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Benford’s Law and the  
Risk of Financial Fraud
What is Benford’s Law, and can it be applied to detect  

financial fraud? Controversies surrounding the integrity of LIBOR  
setting and reported sovereign economic data serve as examples  

that Benford fraud detection is sometimes misleading. This article  
suggests best practices for Benford’s Law analysis.

By J.  M. Pi mb  l e y

hat the world calls “Benford’s Law” is a marvel-
ous mélange of  mathematics, data, philosophy, 
empiricism, theory, mysticism and fraud. Even 
with all these qualifiers, one can easily describe 
this law and then ask the simple questions that 

have challenged investigators for more than a century.
Take a large collection of  positive numbers, which may be in-

tegers or real numbers or both. Focus only on the first (non-zero) 
digit of  each number. Count how many numbers of  the large col-
lection have each of  the nine possibilities (1-9) as the first digit. For 
typical number collections – which we’ll generally call “datasets” 
– the first digit is not equally distributed among the values 1-9. 
Instead, a first digit of  “1” occurs roughly with frequency 30%, 
while the frequency of  first digit “9” is just 4.6%.

That’s the easy description. The simple questions include the 
following: Is this really true? Why is it true? Why should it be true? 
Does it ever fail?

In terms of  written history, Simon Newcomb (1881) published 
the first known discussion of  and solution to this “distribution 
of  digits” problem. The next development was Frank Benford’s 
analysis (1938) of  this same topic. Benford had not been aware of  
the earlier Newcomb discovery. Newcomb and Benford both pro-
vided intriguing data, and reached the same conclusion regarding 
the mathematical form of  the digit distribution; however, both 
also failed to convince subsequent investigators of  the validity of  
their explanations.  

In 1976, Ralph Raimi provided an excellent history and sum-
mary of  Benford’s Law research. Theodore Hill published a 

quasi-proof  of  the Law in 1995,1 while Mark Nigrini (1999) has 
applied the Law in numerous accounting contexts.  

Even more recently, Rachel Fewster (2009) wrote an enjoyable 
history and some valuable thoughts on applicability of  Benford, 
but our favorite discussion, due to his unique insights, is Steven 
Smith’s (2007) explanation of  this Law. 

Our primary interest in this topic is the alleged utility of  Ben-
ford’s Law in detecting fraud in financial and accounting con-
texts. We develop a straightforward understanding of  Benford 
more generally, and we apply this understanding to the potential 
detection of  financial fraud. Litigated disputes, in which Ben-
ford’s Law is not nearly as appropriate or helpful as some parties 
believe, do exist.

Fraud Detection with Benford’s Law
The subtitle to Nigrini’s 1999 article reads:  “How a mathemati-
cal phenomenon can help CPAs uncover fraud and other irregu-
larities.” Nigrini’s assertion is that the auditor or accountant can 
determine the distribution of  first digits in datasets arising from 
accounts payable data; estimates in the general ledger; customer 
refunds; and numerous other potentially misstated financial infor-
mation. Significant deviation of  the observed first-digit distribu-
tion from Benford’s Law implies possible fraud.  

In Nigrini’s words, “because human choices are not random, 
invented numbers are unlikely to follow Benford’s Law.” He also 
explains that a dominant “behavioral feature” of  fraudulent val-
ues is the dishonest person’s desire to keep numbers (such as costs 
or expenses) beneath a specific threshold value, presumably to es-
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cape the notice of  auditors or managers.  
One could imagine a similar desire to falsely inflate values, such 

as returns on equity or economic growth rates, above a threshold 
value.  In 2005, Nigrini also applied his Benford review to Enron’s 
accounting. 

Reporting and prices in the financial world offer abundant pos-
sibilities for the application of  Benford’s Law to search for fraud. 
Investigation of  alleged fraud in the setting of  LIBOR values is a 
timely example.2 Since alleged manipulation of  index values per-
taining to the interest rate swap, foreign exchange, commodity 
and other markets is similar in many respects to LIBOR allega-
tions, Benford’s Law may provide a forensic tool in many upcom-
ing investigations.

Another current financial controversy is the sovereign report-
ing of  economic data.3 Sovereign bond investors, the International 
Monetary Fund (IMF), credit rating agencies, economists, voters, 
taxpayers and others would have reason to apply tests such as 
Benford’s Law to scrutinize the veracity of  reported information.  

The review procedure is straightforward. Simply assemble the 
data of  interest (e.g., annual changes in gross domestic product, 
inflation rates and government spending), run a short algorithm 
to determine the distribution of  first digits and compare the re-
sulting distribution to that of  Benford’s Law.4

Explanation of  Benford’s Law
To re-state the Benford problem, first let’s find or generate a large 
dataset of  positive numbers. The first non-zero digit of  each num-
ber will take one of  the values k with k=1,2,3,...,9. If  the dataset 
conforms with Benford’s Law, the distribution of  first digits pk will 
be5 

In this expression, “log” is the base-ten logarithm. This Benford 
distribution is not uniform and, therefore, not intuitive. One’s un-
thinking, though reasonable, impression would be that a “9” is as 
likely to appear as a “1” as a leading digit for a collection of  ap-
parently random numbers. But the p9 and p1 values from equation 
(1) are 4.6% and 30.1%, respectively. Thus, a “1” is more than six 
times as likely to occur as a “9” in the leading digit of  a Benford 
collection of  numbers.

Previous authors – such as Benford (1938), Raimi (1976), Ni-
grini (1999), Fewster (2009), Smith (2007) and many others we 
do not cite6 – provide datasets to show varying degrees of  con-
formance with Benford’s Law. There are dataset examples as well 
that do not comport with Benford. We provide our own “new 
contribution” here.

From the Federal Housing Finance Agency (FHFA) website, we 

downloaded the average residential mortgage loan amount by 
state in the U.S. for every year from 1969 through 2010.7 Given 
this span of  years, there are 42 data points per state, and more 
than 2,000 data points upon aggregation of  all the states. Table 
I below shows the observed first-digit distribution pk for all aggre-
gated states and also for the first three states:

Table I:  First-Digit Distribution for Average Loan 
Amount by State for 1969-2010

	 Digit	 All States	 Alaska	 Alabama	 Arkansas

	 1	 0.320	 0.548	 0.310	 0.238

	 2	 0.184	 0.119	 0.167	 0.214

	 3	 0.101	 0.095	 0.095	 0.071

	 4	 0.078	 0.024	 0.119	 0.119

	 5	 0.062	 0.048	 0.024	 0.024

	 6	 0.056	 0.024	 0.048	 0.071

	 7	 0.068	 0.048	 0.048	 0.119

	 8	 0.067	 0.048	 0.167	 0.095

	 9	 0.066	 0.048	 0.024	 0.048

Charts 1 and 2 below plot the distributions of  Table I and the 
Benford distribution.

4 
Joe Pimbley 2014 

product, inflation rates, government spending, et cetera), run a short algorithm to determine 

the distribution of first digits, and compare the resulting distribution to that of Benford’s 

Law.4 

Explanation of Benford’s Law 

To re-state the Benford problem, first let’s find or generate a large dataset of positive 

numbers.  The first non-zero digit of each number will take one of the values k with 𝑘𝑘 =

1, 2, 3, ⋯ , 9.  If the dataset conforms with Benford’s Law, the distribution of first digits 𝑝𝑝𝑘𝑘 

will be:5 

𝑝𝑝𝑘𝑘  =   log (𝑘𝑘 + 1
𝑘𝑘 ) ,   𝑘𝑘 = 1, 2, 3, ⋯ , 9 
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2,000 data points upon aggregation of all the states.  Table I below shows the observed first-

digit distribution 𝑝𝑝𝑘𝑘 for all aggregated states and also for the first three states: 

Digit All States  Alaska Alabama Arkansas 
1 0.320  0.548 0.310 0.238 
2 0.184  0.119 0.167 0.214 
3 0.101  0.095 0.095 0.071 
4 0.078  0.024 0.119 0.119 
5 0.062  0.048 0.024 0.024 
6 0.056  0.024 0.048 0.071 
7 0.068  0.048 0.048 0.119 
8 0.067  0.048 0.167 0.095 
9 0.066  0.048 0.024 0.048 

Table I:  First-Digit Distribution for Average Loan Amount by State for 1969-2010 

Charts 1 and 2 below plot the distributions of Table I and the Benford Distribution. 
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The distributions for the individual states of Chart 1 differ from each other and do not 

approximate the Benford Distribution.  Chart 2 shows, however, that the aggregated data for 

all U.S. states is much closer to Benford.8  This observation that aggregating multiple 

datasets produces better agreement with Benford is unanimous among investigators and 

traces back to Benford (1938). 

When Should the Data Follow Benford’s Law? 

In a separate study, we found in Pimbley (2014) many example datasets that do not 

produce Benford Distributions.  The “uniform distribution,” from U(0,1) to U(0,10𝑚𝑚), the 

“flat-top algebraic” distribution, the 𝑚𝑚 > 1 “pure algebraic” distribution, and the “positive 

normal” distribution are all clearly non-Benford.  The “positive exponential” distribution is 

somewhat closer to Benford in some cases.  The “log-normal” distribution converges 

precisely to Benford as far as one can judge with numerical calculations.  The 𝑥𝑥−1 “pure 

algebraic” distribution is exactly Benford.  An indisputable conclusion is that one may not 

assume the first digits of an empirical dataset should obey Benford’s Law. 
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The distributions for the individual states of  Chart 1 differ 
from each other and do not approximate the Benford Distribu-
tion. Chart 2 shows, however, that the aggregated data for all U.S. 
states is much closer to Benford.8 This observation that aggregat-
ing multiple datasets produces better agreement with Benford is 
unanimous among investigators and traces back to Benford (1938).

When Should the Data Follow Benford’s Law?
In a separate study, we found in Pimbley (2014) many example 
datasets that do not produce Benford Distributions. The “uniform 
distribution” – including U(0,1) to U(0,10m); the “flat-top alge-
braic” distribution; the m>1 “pure algebraic” distribution; and 
the “positive normal” distribution – are all clearly non-Benford.  

The “positive exponential” distribution is somewhat closer to 
Benford in some cases. The “log-normal” distribution converges 
precisely to Benford, as far as one can judge with numerical cal-
culations. The x-1 “pure algebraic” distribution is exactly Benford. 
An indisputable conclusion is that one may not assume the first 
digits of  an empirical dataset should obey Benford’s Law.

We do not believe any study prior to Pimbley (2014) considered 
all of  these example datasets to show Benford versus non-Benford 
behavior.9 But virtually all prior research addresses the topic of  
how to determine which datasets will conform to Benford and 
which will not. Two clear principles are that the dataset should 
span several orders of  magnitude (e.g., Fewster (2009)) and that 
mixtures of  datasets are more likely to produce the Benford dis-
tribution for digits (e.g., Benford (1938), Raimi (1976) and Hill 
(1995)) than individual datasets.

The empirical requirement to span several orders of  magni-
tude is understandable, by reference, to example. One of  the Pim-
bley (2014) numerical cases is the normal distribution centered 
at x=15 with standard deviation =1. This distribution is almost 
entirely contained between 10 and 20.  

The probability of  the first digit being “1” is essentially 100%. 
To have any non-zero probability of  finding a “9” as first digit, the 
distribution must extend upward to 90 and/or downward below 
10. Thus, a dataset distribution must at least span one order of  
magnitude. An example of  this sort provides intuition but not a 
solution.

Smith (2007) provided a creative and convincing condition that 
a probability density function (PDF) f(x) must satisfy to be con-
sistent with a Benford distribution.10 The derivation of  first-digit 
probabilities pk with k=1,2,3,...,9 is relatively straightforward to 
express (if  not solve) for arbitrary f(x), as follows:

The limits of  integration for each n specify the range in x per-
taining to each digit k. Since the widths of  these infinite number 
of  “windows” are all equal under a logarithmic transformation, 
Smith (2007) applied the transformation Y=logX to work with the 
PDF g(y) in this transformed variable y. Thus, we can write pk as

in which the Wk (y) is an infinite sum of  “window functions” 
equal to one in the intervals n+log k < y < n+log(k+1), and equal 
to zero otherwise.

At this point, Smith (2007) adds a “scale variable” to measure 
how the pk change when all “x-space” data values are multiplied 
by a common factor. In the logarithmic “y-space,” this scaling is 
additive. This implied additional property of  scale invariance has 
a long history in the scrutiny of  Benford’s Law (see Raimi (1976)).  
Denoting the arbitrary logarithmic shift as ,

Taking the Fourier transform of  equation (4) gives the trans- 
formed                          as a product (by the 
convolution theorem) of  two individual transforms representing g 
and Wk. The transform for Wk gives an infinite sum of  Dirac delta 
functions at evenly spaced frequencies =2nπ for n(-∞,+∞). Still 
following Smith (2007), the criterion for satisfaction of  Benford’s 
Law is that the transformed g ̃* () be small or zero at all non-zero 
“window frequencies” 2nπ (n≠0). Considering the magnitude of  
relevant terms, we write this “small” condition somewhat subjec-
tively as

after transforming back to the “x-space.”
Inequality (5) is not the friendliest expression we’ve ever en-

countered, but it’s tractable in several cases of  interest. For ex-
ample, recall the PDF for the uniform distribution U(0,1):  f (x)=1 
when 0<x<1 and equals zero for all other values of  x. Plug-
ging this functional form into the left-hand side of  (5), we get 
|1±i2nπ|-1.  

This result clearly does not satisfy the inequality of  (5) and, 
therefore, the distribution U(0,1) fails our “Benford Test.” Had 
we employed U(0,10m) rather than U(0,1), we would have ob-
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We do not believe any study prior to Pimbley (2014) considered all of these example 

datasets to show Benford versus non-Benford behavior.9  But virtually all prior research 
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will not.  Two clear principles are that the dataset should span several orders of magnitude 

(e.g., Fewster (2009)) and that mixtures of datasets are more likely to produce the Benford 

Distribution for digits (e.g., Benford (1938), Raimi (1976), and Hill (1995)) than individual 

datasets. 

The empirical requirement to span several orders of magnitude is understandable by 

reference to example.  One of the Pimbley (2014) numerical cases is the normal distribution 

centered at 𝑥𝑥 = 15 with standard deviation 𝜎𝜎 = 1.  This distribution is almost entirely 

contained between 10 and 20.  The probability of the first digit being “1” is essentially 100%.  

To have any non-zero probability of finding a “9” as first digit, the distribution must extend 

upward to 90 and/or downward below 10.  Thus, a dataset distribution must at least span one 

order of magnitude.  An example of this sort provides intuition but not a solution. 

Smith (2007) provided a creative and convincing condition that a probability density 

function (PDF) 𝑓𝑓(𝑥𝑥) must satisfy to be consistent with a Benford Distribution.10  The 

derivation of first-digit probabilities 𝑝𝑝𝑘𝑘 with 𝑘𝑘 = 1, 2, 3, ⋯ , 9 is relatively straightforward to 

express (if not solve) for arbitrary 𝑓𝑓(𝑥𝑥): 

𝑝𝑝𝑘𝑘 =   ∑ ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑
(𝑘𝑘+1)10𝑛𝑛

𝑘𝑘∙10𝑛𝑛

+∞

𝑛𝑛=−∞
 

(2) 

The limits of integration for each n specify the range in x pertaining to each digit k.  Since 

the widths of these infinite number of “windows” are all equal under a logarithmic 

(2)

(3)

(4)

(5)
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transformation, Smith (2007) applied the transformation 𝑌𝑌 = log 𝑋𝑋 to work with the PDF 

𝑔𝑔(𝑦𝑦) in this transformed variable y.  Thus, we can write 𝑝𝑝𝑘𝑘 as 

𝑝𝑝𝑘𝑘  =   ∫ 𝑑𝑑𝑑𝑑 𝑔𝑔(𝑦𝑦) 𝑊𝑊𝑘𝑘(𝑦𝑦)
+∞

−∞

 

(3) 

in which the 𝑊𝑊𝑘𝑘(𝑦𝑦) is an infinite sum of “window functions” equal to one in the intervals 

𝑛𝑛 + log 𝑘𝑘 < 𝑦𝑦 < 𝑛𝑛 + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘 + 1) and equal to zero otherwise. 

At this point, Smith (2007) adds a “scale variable” to measure how the 𝑝𝑝𝑘𝑘 change 

when all “x-space” data values are multiplied by a common factor.  In the logarithmic “y-

space,” this scaling is additive.  This implied additional property of scale invariance has a 

long history in the scrutiny of Benford’s Law (see Raimi (1976)).  Denoting the arbitrary 

logarithmic shift as α, 

𝑝𝑝𝑘𝑘(𝛼𝛼)  =   ∫ 𝑑𝑑𝑑𝑑 𝑔𝑔(𝑦𝑦 − 𝛼𝛼) 𝑊𝑊𝑘𝑘(𝑦𝑦)
+∞

−∞

 

(4) 

Taking the Fourier transform of equation (4) gives the transformed 𝑝𝑝𝑘𝑘(𝜆𝜆) (=

∫ 𝑑𝑑𝑑𝑑 𝑝𝑝𝑘𝑘(𝛼𝛼)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖+∞
−∞ ) as a product (by the convolution theorem) of two individual transforms 

representing 𝑔𝑔 and 𝑊𝑊𝑘𝑘.  The transform for 𝑊𝑊𝑘𝑘 gives an infinite sum of Dirac delta functions 

at evenly spaced frequencies 𝜆𝜆 = 2𝑛𝑛𝜋𝜋 for 𝑛𝑛 ∈ (−∞, +∞).  Still following Smith (2007), the 

criterion for satisfaction of Benford’s Law is that the transformed 𝑔̃𝑔∗(𝜆𝜆) be small or zero at 

all non-zero “window frequencies” 2𝑛𝑛𝜋𝜋 (𝑛𝑛 ≠ 0).  Considering the magnitude of relevant 

terms, we write this “small” condition somewhat subjectively as 
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−∞

 

(3) 
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−∞
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|∫ 𝑑𝑑𝑑𝑑 𝑓𝑓(𝑥𝑥) 𝑒𝑒±𝑖𝑖2𝑛𝑛𝜋𝜋 log 𝑥𝑥
∞

0

|   <   0.1 

for all 𝑛𝑛 ≠ 0    (5) 

after transforming back to the “x-space.” 

Inequality (5) is not the friendliest expression we’ve ever encountered, but it’s 

tractable in several cases of interest.  For example, recall the PDF for the uniform distribution 

U(0,1):  𝑓𝑓(𝑥𝑥) = 1 when 0 < 𝑥𝑥 < 1 and equals zero for all other values of x.  Plugging this 

functional form into the left-hand side of (5), we get |1 ± 𝑖𝑖2𝑛𝑛𝜋𝜋|−1.  This result clearly does 

not satisfy the inequality of (5) and, therefore, the distribution U(0,1) fails our “Benford 

Test.”  Had we employed U(0, 10𝑚𝑚) rather than U(0,1), we would have obtained precisely 

the same outcome.  Failure of the Benford Test, of course, is what we expect given the direct 

calculation of 𝑝𝑝𝑘𝑘 for the uniform distribution in Pimbley (2014).11 

Errors in the Application of Benford’s Law to Fraud Detection 

The challenge in applying Benford’s Law to the detection of fraud is that legitimate, 

naturally occurring datasets often obey this law, but there is no guarantee that they must as 

we found in the last section.  In the Appendix we discuss the conditions required for an 

empirical dataset to satisfy Benford’s Law.  The best conclusion we or anybody find is that 

the dataset must have a range that extends over several orders of magnitude or possibly 

consist of a quasi-random mixture of smaller groups of data.12 

Financial analysts, therefore, are likely to err when they apply Benford’s Law to a 

dataset that does not span several orders of magnitude.  Consider the news article we cited 

earlier arguing that China’s gross domestic product (GDP) data violates Benford’s Law.13  

One’s immediate analysis should find that the (absolute value) annual percentage change in 
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tained precisely the same outcome.  Failure of  the Benford test, 
of  course, is what we expect, given the direct calculation of  pk for 
the uniform distribution in Pimbley (2014).11

Errors in the Application of  Benford’s Law to Fraud 
Detection
The challenge in applying Benford’s Law to the detection of  
fraud is that legitimate, naturally occurring datasets often obey 
this law, but there is no guarantee that they must as we found in 
the last section.  

In the appendix, we discuss the conditions required for an em-
pirical dataset to satisfy Benford’s Law. The best conclusion we 
or anybody find is that the dataset must have a range that extends 
over several orders of  magnitude or possibly consist of  a quasi-
random mixture of  smaller groups of  data.12

Financial analysts, therefore, are likely to err when they apply 
Benford’s Law to a dataset that does not span several orders of  
magnitude. Consider the news article we cited earlier arguing 
that China’s gross domestic product (GDP) data violates Ben-
ford’s Law.13 One’s immediate analysis should find that the (abso-
lute value) annual percentage change in GDP is not expected to 
span “several orders of  magnitude.” A maximum likely reported 
range is 0.1% to 20% or so. Though this range exceeds two or-
ders of  magnitude, it’s likely that the true effective range of  a 
sovereign’s GDP growth data would be confined.

Chart 3 (below) plots first-digits distributions for 50 years of  
GDP growth data for China and the United States relative to 
the Benford distribution.14 Neither country’s GDP growth com-
ports with the Benford distribution. It is far more likely that GDP 
growth is simply not a statistic likely to match the Benford condi-
tions than that the GDP data of  the two countries are fraudulent. 

Consider next the allegations that Benford’s Law implies fraud-
ulent LIBOR settings of  recent years.16 Chart 4 shows the first-
digit distributions for (one-month) LIBOR and Treasury bill (“T-
Bill”) for this interest rate data from early 2005 to late 2008.17

Neither LIBOR nor T-Bill data match the Benford distribu-
tion. Plotting the actual LIBOR and T-Bill values for this pe-
riod, it’s clear the numerical values do not span “several orders 
of  magnitude” (see Chart 5, below). Thus, it’s not surprising that 
Chart 4 shows no agreement with Benford.18

Ironically, a simple glance at Chart 5 might persuade a skepti-
cal analyst that LIBOR settings are contrived. Both the increas-
ing LIBOR period of  early 2005 to mid-2006 and the stable pe-
riod thereafter are “too smooth.” But we cannot cite Benford’s 
Law as the basis for this skepticism. Benford’s Law simply does 
not apply to datasets without broad variation.

We should note that both the China GDP study and the LI-
BOR study employed the Benford’s Law distribution for the second 
digit rather than the first digit. The authors evidently recognized 
the arguments we make here that Benford’s Law should not ap-
ply to the GDP and LIBOR datasets. Yet it is a different error 
to assume a Benford second-digit law will hold when the Benford 
first-digit law does not.  

As is clear in Newcomb (1881) and Hill (1995), the analyti-
cal foundation is the same for both first and second digits. That 
is, this is simply a mathematical syllogism. A Benford-compliant 
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GDP is not expected to span “several orders of magnitude.”  A maximum likely reported 

range is 0.1% to 20% or so.  Though this range exceeds two orders of magnitude, it’s likely 

that the true effective range of a sovereign’s GDP growth data would be confined. 

Chart 3 below plots first-digits distributions for fifty years of GDP growth data for 

China and the United States relative to the Benford Distribution.14  Neither country’s GDP 

growth comports with the Benford Distribution.  It is far more likely that GDP growth is 

simply not a statistic likely to match the Benford conditions than that the GDP data of the 

two countries are fraudulent.15 
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Neither LIBOR nor T-Bill data match the Benford Distribution.  Plotting the actual LIBOR 
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dataset (see the appendix) satisfies conditions such that we can 
derive the expected distributions of  first and second digits to get 
what the world calls “Benford’s Law” for the two distributions. 
There is no Benford variant that deliberately derives a second-
digit distribution, for example, under conditions for which it is 
clear the dataset does not conform to the first-digit Benford dis-
tribution. If  the first-digit law does not apply, then neither does 
the second.19

Best Practices in the Application of  Benford’s Law to 
Fraud Detection
The primary difficulty in applying Benford’s Law to the detec-
tion of  fraud is that many datasets do not naturally satisfy Ben-
ford’s Law. While some datasets do largely follow the Benford be-
havior, there is no “bright line” test to distinguish the two types.  

As a result, we identify three best practices in this analysis. 
First, review the candidate dataset to gain comfort that the nu-
merical values span “several orders of  magnitude.” Second, al-
ways include an additional, comparable dataset for the Benford 
review. Third, realize that a Benford result implying potential 
fraud is merely a flag for review and not a standalone indicator 
of  fraud.

In this article – in Table I and Charts 1, 3 and 4  – we have di-
rectly subjected more than one dataset to comparison to the Ben-
ford distribution of  first digits. When China’s GDP data diverged 
from Benford in Chart 3, for example, the analyst recognizes im-
mediately that similar U.S. data diverges as well.  The “Benford 
failure” of  China GDP data would only have been striking and 
worth pursuing if  the comparable dataset (U.S. GDP data in this 
case) had conformed closely to the Benford distribution.

Now consider a case in which the first-digit distribution of  a 
financial dataset does deviate significantly from the Benford dis-
tribution, the dataset numerical values are broadly varying, and 
comparable datasets do match Benford. This is the scenario in 
which Benford identifies potential fraud or other modification 
of  data.  

The Benford result cannot tell us which values are “wrong” 
or provide any diagnostic information beyond the distribution 
of  the first digits. Further, in a scientific or litigation sense, it is 
not possible to prove that a non-fraudulent dataset would follow a 
Benford distribution. Hence, the role of  the Benford test is sim-
ply to flag specific datasets for scrutiny rather than to allege data 
irregularity with failure of  the Benford review as one supporting 
statement.

Application of  Benford’s Law will be fruitful in some analyses. 
But financial risk managers and investigators should always ap-
ply generalized common sense, curiosity, skepticism, models and 
diverse automated procedures to the review of  data integrity.

Closing Thoughts
This article discussed the origin and meaning of  Benford’s Law 
and its application to the detection of  financial fraud. There are 
many datasets that do not obey Benford’s Law and there is no strict 
ability to determine which datasets naturally follow the Benford 
distribution and which do not.  

Consequently, analytical errors and misapplications occur. We 
identified past studies alleging fraud in sovereign economic data 
and LIBOR settings in this discussion. While it is entirely possible 
that fraud does exist in these contexts, Benford’s Law is often the 
wrong tool to detect such fraud.

Our new research in the mathematics underlying Benford’s 
Law includes the development of  new dataset examples, the 
analytical solutions for new probability density functions and the 
explanation of  the Benford distribution in terms of  a logarithmic 
transformation with “bin shifting.” These new results, combined 
with our review of  recent fraud allegations, produced our sug-
gested best practices for application of  Benford’s Law.

Application of  Benford’s Law will  
be fruitful in some analyses.  

But financial risk managers and 
investigators should always apply 

generalized common sense, curiosity, 
skepticism, models and diverse  

automated procedures to the review  
of  data integrity. 
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recent and current engagements include financial risk management advisory, 
underwriting for structured and other financial instruments, and litigation 
testimony and consultation.  In a prominent engagement from 2009 to 2010, 
Joe served as a lead investigator for the Examiner appointed by the Lehman 
bankruptcy court to resolve numerous issuers pertaining to history’s largest 
bankruptcy.
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APPENDIX:  Why do Many Datasets Obey  
Benford’s Law?
There exists a relatively simple explanation for the appearance 
of  the Benford distribution of  digits in sufficiently large and 
broad datasets. This explanation is entirely consistent with the 
Hill (1995) theorem regarding a limiting distribution (reminis-
cent of  the Central Limit Theorem). Earlier authors – New-
comb (1881), Benford (1938), Raimi (1976) and others – had 
also recognized the importance of  a mixture of  distributions. 
Let’s put this history aside momentarily and consider a different 
angle.

Reading the first digit of  each number in a large dataset is a 
sequence of  mathematical operations, which occur as follows: 

(i) take the base-ten logarithm;
(ii) shift this step (i) value by the unique integer value that pro-

duces a result in the (logarithm) range (0,1);
(iii) raise 10 to the power of  this step (ii) value (which is the 

inverse transformation to step (i)); and
(iv) read the integer part of  this step (iii) value, which will be a 

number in the range 1, 2, …, 9.
As an example, consider the number 4,371.7. While we can 

see immediately that the first digit is “4,” we must instead apply 
the mathematical sequence we just defined (or its equivalent) for 
a coded algorithm.  

The base-ten logarithm of  step (i) is 3.6407 (to five significant 
digits). To do the translation to the range (0,1) of  step (ii), we 
must subtract the integer “3” to get 0.6407.  Raising 10 to the 
power of  this value of  step (iii) gives 4.3717. Finally, reading the 
integer part of  4.3717 (the “int” operation in many computer 
languages) gives the result of  “4” for this step (iv).

Of  these four steps, it is the second “shifting step” that is criti-
cal to the Benford distribution. The shifting step takes the values 
in every integer range – such as (3,4), (11,12), (-6,-5), et cetera 
– and combines them all into the range (0,1). If  the ultimate, 
aggregated collection of  values shifted into (0,1) is uniform in 
this range, then the transformation of  step (iii) to the x-range 
x(1,10) will have a PDF f(x)~x-1. As we determined earlier, it is 
this specific PDF that produces the Benford digit distribution.

We consider it reasonable and plausible that the “shifting 
step” will have the tendency to produce uniform distributions 
within the logarithm range (0,1) when the logarithm of  the da-
taset has elements in many of  the integer “bins.” That is, when 
the original dataset spans several orders of  magnitude, then sev-
eral “bins” will be populated and the sum of  contents of  several 
“bins” may produce an approximation of  a uniform distribution 
in (0,1).  

These statements are mere conjecture. Yet we propose the 
ansatz that naturally occurring datasets will tend to produce 

uniform distributions under the transformation and shifting of  
steps (i) and (ii) above when the number of  “populated bins” is 
sufficiently large.

Given the ansatz, we then claim that the existence of  the Ben-
ford Distribution is due only to the choice of  transformation in 
step (i) (and its inverse in step (iii)). We get the Benford distribu-
tion (for many but not all datasets) when the step (i) transforma-
tion is the base-ten logarithm. We would find an entirely differ-
ent distribution of  first digits if  we chose a transformation other 
than the base-ten logarithm. 
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one order of  magnitude and satisfies Benford’s Law exactly, but we 
exclude such contrived cases.

13. “China Data Suspected Says 75-Year-Old Theory: Cutting Re-
search,” Bloomberg News, January 10, 2013.

14. We downloaded GDP data from the World Bank database.

15. Of  course, this finding is not a validation that the GDP data is not 
fraudulent. Benford’s Law simply does not apply.

16. See Abrantes-Metz et al (2012) and Abrantes-Metz et al (2013).

17. We downloaded LIBOR and Treasury bill data from the FRED 
database.

18. We also created the analogues of  Charts 4 and 5 for the LIBOR 
and T-Bill rates during the earlier and longer period 1986-2004. We 
find the same conclusions: both LIBOR and T-Bill values do not follow 
the Benford Distribution, and the ranges of  the values of  both data 
series are limited. We employed 3-month interest rate date rather than 
1-month data due to the absence of  4-week T-Bill data for a portion of  
this long period in our data download.

19. For clarity, let us note that an unusual distribution of  second dig-
its may well be indicative of  fraud. In the news report of  the GDP 
study, the authors note that the sovereign may boost numerical values 
higher to reach the next first digit. (As cited earlier, see “China Data 
Suspected Says 75-Year-Old Theory: Cutting Research,” Bloomberg 
News, January 10, 2013.) In that case, the second digit may be zero 
with higher frequency relative to un-adjusted numbers. Our point here 
is that the Benford Law for the second-digit distribution cannot be the 
logical comparison to detect this form of  data adjustment.

20. This prescription for “several orders of  magnitude” is admittedly 
vague. One might reason that a dataset with both positive and nega-
tive values will automatically satisfy the criterion, since the inclusion of  
zero within the range of  the data strictly implies an infinity of  orders 
of  magnitude. In practice, the “infinity” will be limited by the precision 
of  the data. The appendix discussion adds some clarification, but this 
prescription does remain vague nonetheless. Our recommendation is 
simply that the analyst should determine that the dataset spans at least 
one order of  magnitude. With just one order of  magnitude, though, 
there will not be a Benford distribution, unless the data essentially has 
a PDF ~x^(-1). As the appendix notes, the dataset will need the vague 
“several orders of  magnitude” to achieve near-Benford Distribution.

21. We believe that Theorem 3 in Hill (1995) likely suffices to prove 
these statements for the special case of  the base-ten logarithm transfor-
mation under Hill’s stated assumptions and restrictions.

FOOTNOTES

1. See Hill (1995). In this paper, Hill described his Theorem 3 as 
“help[ing] explain and predict the appearance of  the logarithmic dis-
tribution in significant digits of  tabulated data.”

2. See, for example, Abrantes-Metz et al (2012).

3. See, for example, “China Data Suspected Says 75-Year-Old Theory: 
Cutting Research,” Bloomberg News, January 10, 2013. Also, see “Don’t 
Lie to Me, Argentina,” The Economist, February 25, 2012.

4. It is reasonable to apply the Pearson Chi-Square Test to determine 
whether an empirical distribution of  first digits matches the Benford’s 
Law distribution. See, for example, Abrantes-Metz et al (2013). Alter-
natively, one could reason that a person or group perpetrating fraud 
would adjust or manufacture data with a nearly uniform distribution 
of  first digits. In this case, it could be reasonable for the analyst to 
test the hypothesis that the first-digit distribution is uniform. Failure 
to reject the uniform distribution hypothesis would then be the fraud 
indicator.

5. As Newcomb (1881) demonstrated, it is little additional work to de-
termine the distributions of  the trailing digits as well as the leading 
digit.

6. Raimi (1976), Hill (1995) and Fewster (2009) provide good citations 
to others’ empirical data collections. As Nigrini (1999) notes, there exist 
more than 150 academic papers on Benford’s Law, published from the 
1940’s through the end of  the twentieth century. An online record of  
more than 600 such papers exists at http://benfordonline.net/.

7. See the website http://www.fhfa.gov/.

8. Though “much closer to Benford,” as we say, Chart 2 does not truly 
show a good fit. The Q statistic of  the Pearson Chi-Square Test for 
the Chart 2 data is 71. Based on the chi-square distribution with eight 
degrees of  freedom, one rejects the null hypothesis (agreement with 
Benford) with 99% confidence for this Q value, since it is greater than 
20.09. See, for example, DeGroot(1989).

9. Formann (2010) provided numerical calculations for the U(0,1), pos-
itive exponential and log-normal distributions; he also provided some 
others we do not include.

10. For positive real values x, the expression f(x)dx with 0<x<∞ is the 
probability that x resides in the domain (x,x+dx). The PDF f(x) is non-
negative and must satisfy the normalization ∫0

∞
 f(x)dx=1.

11. Pimbley (2014) applies this Benford test of  inequality (5) to several 
more complex probability density functions, and finds agreement with 
all other known results.

12. It is possible to create a special case in which a dataset spans just 

http://www.bloomberg.com/news/print/2013-01-10/china-data-suspected-says-75-year-old-theory-cutting-research.html
http://benfordonline.net/
http://www.fhfa.gov/
http://www.bloomberg.com/news/print/2013-01-10/china-data-suspected-says-75-year-old-theory-cutting-research.html
http://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
http://research.stlouisfed.org/fred2/
http://www.bloomberg.com/news/print/2013-01-10/china-data-suspected-says-75-year-old-theory-cutting-research.html
http://www.economist.com/node/21548242



