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Abstract

Adaptive Smulated Annealing (ASA) is a C-language code tlvadd the best global fit of a nonlinear
cost-function wer a D-dimensional space. ASA hasep 100 OPTIONS to provide robust tuningen

mary classes of nonlinear stochastic systeffese may OPTIONS help ensure that ASA can be used
robustly across marclasses of systems.
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1. Introduction

Simulated annealing (SA) presents an optimization technique that can: (a) process cost functions
possessing quite arbitrary gfees of nonlinearities, discontinuities, and stochasticity; (b) process quite
arbitrary boundary conditions and constraints imposed on these cost functions; (c) be implemented quite
easily with the degree of coding quite minimal rekto other nonlinear optimization algorithms; (d)
statistically guarantee finding an optimal solution.

Adaptive Smulated Annealing (ASA) is a C-language code tlvadd the best global fit of a nonlinear
cost-function ger a D-dimensional space. The basic algorithm was originally publishedess Fst
Simulated Reannealing (VFSR) in 1989 (Ingb#989), after tvo years of application on combat
simulations. The code (Ingber 1993a) can be used at no dwar and downloaded from
http://lwww.ingber.com/#ASA with mirrors at:

http://alumni.caltech.edu/"ingber

http://asa-caltech.sourceforge.net

https://code.google.com/p/adagtisimulated-annealing .

ASA has @er 100 OPTIONS to provide robust tuningep mary classes of nonlinear stochastic systems.
The current number as of this chapter is 152. These @BRTIONS help ensure that ASA can be used
robustly across marclasses of systems.

In the context of this book, it will be seen in the discussions that thEENTHing” OPTIONS are
among the most important for controlling AdaptiSmulated Annealing. Fuzzy ASA algorithms in
particular offer ne& ways of controlling hev these QENCHing OPTIONS may be applied across gnan
classes of problems.

1.1. LICENSE and Contributions

The code originally was issued under a BSD-type Licefi$gés was changed to a form consistent with
the less restricte New BSD License

http://en.wikipedia.org/wiki/BSD_License

beginning with Version 28.1 in February 2011.

| havehad seeral queries as to whi did not follov a GPL license.| felt and still feel, similar to man
other people who makmde &ailable at no chaye to others, that the GPL license is just too cumbersome
and onerous.| have made my codewailable at no charge to anyone oryatompary, subject to ery
simple terms. If some user contributions do not quitinfo the code per se, | Y& put or referenced
their contributions into the asa_contrib.txt or ASA-NOTHE&sf | do not think this has stymied people
from contributing to the code.

For example, in http://wwwingber.com/asa_contrikt there are references tovee@l major contrilitions
made by other people, e.g., Matlab interface, RLAB iatarf AMPL interface, and Haskell Intack,
The ASA_PARALLEL OPTIONS were contributed as a teaforef led, as Principal Westigator of a
1994 National Science Foundatioar®llelizing ASA and RTHINT Project (RPP). TheEditor of this
book has contributed FUZZY_ASA OPTIONS (@ira, 2001; OWeira, H.R. Petraglia & Petraglia,
2007; Olveira, A. Petraglia & Petraglia, 2009). Another user referenced in
http://lwww.ingber.com/asa_contrikt contributed explicit code used in ASA to help parallelize
optimization of chip design.

The current list of CONTRIBTORS in the ASA-CHANGES file that comes with code numbersAb.
these contributions ka resulted in may versions of the code. The current list of VERSIONIIES in
the ASA-CHANGES file that comes with code numbers 586 since 188@w ASA papers showed to
the code could be useful for maprojects (Ingberl993b; Ingberl996a; Atiyaet al, 2003).

1.2. Organization of Chapter

The next tvo sections gie a #&ort introduction to simulated annealing and to ASA. The first section
discusses the theoretical foundations of ASA, and the second section discusses the practical
implementation of ASA. The following sectionvgs an werview and seeral approaches that consider

why tuning is necessary in gpsampling algorithm lile SA, GA, etc. These issuesVeabeen addressed
according to user feedback, i.e., what helps ynasers in may disciplines with a broad range of
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experience to noxperience. Thisvork follows theoretical deslopment of the algorithm that can be
found in other ASA papers (Inghd989; Ingber1993b; Ingber1996a).

Other sections that foNwo illustrate the use of OPTIONS arevded Adaptve OPTIONS and Multiple
Systems. Théast section is the conclusion.

Most of this chapter hasganized information that has collected on the use of the code since 1987, and is
contained in some form in multipleilds, e.g., ASA-README, ASA-NOTES, asa_conttib,
asa_examples.txt, etc.

2. Theoretical Foundations of Adaptve Smulated Annealing (ASA)

The unique aspect of simulated annealing (SA) is its property of (wegddieity, permitting such code

to statistically and reasonably sample a parameter spate. that for very large systems, ergodicity is
not an entirely rigorous concept wheacéd with the real task of its computation (Ma, 1985). In this
chapter “ergodic” is used in a very weak sense, as it is not proposed, theoretically or prabtitaly
states of the system are actually to be visited.

2.1. Shade®f simulated annealing

Even “standard” SA is not without its critics. Somegaeve features of SA are that it can: (A) be quite
time-consuming to find an optimal fit, especially when using the “standard” Boltzmann technique; (B) be
difficult to fine tune to specific problems, relatito some other fitting techniques; (C) $aif from “over-

hype” and faddish misuse, leading to misinterpretation of results; (D) losgdtdi@property by misuse,

e.g., by transforming SA into a method of “simulated quenching” (SQ) for which there is no statistical
guarantee of finding an optimal solutiohere also is a large and growing domain of SA-lik
technigues, which do not theoretically predict general statistical optimilitywhich are etremely
powerful for certain classes of problems.

There are manexamples gien in published papers addressing robust problems acrosg dismiplines.

There are manreviews of simulated annealing, comparisons among simulated annealing algorithms, and
between simulated annealing and other algorithms (Jolebsbn987; Gelfand, 1987;an Laarhwen &

Aarts, 1987; Collingt al, 1988; Ingber1993b; Ingber1996a).

It is important to compare the basic theoretic constraints of true SA with actual practice on a range of
problems spanning mgrdisciplines. Thismay help to address what may yet lpexted in terms of

better necessary conditions on SA to méka nore eficient algorithm, as marbelieve that the present
sufficiengy conditions are werly restrictive.

2.2. Critics of SA

The primary criticism is that it is too slo This is partially addressed here by summarizing some work in
appropriately adapting SQ to maproblems. Anothecriticism is that it is “@erkill” for many of the
problems on which it is usedlhis is partially addressed here by pointing to much work demonstrating
that it is not insignificant that mgmesearchers are using SA/SQ because of the ease in which constraints
and complg cost functions can easily be approached and coded.

There is another class of criticisms that the algorithm is too broadly based on physical intuition and is too
short on mathematical rigor (Charnes & Wolfe, 1989). In some particular bitter and scathing critiques
authors tak dfense at the lack of reference to other prior work (Pincus, 1970), the use of “ys@tabh
non-mathematical ideas of melting, cooling, and freezing” reference to the physical process of annealing
as used to popularize SA (Kirkpatriekal, 1983), and thg give their own calculations to demonstrate

that SA can be a very poor algorithm to search for global optima in some instances.

That there are undoubtedly other references that should be more regularly referenced is & isHjecti

that has much merit, with respect to SA as well as to other research projects. The other criticisms may be
considered by some to be more subjectiut they are likely no more extreme than the use of SQ toesolv

for global optima under the proteatiumbrella of SA.
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2.3. “Standard” simulated annealing (SA)

The Metropolis Monte Carlo integration algorithm (Metropddisal, 1953) was generalized by the
Kirkpatrick algorithm to include a temperature schedule fficieht searching (Kirkpatrickt al, 1983).
A sufficieng proof was then shown to put an lower bound on that schedulél@gt), wheret is an
artificial time measure of the annealing schedule (Geman & Geman, 198djever, independent credit
usually goes to seral other authors for independentlywdeping the algorithm that is morecognized as
simulated annealing (Pincus, 1970; Geri982).

2.4. Boltzmannannealing (BA)

Credit for the if'st simulated annealing is generally recognized as a Monte Carlo importance-sampling
technique for doing large-dimensional path gnéds arising in statistical physics problems (Metropetlis

al, 1953). Thismethod was generalized to fitting non-eer st-functions arising in a variety of
problems, e.g.,ifiding the optimal wiring for a densely wired computer chip (Kirkpatgchl, 1983).

The choices of probability disttitions described in this section are generally specified as Boltzmann
annealing (BA) (Szu & Hartle 1987).

The method of simulated annealing consists of three functional relationships.
1. g(x): Probability density of state-space@fparameters ={x';i = 1,D}.
2. h(AE): Probability for acceptance ofweost-function gien the just previous value.
3. T(K): schedule of “annealing” the “temperatur€”in annealing-time stepk, i.e., of
changing the volatility or fluctuations of one or both of the previous probability densities.

The acceptance probability is based on the chances of obtainimgstatewith “enegy” E,.4 relatve o
a previous state with “energyg,,

exXp(=Ey.1/T)
eXp(—Ey/T) + &Xp(-E(/T)
N
"~ 1+exp(AE/T)

h(AE) =

= exp(-AE/T) , 1)

where AE represents the “energy” thfence between the present and previous values of thgiemer
(considered here as cost functions) appropriate to thsigath problem, i.e.AE = Ey,; — Ex. This
essentially is the Boltzmann distribution contributing to the statistical mechanical partition function of the
system (Binder & Stauffed985).

This can be described by considering: a set of states labeleq dach with enagy e(x); a set of
probability distributionsgp(x); and the energy distribution per stdi{@(x)), giving an aggrgee energyk,

gpummu»:E. )
The principle of maximizing the entrgpS,
S=—§puwmmmm@n, @)

whereX represents a reference state, using Lagrange multipliers (Mathevadk&rV#970) to constrain
the energy towrage valu€l, leads to the most likely Gibbs distributi@tx),

G = 5 ep(-HOIT), @

in terms of the normalizing partition functiod, and the HamiltonianH operator as the “engy”
function,

Z= %exp(—H(x)/T) . (5)
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For such distributions of states and acceptance probabilitiseedieby functions such as(AE), the
equilibrium principle of detailed balance holds. l.e., the distributions of states b&{ogg, and after
G(X«11), applying the acceptance critefigAE) = h(E,,; — Ey) are the same:

G(xi)h(AE(X)) = G(Xks1) - ©6)

This is suficient to establish that all states of the system can be sampled, in. theargve, the
annealing schedule interrupts equilibriunerg time the temperature is changed, and so, at best, this must
be done carefully and gradually.

An important aspect of the SA algorithm is to pick the ranges of the parameters to be selarched.
practice, computation of continuous systems requires some discretization, so without loss of much
generality for applications described here, the space will be assumed to be discrEtieesl.are
additional constraints that are required when dealing with generating and cost functions gitd inte
vaues. Mawy practitioners use n@&l techniques to narm the range as the search progresdew.
example, based on functional forms ded for mary physical systems belonging to the class of
Gaussian-Marivian systems, one could choose an algorithngfor

g(AX) = (21T) P2 exp[-Ax?/(2T)] , (7)

whereAx = X — Xq is the deviation o from xy (usually taken to be the just-pieusly chosen point),
proportional to a “momentum” variable, and wha@rés a measure of the fluctuations of the Boltzmann
distribution g in the D-dimensionalx-space. Gien g(AX), it has been pr@n (Geman & Geman, 1984)
that it sufices to obtain a global minimum B{x) if T is selected to be not faster than

_To
with Ty “large enough.”

A heuristic demonstration shows that this equationTfavill suffice to gve a dobal minimum ofE(x)
(Szu & Hartlg, 1987). Inorder to statistically assure, i.e., requiring snarals, that ag point in x-space
can be sampled infinitely often in annealing-time (1OT), itfiset to pree that the products of
probabilities of not generating a statéOT for all annealing-times successio k, yield zero,

M (2-90=0. ©)
k=Ko

This is equiaent to
2 Oc=o00. (10)
k:ko

The problem then reduces to findifi¢k) to satisfy this equation.

For BA, if T(Kk) is slected to be the Boltzmann criteria efyahen the generating disttibon g above
gives

Ms

k

11
x

9= epEink =S 1k=oo. (11)
K=k,

o k=ko

Although there are sound ysical principles underlying the choices of the Boltzmann criteriareabo
(Metropoliset al, 1953), it was noted that this method of finding the global minimurr-Bpace was not
limited to physics examples requiribgna fide “temperatures” and “engies” Rather this methodology
can be readily extended to yamproblem for which a reasonable probability dendi§Ax) can be
formulated (Kirkpatricket al, 1983).

2.5. Simulatedguenching (SQ)

Marny researchers a found it very attractie © take advantage of the ease of coding and implementing
SA, utilizing its ability to handle quite compleost functions and constraintslowever, the long time of
execution of standard Boltzmann-type SA has gndmes drven these projects to utilize a temperature
schedule too fast to satisfy thefstieEng/ conditions required to establish a true (weak) ergodic sedch.
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logarithmic temperature schedule is consistent with the Boltzmann algorithm, e.g., the temperature
schedule is taken to be

12)

whereT is the “temperaturé k is the “time” index of annealing, and, is some starting inde Thiscan
be written for largeé as

In koAk

AT =-Tg—— , k>1
% k(Ink)2 ’

In ko

Terr = Tk~ To oy - 13
However, some researchers using the Boltzmann algorithm use an exponential schedule, e.g.,

Tk+1=CTk,O<C<1
AT
— =(c-1DAk ,k>1
Tk
T = Toexp((c - 1)k) , (14)

with expedieng the only reason gen. While perhaps someday some less stringent necessary conditions
may be deeloped for the Boltzmann algorithm, this is notanthe state of &hirs. Thequestion arises,
what is the alue of this clear misuse of the claim to use SA to helpestese problems/systems?
Adaptive smulated annealing (ASA) (Inghet989; Ingber 1993a), in fact does justify arxgonential
annealing schedule, but only if a particular distribution is used for the generating function.

In mary cases it is clear that the researchers alreadyv kopgte a bit about their system, and the
corvenience of the SA algorithm, together with the need for some global seardiocal optima, maés

a grong practical case for the use of SQ. In some of these cases, the reseavehezsrhmore diligent

with regard to their numerical SQ work, andueammpared the éitieng/ of SQ to ®me other methods

they havetried. Of course, the point must be made that whilésSAie strength lies in its ability to
statistically deler a true global optimum, there are no theoretical reasons for assuming it will be more
efficient than ay other algorithm that also can find this global optimum.

2.6. Fast annealing (FA)

Although there are manvariants and imprements made on the “standard” Boltzmann algorithm
described abge, mary textbooks fnish just about at this point without going into more detail about other
algorithms that depart from thix@icit algorithm (\an Laarhwen & Aarts, 1987).Specifically it was
noted that the Caugtdistribution has some definite advantagesrdahe Boltzmann form (Szu & Harte
1987). TheCaucly distribution,

Ax) = T
9(Ax) = (AX2 + T2)(D+1)/2

(15)

has a “&tter” tail than the Gaussian form of the Boltzmann distribution, permitting easier access to test
local minima in the search for the desired global minimum.

It is instructve © note the similar corresponding heuristic demonstration, that the Cag(@x)
statistically finds a global minimum. If the Boltzmamns replaced by

To

T(k) = « (16)
then here
00 TO 00 1
=9 S -x. 17
kZng AxDl kZO ik 7
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Note that the “normalization” of has introduced the annealing-time irde giving some insights into
how to construct other annealing distiitions. Themethod of R is thus seen to wa an annealing
schedule exponentially faster than the method Af Bhis method has been tested in ariety of
problems (Szu & Hartie 1987).

2.7. Adaptive sSmulated annealing (ASA)

In a variety of physical problems weeaa D-dimensional parametapace. Diferent parameters ha
different finite ranges, iXed by plysical considerations, and different annealing-time-dependent
sensitvities, measured by the dediives of the cost-function at local minimaBA and FA have
distributions that sample infinite ranges, and there is no provision for considering differences in each
parametedimension; e.g., different sensities might require different annealing scheduléghis
prompted the deslopment of a ne& probability distribution to accommodate these desired features
(Ingber 1989), leading to aariant of SA that in fact justifies an exponential temperature annealing
schedule. Thesare among seral considerations thatgerise to Adaptre Smulated Annealing (ASA).

Full details are\ailable by obtaining the publiclyailable source code (Inghei993a).

ASA considers a parametef in dimension generated at annealing-tirkavith the range

a OIA, B, (18)
calculated with the random variabte

Ty = @+ Y (B = A)

y O-1, 1]. (19)
Define the generating function
1 I
Its cumulatve pobablllty dlstnbutlon is
ybooyP b
Gr(y) = _[dy'l -dy'® gr(y) =[1 GH(Y)
A A i=1
L sgn §) In(L+1y'|m)
Gr(y) = 2 @+1m) 1)
y'is generated from @ from the uniform distribution
u' U[0, 1],
y =sgn 0l = )L+ 1)/ 1= 22)
It is straightforward to calculate that for an annealing schedulg for
Ti(K) = To exp(-cik™™) | (23)
a gobal minima statistically can be obtained. l.e
1
= Z00. 24
ng Zo[ﬂzwc. = co0 (24)

It seems senS|bIe to choose contnara;, such that
Tr =To exp(-m;) when ky =expn;,

=m; exp(-n;/D) , (25)
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wherem; andn; can be considered “free” parameters to help tune ASA for specific problems.

It has praen fruitful to use the same type of annealing schedule for the acceptance fimasiarsed for
the generating functiog, but with the number of acceptance points, instead of the number of generated
points, used to determine tkdor the acceptance temperature.

New parametersrk,, are generated from old parametefsrom

oy = ai+Y (B — A) (26)
constrained by
o LA B (27)

l.e.,y"’s are generated until a set Bfare obtained satisfying these constraints.

2.7.1. Reannealing

Whenever doing a multi-dimensional search in the course of a real-world nonlinear physical problem,
inevitably one must deal with different changing sensitivities of ahén the search.At any given
annealing-time, it seems sensible to attempt to “stretch out” the raagetaich the relatiely insensitve
parameters are being searched, nedat the ranges of the more sengtiarameters.

This can be by periodically rescaling the annealing-timessentially reannealing, e.gyeey hundred or
SO acceptancevents, in terms of the sensiiies s; calculated at the most current minimum value of the
cost functionL,

s =0dL/da’ . (28)
In terms of the lagests, = syaw ASA can reanneal by using a rescaling for elgcbf each parameter
dimension,

ki - K,
T'ik = Tik(Smax'Si) »
K'i = (In(Tio/Tix)/ci)® . (29)

T, is set to unity to begin the search, which is ample to span each parameter dimension.

The acceptance temperature is similarly rescaledaddition, since the initial acceptance temperature is
set equal to a trial value &f, this is typically very large relate 1o the global minimum. Therefore, when
this rescaling is performed, the initial acceptance temperature is reset to the most current minimum of
and the annealing-time associated with this temperature is setet@ gew temperature equal to the
lowest value of the cost-function encountered to annealing-date.

Also generated are the “standardiidéons” of the theoretical forms, calculated a8Lj/(da')?] ™2, for
each parameter;. This gives an atimate of the “noise” that accompanieats fio stochastic data or
functions. Atthe end of the run, the off-diagonal elements of theddance matrix” are calculated for
all parameters. This werse curvature of the theoretical cost function canvige a quantitatie
assessment of the relaisensitivity of parameters to statistical errors in fits to stochastic systems.

A few aher twists can be added, and such searches undoubtedly weillbegrictly by rote. Physical
systems are so different, some experience with each one is requirgdiop detruly efi cient algorithm.

2.7.2. Selptimization

Another feature of ASA is its ability to recurdly self optimize its own Program Options, e.g., the
parameters described afepfor a given system. Anapplication is described belo

2.7.3. Quenching

Another adaptie feature of ASA is its ability to perform quenchinghis is applied by noting that the
temperature schedule al@oan be redefined as
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T.(k) = Toi exp(-ci k')

¢ =m exp(-nQ/D), 30)
in terms of the “quenching facto@;. The abee poof fails if Q; > 1as

D
STI1KAP =5 1k <0 . (31)
k k

This simple calculation shows Wwdhe “curse of dimensionality” arises, and alseegia mssible way of

living with this disease. In ASA, the influence of large dimensions becomes clearly focused on the
exponential of the power df being 1D, as he annealing required to properly sample the space becomes
prohibitively slow. So, if we cannot commit resources to properly sample the spgodieally then for

some systems perhaps thatrigest procedure would be to turn on quenching, whe@gloan become on

the order of the size of number of dimensions.

The scale of the power of 2 temperature schedule used for the acceptance function can be altered in a
similar fashion. Havever, this does not &ct the annealing proof of ASA, and so this may be used
without damaging the (weak) ergodicity property.

2.8. VFSRand ASA

The abee defines this method of adapé smulated annealing (ASA), previously called verstf
simulated reannealing (VFSR) (Ingb&®889) only named such to contrast it the previous methodsof f
annealing (FA) (Szu & Hartje 1987). Theannealing schedules for the temperatufesdecrease
exponentially in annealing-time, i.e., T; = Tio exp(-c;k*’P). Of course, the diter the tail of the
generating function, the smaller the ratio of acceptance to generated points in tHewfever, in
practice, when properly tuned, it is found that forvemgigenerating function, this ratio is approximately
constant as the fit finds a global minimum. Therefore, forgelgarameter space, thé @kng of the fit

is determined by the annealing schedule of the generating function.

A major difference between ASA andARlgorithms is that the godic sampling takes place in arn+ 1
dimensional space, i.e., in termsrpparameters and the cost functidn.ASA the exponential annealing
schedules permit resources to be spent adhpidbn reannealing and on pacing the v@sgence in all
dimensions, ensuring ample global searching in the first phases of search and ample gefig&ranin

the final phases. The acceptance functiéhix) chosen is the usual Boltzmann form satisfying detailed
balance, and the acceptance-temperature reannealing pacesvtngecme of the cost function to permit
ergodic searching in the-parameter space considered as the independent variables of the dependent cost
function.

3. PracticalImplementation of ASA

Details of the ASA algorithm are best obtained from the code itself and from published gdpesare
three parts to its basic structure.

3.1. GeneratingProbability Density Function

In a D-dimensional parameter space with paramepeisaving ranges A\, B;], about thek'th last saed
point (e.g., a local optima)p,, a rew point is generated using a distribution idefl by the product of
distributions for each parameteg'(y'; T;) in terms of random ariablesy' -1, 1], where p},; =
P + Y (B — A), and “temperaturesT;,

o 1

"(y;T) = . :

IV = S+ Ty InL+ 1My

The OPTIONS USER_GENERANG_FUNCTION permits using an alternagito this ASA distrilution
function.

(32)
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3.2. AcceptancdProbability Density Function

The cost functionsC(py:1) — C(pyx), are compared using a uniform random gener&taif0, 1), in a
“Boltzmann” test: If

exp[~(C(pr+1) ~ C(P)) Teosl > U (33)

whereT., iS the “temperature” used for this test, then the peint is accepted as theweaved point
for the na&t iteration. Otherwise, the last & point is retained. The OPTIONS
USER_ACCEPT_ASYMP_EXP or USER_ACCEPT_THRESHOLD permit using alteremtio this
Boltzmann distribution function.

3.3. Reannealinglemperature Shedule
The annealing schedule for each parameter temper@ifdrem a starting temperatufig, is

Ti(ki) = To exp(-c k™) . (34)

The annealing schedule for the cost temperaturevidageed similarly to the parameter temperatures.
However, the inde for reannealing the cost functiok,,s, is determined by the number of accepted
points, instead of the number of generated points as used for the parameters. This choice was made
because the Boltzmann acceptance criteria uses an exponentialitiistribat is not as fat-tailed as the

ASA distribution used for the parameters. This schedule can be modified usirgl S@PTIONS. In

particular the Pre-Compile OPTIONS USER_COST_SCHEDULE permits quite arbitrary functional
modifications for this annealing schedule, and the Pre-Compile OPTIONS

As determined by the Program Options selected, the parameter “temperatures” may be periodically
adaptvely reannealed, or increased relatio their previous values, using their relatifirst dervatives
with respect to the cost function, to guide the search “fairly” among the parameters.

As determined by the Program Options selected, the reannealing of the cost temperature resets the scale
of the annealing of the cost acceptance criteria as

TeostKeosd) = To cost eXp(_Ccostkgcl)lg . (35)

The nev Tg ot IS taken to be the minimum of the current initial cost temperature and the maximum of the
absolute values of the best and last cost functions and tHenedide. Thaew k. is calculated taking

Teost @S the maximum of the current value and the absolute value of theenlife between the last and

best saed minima of the cost function, constrained not to exceed the current initial cost temperature.
This procedure essentially resets the scale of the annealing of the cost temperature within the scale of the
current best or last gad minimum.

This default algorithm for reannealing the cost temperature, taking advantage of the ASA importance
sampling that relates most spéamfly to the parameter temperatures, while often is qufteieift for

some systems, may lead to problems in dwelling too long in local minima for other systesmgh

case, the user may also experiment with alter@a#gorithms effected using the Reanneal_Cost
OPTIONS. for example, ASA pnddes an alternate alculation for the cost temperature, when
Reanneal_Cost < -1 or > 1, that periodically calculates the initial and current cost temperatures or just the
initial cost temperature, resp., as a deviatieer @ sample of cost functions.

These reannealing algorithms can be changed adgptiby the user eg., by using
USER_REANNEAL_COST and USER_REANNEAL_PARAMETERS.

3.4. QUENCH_PARAMETERS=FALSE

This OPTIONS permits you to alter the basic algorithm to perform sadejuenching,i.e., faster
temperature cooling than permitted by the ASA algoritiirhis can be very useful, e.g., to quench the
system down to someg®n of interest, and then to perform proper annealing for the rest of the run.
However, note that once you decide to quench rather than to truly anneal, there no longestasistical
guarantee of finding a global optimum.

Once you decide you can quench, there areymare alternatie dgorithms you might wish to choose
for your system, e.g., creating a hybrid global-local adaptienching search algorithm, e.g., using
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USER_REANNEAL_RPRRAMETERS. Notethat just using the quenching OPTIONS\pded with ASA
can be quite powerful, as demonstrated in the http://www.ingber.com/asa_examples.txt file.

Setting QJENCH_RARAMETERS to TRJE can be extremely useful in very large parameter dimensions;
see the ASA-NOTES file under the section on Quenching.

Many parameters can be o@miently read in from the asa_ojfef E.g.,User_Quench_Cost_Scale and
User_Quench_d&am_Scale all are read in if OPTIONS_ FILRATA, QUENCH_COST and
QUENCH_PARAMETERS are TRUE.

3.5. QUENCH_COST=FALSE

If QUENCH_COST is set to TRUE, the scale of the power/&f temperature schedule used for the
acceptance function can be altered in a similashibn to that described algo when
QUENCH_FARAMETERS is set to TRE. However, note that this OPTIONS does not affect the
annealing proof of ASA, and so this may be used without damaging the statigjiodicity of the
algorithm. Ewen greater functional changes can be made using the Pre-Compile OPTIONS:
USER_COST_SCHEDULE

USER_ACCEPT_ASYMP_EXP

USER_ACCEPT_THRESHOLD

USER_ACCEPTANCE_TEST

If QUENCH_COSTETRUE User_Quench_Cost_Scale must be defined.

This can hae the effect of User_Quench_Param_Scale appear cqrasahe effects on the temperatures
from the temperature scales and the temperaturexdandman hae qposing dects. Havever, these
defaults are perhaps most intuéiwhen the User_Quenchafm_Scale are on the order of the parameter
dimension.

When

QUENCH_PARAMETERSTRUE

QUENCH_PARAMETERS_SCALEFALSE

only the temperature inges ae affected by User_Quenchar@m_Scale. Theame effect could be
managed by raising Temperature_Anneal_Scale to the appropriaty, goit this may not be as
corvenient.

3.6. QUENCH_COST_SCALE=TRUE

When QJENCH_COST is TRUE, if QUENCH_COST_SCALE is TRUE, then the temperature scale and
the temperature inde are afected by User_Quench_Cost Scale. This came hthe effect of
User_Quench_Cost_Scale appear conti@syhe effects on the temperature from the temperature scale
and the temperature indean hae qposing diects. Havever, these defaults are perhaps most intaiti
when User_Quench_Cost_Scale is on the order of the parameter dimension.

When QUENCH_COST is TRUE, if QUENCH_COST_SCALE ALSE, only the temperature indés
affected by User_Quench_Cost ScaleThe same effect could be managed by raising
Temperature_Anneal_Scale to the appropriate pdweithis may not be as cesnient.

4. Tuning Guidelines

4.1. TheNecessity for Tuning

| am dten asked hw | can help someone tune their system, ang skad me their cost function or a list
of the ASA OPTIONS the are using. Most often, the best help | canvidle is based on mywmn
experience that nonlinear systems typically are non-typikalpractice, that means that trying fgure
out the nature of the cost function under sampling in order to tune ASA by tiksimilarly tune a hard
problem under ansampling algorithm), by examining just the cost functionglikwill not be as
productive & generating more intermediate printout, e.g., setting ASA_PRINT_MORE téETRNd
looking at this output as a “grdox” of insight into your optimization problenlLarger files with more
information is provided by setting ASA_PIPE_FILE toUR Treat the output of ASA as a simulation



Lester Ingber -12 - ASA OPTIONS

in the ASA parameter space, which usually is quite a different space thaaridiglev space of your
system.

For example, you should be able to see where amd yaur solution might be getting stuck in a local
minima for a very long time, or where the lastesbdate is still fluctuating across a wide portion of your

state space. These observations should suggestyba might try speeding up or sWing dowvn
annealing/quenching of the parameter space and/or tightening or loosening the acceptance criteria at
different stages by modifying the OPTIONS, e.g., starting with the OPTIONS that can be easily adjusted
using the asa_opt file.

The ASA-NOTES file that comes with the ASA code provides some guidelines for tuning that may
provide some insights, especially the section Some Tuning Guidelikregspecially important guide is

to examine the output of ASA at w&ral stages of sampling, to see if changes in parameter and
temperatures are reasonably correlated to changes in the cost function. Examples of useful OPTIONS
and code that often @ quick changes in tuning in some problems are in tlie f
http://lwww.ingber.com/asaxamples.txt under WWWSome of the reprintiles of published papers in

the ingber.com provide othexamples in harder systems, and perhaps you might find some examples of
harder systems using ASA similar to yowvroin http://wwwingbercom/asa_papers.html under WWWwW

This is the best way to add some Art to the Science of annealing.

While the upside of using ASA is that it has m&PTIONS aailable for tuning, detied in large part

from feedback from manusers oer mary years, making it extremely robust across yngystems, the
downside is that the learning cengan be steep especially if the default settings or simple tweaking in
asa_opt do not erk very well for your particular system, and you then must turn to using more ASA
OPTIONS. Mostof these OPTIONS Wa wseful guides in the ASA_TEMPLATES in asa_usr.c, as well

as being documented here. If you really get stuck, you may consider working with someone else who
already has climbed this learning ceiand whose experience might offer quick help.

Tuning is an essential aspect ofyaampling algorithm if it is to be applied to madasses of systems.
It just doesrt make €nse to compare sampling algorithms unless you are prepared to properly tune each
algorithm to each system being optimized or sampled.

4.2. Constructionof the Code

| sometimes get a query like:
“l used your ASA code some years ago with good results and want to thank you for
providing it.
However even back then i noticed that it was in urgent need of a gocact@fation, as
described in http://en.wikipedia.org/wiki/Refactor .

| encourage you to gover your code and split it up in more readable chunks. teday’
compilers are pretty good at optimizing the result so it will not impact your programs
performance.
Again, thank you very much for your excellent program.”

My reply is typically along these lines:
“When | first wrote the code it a&s in broken into multiple files which were easy tcetedre
of. | made the decision, which feedback has shown to be a good one,gdnmakde look
less formidable to marusers by agggting the code into just aviefiles. Thecode is used
widely across man disciplines, but often bygert people or groups without computer
science skills, and often tuning can be accomplished by tweaking the pardlaeted fnot
having to deal with the .c files very much.

Even if | choose to keep just anfdiles, | just do not hae the time to rerrite the code into
better code similar to k| write code nw, 20 years later (I first wrote the VFSR code in
1987). Havever, for me at least, the structure of the code makes it very easy to maintain, and
| been able to be respowsito any major changes that might come up. The ASA-CHANGES
files reflects this.
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| have led teams of xremely bright and competent math-physics and comysgience
people in seeral disciplines wer the years, and | ka dso seen he code that may be
written in exkemplary languages, whether CydaC++, python, etc., nonetheless can be rotten
to maintain if it is not written in a “functional” manner that better reflects the underlying
algebra or pysical process, e.g., as most people would program in an algebraic langeage lik
Macsyma/Maxima, Maple, etc. In mawof these projects, we had no problem using ASA.
This does not excuse a lot of the clumsy writing in ASA, but it does reflect on theedide
between code that is just well written but not flexible and robust to maintain.

By now, ASA represents a lot of feedback from thousands of ugersajor strength of the
code is that it has weller 100 tuning OPTIONS, albeit in marcase only a f& are usually
required. Thisis the nature of sampling algorithms, and Véhdroken out all such code-
specifc parameters into a topve meta-language that is easy for an end-user to handle.
Other \ery good sampling algorithms do nowvgisich robust tuning, and too often do not
work on some complesystems for some users just for this reason. This also has added a lot
of weight to the code,ub since most of these ASA OPTIONS are chosen at pre-compile
time, this does not affect thexeeutables in typical usel havehad at least half a dozen
exceptional coders start to rewrite the code into another language, e.g., Ca+#\ddab,

etc., but thg gaveup when faced with integrating all the ASA OPTIONS. (There is no way |
could influence them to start or stop such projeckghink all these OPTIONS are indeed
necessary for such a generic code.

| very much appreciate your writing to me.”

The OPTIONS are not just aay of compiling in only code that may be needed for systems so it can run
efficiently,. The OPTIONS provide a clear meta-language for users to understard bdjust and tune

the code for their own needs. Indeed, there areraeOPTIONS that pndde hooks for users to insert
their own generating and acceptance distidm functions. This leads to a transpasen€ the code to
end-users, at the expense of muddling the code for object-oriented coders.

4.3. Motivations for Tuning Methodology

Nonlinear systems are typically not typical, and so it i§aift if not impossible to ge guidelines for

ASA defaults similar to what you might expect for “canned” quasi-linear systémsvetried to prepare

the ASA-README to gie some guidelines, and if all else fails you coukperiment a bit using a
logical approach with the SELF_OPTIMIZE OPTIONSstill advise some experimentation that might
yield a bit of insight about a particular systei. mary case, the best approach is probably a “blend”:
Make a giess or two, therine-tune the guesses with SELF_OPTIMIZE in some rather finer range of the
parameter(s). Theeason this is slo is because ASA does what yoxpect it to do: It truly samples the
space. WhelSELF_OPTIMIZE is turned on, for each call of the topeléd SA parameters selected, the
“inner” shell of your systens’ parameters are optimized, and this is performed for an optimization of the
“outer” top-level shell of ASA parameters. If youirfd that indeed this is a necessary amatuable
approach to your problem, then one possible short cut might be to turn on Quenching for the outer shell.

The ASA proof of statistical cemrgence to a global optimal pointvgs afficient, not necessary
conditions. Thisstill is a pretty strong statement since one can only importance-sample a large space in a
finite time. Note that some spacesul easily require CPU times much greater than the lifetime of the
universe to sample all points. If you “tuckedvay” a “pathological” singular optimal point in an
otherwise “smooth” space, indeed ASA mightvédnap run “forever” If the problem isr’ quite so
pathological, you might ha to dow down the annealing, to permit ASA to spend more time at each scale

to investigate the finer scales; then, you wouldrdndo explore some other OPTIONS. This could be
required if your problem looks different at different scales, for then you can often get trapped in local
optima, and thus ASA could fail just asyasther “greedy” quasi-Newton algorithm.

Because of its exponential annealing schedule, ASA doesrgerat he end stages of runs quite well, so
if you start with your setup akin to this stage, you will search fara bong time (possibly beyond your

machines precision to generate temperatures) to get Qut.if you start with too broad a search, you will
spin your wheels at first before settling down to explore multiple local optima.
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ASA has demonstrated matimes that it is more &tient and gets the global point better than other
importance-sampling techniques, but this still can require “tuning” some ASA OPTI@NS, as
mentioned in the ASA-README, a quasi-M@®n algorithm should be much mordieifent than ASA for

a parabolic system.

4.4. SomeRough But Useful Guidelines

Here are some crude guidelines that typicallehiazen useful to tune mamsystems. Atleast ASA has a
formal proof of comergence to the global minimum of your systetdowever, no sampling proof is
general enough for all systems to guarantee this widl pdce within your lifetime. This is where the
true power of ASA comes into play as the codevioles mag tuning OPTIONS, most which can be
applied adaptiely at ary time in the run, to ge you tools to tune your system to provide reasonably
efficient optimizations.Depending on your system, this may be easy or hard, possibly taxiagesn
intuitive and analytic capabilities.

In general, respect the optimization process as a simulation in parameter space. The behavior of a system
in this space typically is quite different from the system defined by other variables in the system.

(a) Three Stages of Optimization It is useful to think of the optimization proceswviag taee main
stages: initial, middle and endh the initial stage you want to be sure that ASA is jumping around a lot,
visiting all regions of the parameter space within the bounds yee &t Inthe end stage you want to be

sure that the cost function is in the region of the global minimum, and that the cost function as well as the
parameter values are being honed to asyms@mificant figures as required. The middle stage typically

can require the most tuning, to be sure it smoothlggdke optimization from the initial to the end stage,
permitting plenty of excursions to regularly sample alteveatigons/scales of the parameter space.

(b) Tuning Information Keep ASA PRINT_MORE set to TRUE during the tuning procesatherg
information in asa_out whewer a rew acepted state is encountered.

If you have ASA_PIPE and/or ASA_PIPE_FILE set to TRUE, additional information (in velatiarger
files) is gathered especially for purposes of graph@yiformation during the run. Graphical aids can
be indispensable for gaining some intuition about your system.

If ASA_SAVE_OPT is set to TRUE then youugathe ability to restart runs from intermediate accepted
states, without having to reproduce a lot of the original run each time you wish toelgdaptinge some
OPTIONS after a gen number of accepted or generated states.

(c) Parameter Temperatures As discussedvealio the section Brameter-€mperature Scales, the
temperature schedule is determinedrhy, c;, ki, Q;, and D. The default is to ha dl these the same for
each parameter temperature.

Note that the sensiity of the default parameter distributions to the parameter temperatures is
logarithmic. Thereforemiddle stage temperatures of 10E-6 or 10E-7 still permit very latggrsons

from the last local minima to visit megenerated stateslypically (of course depending on your system),
values of 10E-10 are appropriate for the end stage of optimization.

It is advisable to start by changing tt)eto get a reasonable temperature schedule throughout théf run.
it becomes dffcult to do this across the 3 stages, work with@h&UENCH_FARAMETERS as these
provide different sensitivities at different stageSenerally it is convenient to use the; to tune the
middle stage, then add i@, modifications for the end stage. As long as the €Qnx 1, then the
sampling proof is intactHowever, once you are sure of the region of the global minima, it can be
cornvenient to turn on actual quenching wherein Qe 1.

Turning on Reanneal_Parameters can leey vuseful for some systems to adegyi adjust the
temperatures to different scales of the system.

(d) Cost Temperature Note that the sensitivity of the default cost distrilbto the cost temperatures is
exponential.

In general, you would li&to see the cost temperatures throughout the run be on the scale ofdhendi
between the best and last generated states, where the last generated state in the run is at the last loce
minima from which ne states are xplored. Thereforepay careful attention to thesalues. Notehat
the last generated state is set to the most recently accepted state, and if the recently accepted state also i
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the current best state then the last generated state will be so reported. Therefore, this sensitivity to the last
generated state works best during parts of the run where the code is sampling alternate multiple minima.

The default is to baseline the cost temperature scale to theltderameter temperature scale, using
Cost_Rrrameter_Scale_Ratio (aeft = 1). It is advisable to first tune your parameter temperature
schedule using @mperature_Ratio_Scale, then to tune your cost temperature schedule using
Cost_Rrrameter_Scale_Ratio. iff becomes dffcult to do this across the 3 stagemrkvwith the Q
QUENCH_COST as this provides a different sewgijtiat a different stageGenerally it is corvenient to

use thec scale via Cost_Parameter_Scale_Ratio to tune the middle stage, therQauddifications for

the end stage.

Turning on Reanneal_Cost can be very useful for some systems tovelgagudjust the temperature to
different scales of the system.

(e) Large Parameter Dimensions As the number of parameter dimeBsioogeases, you may see that
your temperatures are changing more than you wouddwith respect tdD. The default is to keep the
parameter exponents of thkesummed to 1 with each exponent set 0.1/

The efective sale of the default exponential decay of the temperatures is proportiool%*B, so
smallerD gives gnaller decay rates for the sarmedues ofc, k andQ. Modifications to this behavior of
the parameter and cost temperatures are easily made by alter@pgai@Q, resp., a€);, Q andD enter
the code a®;/D andQ/D, resp.

The scalesc are set ax = - log (Temperature_Ratio_Scale) exp (-logrfiperature_Anneal Scale)
(Q/D). Thereforethe sensitivity oft to D can be controlled by modifying Temperature_Anneal_Scale or

Q.

4.5. Quenching

If you hare a hige parameter space, and if a “smart” quasi-local optimization cod# work for you,

then ay true global optimization code will be faced with the “curse of dimensionality”. l.e., global
optimization algorithms must sample the entire space, eadan dficient code like ASA must do this.

As mentioned in the ASA-README, there are some features to explore that might work for your system.

SQ techniques lix genetic algorithms (GA) obviously are important and are crucial to solvingy man
systems in time periods much shorter than might be obtained by standald 88A, if annealing is
forsalen, and Quenching turned omiding the proof of sampling, remarkable increases of speed can be
obtained, apparently sometimasr greater than other “greedy” algorithms.

In large D space, this can be especially useful if the parameters argdglatidependent of each other
by noting that the guments of the exponential temperature schedules are proportickf¥PtoThen,
you might do better thinking of changil@/D in fractional mees, instead of only small deviations @f
from 1.

For example, in http://wwwingber.com/asa92_sagdf, along with 5 GA test problems from the UCSD
GA archie, another harder problem (the ASA_TEST problem that comes with the ASA code) was used.
As reported in http://mwvingbercom/asa93_sapvt.pdf, Quenching was applied to this harder problem.
The resulting SQ codeas shown to speed up the search by as much as a factor of 86 (without e
attempting to see if this could be increased further with more extreme quenching). In the
asa_gamples.txt file, een more dramatic difciencies were obtained. This is a simple change of one
number in the code, turning it into anant of SQ, and is not egalent to tuning ay of the other mayn

ASA options, e.g., lie SELF_OPTIMIZE, USER_COST_SCHEDULE, etdNote that SQ will not
sufiice for all systems; seral users of ASA reported that Quenching did imad the global optimal point

that was otherwise be found using the correct SA algorithm.

As mentioned in the ASA-README, note that you also can use the Quenching OPTIONS quite
differently, to dow down the annealing process by setting User_Querafar® _Scale to values less than

1. Thiscan be useful in problems where the global optimal point is at a quiteedif scale from other

local optima, masking its presence. This likely might be most usefulvioditoensional problems where

the CPU time incurred by slower annealing might not be a major consideration.
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Once you decide you can quench, there areymare alternatie dgorithms you might wish to choose
for your system, e.g., creating a hybrid global-local adaptienching search algorithm, e.g., using
USER_REANNEAL_RPRRAMETERS. Notethat just using the quenching OPTIONSwpded with ASA
can be quite powerful, as demonstrated in the asa_examples.txt file.

4.6. Optionsfor L arge Spaces

For very lage parameter-space dimensions, the following guide is useful if you desire to speed up the
search:

Pre-Compile Options:

add USER_REANNEAL_PARAMETERS RUE

add USER_COST_SCHEDUIEHRUE

add ASA_PRINT_INTERMEBFALSE

SMALL_FLOAT may hare o be decreased

set QUENCH_PARAMETERS to TRUE [gaes SA sampling iQ > 1]

set QUENCH_COST to TRUE

Perhaps set QUENCH_PARAMETERS_SCALE and QUENCH_COST_SCALE to FALSE

Program Options:

set Curvature_0 to TRUE

decrease Temperature_Ratio_Scale
increase Cost_Parameter_Scale_Ratio
increase Maximum_Cost_Repeat
decrease Acceptance_Frequency_Modulus
decrease Generated_Frequency_Modulus

If the parameter space dimensioD, is huge, e.g., 256x25®%5536, then the exponential of the
generating or acceptance ind® the YD power hardly changesver even afew million cycles. Tue
annealing in such huge spaces can become preobipitslov as the temperatures will hardly be
diminished oer these gcles. This‘curse of dimensionality” will &ce ag agorithm seeking toxplore

an unknown space. Then, the&JENCH_FRARAMETERS and QUENCH_COST OPTIONS should be
tried.

However, note that slowing den annealing sometimes can speed up the searcioldjirg spending too
much time in some local optimal regions.

4.7. Shuntingto Local Codes

| havealways maintained in e-mails and in VFSR/ASA publications since 1987, that SA techniques are
best suited for approaching complgystems for which little or no information ivalable. Whenthe

range of a global optima is disawed, indeed it may be best to then turn to another algorithimave

done this myself in seral papers, shuntingver to a quasi-local search, the Brden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, to “polish”fahe last 2 or 3 decimals of precision, after | had determined just
what final level of precision was acceptable. In the problems where | shunted to BFGS, | simply used
something the value of Cost_Precision or Limit_Acceptances (which were pretty well correlated in some
problems) to decide when to shunen (I got terrible results if | shuntedver too quickly) However,

that was before the days | added OPTIONS e likUSER_COST_SCHEDULE and
USER_ACCEPTANCE_TESTand if and when | redo some of those calculations | will fisgtegiment
adaptvely using these to account for different behaviors of my systems at different scales.

When FITLOC is set to TRUE, three maddd simple subroutines, not requiring destives of st
functions, become aegt o perform a local fit after leaving asa ().

4.8. Judging Importance-Sampling

If the cost function is plotted simply as a function of decreasing temperature(s), often the parameter space
does appear to be continually sampled in such a plot, but the plot is misle@tatgs, there really is
importance sampling taking place, and the proof of this is to do a log-log plot of the cost fuacsion v

the number of generated states. Then you can see that if the temperature schedule is not enforced you
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will have a mor search, if quenching is turned on you will get a faster search (though you may miss the
global minimum), etc.You can test these effects using quenching andefse quenching” (sleing

down the annealing); it likely would be helpful to set:

QUENCH_COST and QUENCH_PARAMETERS to TRUE

QUENCH_PARAMETERS_SCALE and QUENCH_COST_SCALE to FALSE

perhaps NO_PARAM_TEMP_TEST and NO_COST_TEMP_TEST to TRUE

The point is that the ASA distribution i€y fat-tailed, and the fefctive widths of the parameters being
searched change very slowly with decreasing parameter temperatures; thef timttsabthe parameter
temperatures may decrease exponentially and stij titeesampling proof. Thus, th&perience is that
ASA finds global minimum when other sampling techniques fail, and it typically finds the global
minimum faster than other sampling techniques as well.

Furthermore, the independence of cost and parameter temperatures permits additional tuning of ASA in
mary difficult problems. While the decreasing parameter temperatures change the way the parameter
states are generated, the decreasing cost temperature changes the way the generated states are accept
The sensitiity to the acceptance criteria to the cost temperature schedule can be very importagt in man
systems. Arexamination of a f& runs using ASA_PRINT_MORE set to TRUE canead premature

holding onto local minimum or not enough holding time, etc., requiring tuning of some ASA OPTIONS.

4.9. UserReferences

Collaborators and | va published some papers invegal disciplines that hee wsed or expanded the use
of ASA (Ingber 1990; Ingber & Swrder 1991; Ingber Fujio & Wehner 1991; Ingber 1991; Ingber
1992; Ingber1993b; Ingber1993c; Ingber1996¢; Ingber1996b; Ingber1996a; Ingber1997; Bavman

& Ingber 1997; Ingber1998a; Ingber1998b; Ingber2001a; Ingber & Mondescu, 2001; Ingh2001b;
Ingber 2001c; Ingber2001d; Ingber & Mondescu, 2003; Atiyh al, 2003; Ingber 2005; Ingber 2006;
Ingbet 2007a; Ingher2007b; Ingber2008a; Ingber2008b; Ingber2009; Ingber2010a; Ingber2010b).

The file http://wwwingbercom/asa_papers.html contains a short list of users whe &at me their
papers using ASAMany other users also kia had to list ASA as a tool since it was used in the patents.
That file also gies URLs to search patent filings for the use of ASA. The reswsaldts use in man
disciplines and companies.

5. Adaptive OPTIONS

5.1. VFSR

The first VFSR code (Ingbefl989) added adapt gotions by reannealing, i.e., increasing rather than
decreasing, the temperature schedules for parameters and the cost function, to enable easier passag
through multi-dimensional spaces en route to finding global optima. ¥@fadesuch OPTIONS, most

effectve o mary systems are dmperature_Ratio_Scale, Cost Parameter_Scale Ratio, and
Temperature_Anneal_Scale.

5.2. ASA_FUZzY

The Editor of this book contributed ASA_FUZZY code to ASA, to help guide QUENCHing OPTIONS to
make ASA more dicient for sgeral kinds of problems (Qleira, 2001; ONeira, H.R. Petraglia &
Petraglia, 2007; Oleira, A.Petraglia & Petraglia, 2009)0ften, ASA_FUZZY turns on QUENCHing >

1, violating the proof of ASA.For mary systems, this speeding up of the sampling process can be a
welcome diciengy, but in some systems global minima may be missed. Ameagsearch program is to
make ASA_FUZZY more adapie © decreasing as well as increasing QUENCHing.

6. Multiple Systems

Many times hard problems present themselves as multiple systems to be optimized or sampled.
Experience shes that all criteria are notwablys best considered by lumping them all into one cost

function, e/en with some typical methods as Pareto sampling, but rather good judgment should be applied
to multiple stages of pre-processing and post-processing when performing such optimization or sampling.
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6.1. SELF_OPTIMIZE

The SELF_OPTIMIZE OPTIONS was an early OPTIONS to use ASA itself to optimize parameters used
for a particular problem using ASAA few ASA_TEMPLATES that come with the codevgiexamples of
using SELF_OPTIMIZE.

SELF_OPTIMIZE is not particularly useful as the CPU time is the cross product of theslogitenising
SELF_OPTIMIZE and the inneshell optimizing the selected problem for each generated state from
SELF_OPTIMIZE.

SELF_OPTIMIZE is a recurge dgorithm, which may be useful as a guide to sample or optimize other
recursve g/stems. Ateast, it is demonstrated that ASA is ready for such systems.

6.2. ASA_FARALLEL

For mary hard problems, most CPU resources are spent on the cost function calculations, not the
overhead of running ASA per se. This knowledge plus the nature ofathmilied ASA distrilntion,

which typically gies rise to a high generated state to acceptance state matéyjsg to the opportunity to

insert hooks for parallel code within ASA, essentially runningyrgamerated states in parallel, and then
checking for the best acceptance state.

The concept as originally tested on a Connection Machine circa 1990, then in the 1994 National Science
Foundation Parallelizing ASA andAPHINT Project (PAPP) mentioned alm It is knowvn to hae been
used in seeral industrial settings, including chip design.

6.3. TRDExample of Multiple Systems

The file http://wwwingber.com/asaxamples.txt gies veaal kinds of use for ASA. An interesting
example is in a trading code, Trading in Risk Dimensions (TRD) (IngX&t0b). TRD provides
examples of both recurs and sequential use of ASA.

There are threeVels of optimization/sampling: The section

@@OPTIONAL_DATA_PTR and MULTI_MIN

in http://mwwwingber.com/asaxamples.txt gies cetails and explicit code used in some pagsions to
demonstrate h this is set up in ASA.

A parameterized trading-rule outer-shell uses the global optimization coded8ptulated Annealing
(ASA) to fit parameters of the trading system, e.g., trading rules and trading indicators, to historical data.
This is necessary during a Training phase with in-sample data.

A simple fitting algorithm, sometimes requiring ASA, is used for an ishetl fit of incoming mar&t
data to real-world probability distuttions. Thecost function is typically a simple parameterized
exponential distribution representing observed fat-tailed distribution.

A risk-management middle-shellva#ops portfolio level distributions of copula transformed mutiriate
distributions (with constituent maets possessing typically different marginal distributions in returns
space), generated by Monte Carlo samplings. This The copula code essentially transferemd cbfl-

world marlet distributions into a common muitriate Gaussian space where it makes sense to calculate
correlations. Therare irverse transformations to come back to individual distidns as needed for
some trading indicators. ASA is used to importance-sample weightings (contract sizes) of these markets.

Together with the outer-shell optimization, both the middle-shell portfolio sampling and theslvatier
market distribution fits are processed in Training of in-sample data, Testing of out-of-sample data, e.g.,
using valk-forward scripts, and during Real-Time trading of incoming miadata. This means that
during Training, there are recursiuses of ASA: Br example, for each generated state of trading-rule
and trading-indicator parameters in the outer-shell cost function, ASA is used for both middle-shell and
inner-shell optimizations and sampling.

During Testing and Real-Time, after theaihing stage has determined a set of best (or sets of good
parameters to be post-processed using different technical or fundamental criteriafreat diSA cost
function, e.g., during walk forwards), the ousrell parameters the middle-shell and inner-shell cost
functions are run sequentially using their cost functions.
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ASA can process these multiple cost functions, using a tweb-léunction to set the
OPTIONAL_DATA_PTR OPTIONS to information required to set up eaeH b optimization.

ASA gives ASA_TEMPLATESs in asa_usr.c to process all these OPTIONS:

If the Pre-Compile Option OPTION._DATA_PTR is set to TRE, an additional Program Option
pointer Asa_Data_Ptbecomes wilable to define an arrapf type OPTIONAL_PTR_TYPE defined by

the userwhich can be used to pass arbitrary arrays or structures to the user module from the asa module.
This information communicates with the asa module, and memory must be allocated for it in the user
module.

For example, struct BTA might contain an array data[10] to be used in the cost_function.
Asa_Data_Dim_Ptr might kra a alue 2. Set OPTIONAL_PTR_TYPE toADA. Then, data[3] in struct
Asa_Data_Ptr[1] could be set and accessed as Asa_Data_Ptr[1].data[3] in the cost function.

For example, your main program that calls asa_mainguldr have devdoped a struct Selecteye

*SelectedPointerand you can call asa_main (SelectedPojntey. In asa_usr_asa.h, you wouldvia
OPTIONAL_PTR_TYPE set to Selectegie. Inasa_ust (and asa_usr) you would deelop asa_main
(OPTIONAL_PTR_TYPE *OptionalPointer...) and, close to the appropriate ASA TEMHIE you

would set Asa_Data_Ptr to OptionalPoint&e the ASA_TEMPLATE in asa_usr.c.

| realize this may sound complex, but with the example provided in
http://lwww.ingber.com/asa_examples.txt
all this work is fairly easy to implement.

7. Conclusion

A sampling of theorypractical considerations, and experience gained fronmyrmsers @er mary years,
has produced the current ASA code. If you are Widken a simple entry into the code, e.g., just using
the asa_opt file to control some OPTIONS, may ety wvell for you. However, to keep the ASA code
robust for mag classes of hard problems, there are ynW&®TIONS a&ailable to properly tune your
system to provide a valuable optimization or sampling algorithm.
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