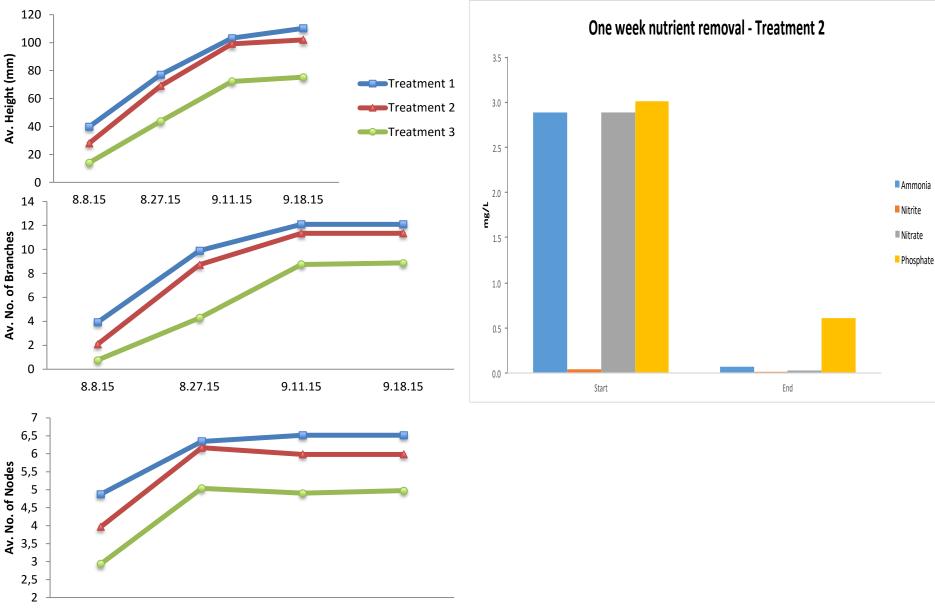
Treatments: sand:soil (50:50) soil hydrocorn coconut coir


• Exp 4 (Oyster hatchery wastewater trial)

Treatments:


- 1. saline waste water:freshwater (1:2)
- 2. saline waste water:freshwater (2:1)
- 3. saline waste water (100%)








#### Exp 3 results – growth media



#### Exp 4 results – hatchery wastewater



8.8.15 8.27.15 9.11.15 9.18.15

### Summary of Exp 3 & 4 results

• coir was the best growth media

most dilute (brackish) waste water gave best growth

• *Salicornia* removes high percentage of waste nutrients

#### References

- Bansemer *et al*. (2014). Nutritional requirements and use of macroalgae as ingredients in abalone feed. *Reviews in Aquaculture*, 5, pp. 1-15.
- Ferreira *et al.* (2012). Cultivation of gilthead bream in monoculture and integrated multi-trophic aquaculture. Analysis of production and environmental effects by means of the FARM model. *Aquaculture*, 358-359, pp. 23-34.
- Garcia-Carreno *et al.* (2003). Digestive enzymes in juvenile green abalone, Haliotisfulgens, fed natural food. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 134(1), pp. 143-150.
- Handå *et al.* (2012). Incorporation of salmon fish feed and feces components in mussels (*Mytilus edulis*): Implications for integrated multi-trophic aquaculture in cool-temperate North Atlantic waters. *Aquaculture*, 370-371, pp. 40-53.
- Irisarri *et al.* (2015). Availability and utilization of waste fish feed by mussels, *Mytilus edulis*, in a commercial integrated multi-trophic aquaculture (IMTA) system: A multi-indicator assessment approach. *Ecological Indicators*, 48, pp. 673-686.
- Mai *et al*. (1996). Comparative studies on the nutrition of two species of abalone, *Haliotis tuberculata* L. and *Haliotis discus hannai* Ino. V. The role of polyunsaturated fatty acids of macroalgae in abalone nutrition. *Aquaculture*, 139(1), pp. 77-89.
- Nelson *et al.* (2002). Comparison of growth and lipid composition in the green abalone, *Haliotis fulgens*, provided specific macroalgae diets. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 131(4), pp. 695-712.
- Stabili *et al.* (2012). The lipidic extract of the seaweed *Gracilariopsis longissima* (Rhodophyta Gracilariales): a potential resource for biotechnological purposes? *New Biotechnology*, 29(3), pp. 443-450.