Instructions

1. look at the car port examples on this web site
2. sketch down on paper the plan you want to have
3. divide the plan up into the different use areas you want
4. mark on the measurements that you want each area to have
5. add up the total lengths and widths and mark these on the ouside walls
6. mark on where you want to have the 150×150 square posts
(Note: Posts can be spaced at maximum centres of 3 m without walls between, and 6 m with walls between)
7. mark on the walls that you wish to be infilled (solid) and divisions to be open (dotted)
8. Give each side a letter and mark on the approximate North point so that you can refer to these easily

Example 1
Side 'C'

9. also mark on where the beams will go.

You will need these on all outside walls and between outside posts, as dotted lines show
10. Floor Area - TIP: to automatically convert measurements, enter "feet to metres" in Google Search

Multiply the outside length of side " A " by the outside length of side " B "

$$
9 \mathrm{~m} \times 5.7 \mathrm{~m}=51.3 \text { square metres }
$$

In this example there are:-

- 12 posts
- 6 beams
- 17.4 meters of infilled walls
- 17.7 metres of open sides
- 51.3 sq m of ground floor area

Example Plan 2

For something a bit more complicated we'll add lean-to stores for garden equipment and logs onto side " c "
11. Repeat the process 1 to 9 above ADDING a " Room in the Roof " over the main ground floor area

Note that the floor sits on joists connected to the ground floor beams, and there are no posts or beams in this area.
Also note that there are no walls to sides " A " \& " C " since these are the slopes of the roof. Only the Gable End walls "B" \& "D" have walls
You might now have something like the drawing below

11. Floor Area - TIP: to automatically convert measurements, enter "feet to metres" in Google Search

Multiply the length of each rectangle by its width, e.g. in the example above this will be:-
Ground Floor
Equipment and log store $2 \mathrm{~m} \times 6 \mathrm{~m}=\mathbf{1 2 . 0}$ square metres (12m2)
Studio/offfice/workshop $3 \mathrm{~m} \times 5.7 \mathrm{~m}=17.1$ square meteres (17.1 m 2) Car 1 \& Car 2-5,7m $\times 6 m=34.2$ square metres (34.2 m 2)

A ground floor area total of $\mathbf{6 3 . 3}$ square metres (63.3 m 2)

First Floor (room in roof)

Over the Office \& Garage only, $9 \mathrm{~m} \times 5.7 \mathrm{~m}=51.3$ square metres (51.3 m 2)
(The floor joists and floor deck will cover the whole area)
In this example there are:-

- 15 posts
- 8 beams
- 28.4 meters of infilled walls
- 16.7 metres of open sides
- 11.4 metres of gable ends
63.3 sq metres of ground floor area
- 51.3 sq metres of first floow " Room in the Roof " area

Now for the Elevations

12. first draw what you want your building to look like from the front
13. you already know the spacing of the 150×150 posts from your plan
14. decide how high you want it to be to the underneath side of the beams (e.g. for vehicle access)
15. since the beams are 220 mm deep, you can now specify the post hieght
16. mark on the height from floor of building to top of beam (this will be the same level as the top of any joists)
17. decide what type of roof your want - low, to stay under any 4 m planning requirement, or high for room in roof
18. also decide if you want the roof to overhang the walls, or be flush (usually 150 mm overhang)

19. if you have different height requirements, say for equipment and log stores, show these on the side elevation 20. mark the height you want at the bottom of the 220 mm beam along the lowest side.
20. this will give you the lowest post height required on this side

Elevation 'B'
22. this shows that
a. there is no beam between the low 'lean-to' on elevation ' C ' and the main post and beam
b. The posts along elevation ' C ' will be only 1.5 m high underneath the 220 mm deep beam

We can now see that there will be:-

- 3 posts 1.5 m high along elevation ' C '
- 12 posts 2.52 m high
- 1 beam $6 m$ long
- 2 beams 9 m long
- 1 beam 7.7m long
- 3 beam 5.7m long
- 1 beam $2 m$ long

To make date entry simple, add all these up to make 1 long beam of 50.8 m

- 28.4 meters of infilled walls
- 16.7 metres of open sides
- 2 main gable ends 5.7 m wide $=$ total width 11.4 m
-2 half gable ends to lean-to section each $2 m$ wide $=$ total width $4 m$
- 63.3 square metres ground floor area
- 51.3 square meteres first floor room in roof area (if required)

