ICONIC: Phase 1/2 Trial of ICOS Agonist JTX-2011 Alone and in Combination with Nivolumab (nivo)

Olivia Sears¹, Howard A. Burris III², Margaret K. Callahan³, Anthony W. Tolcher⁴, Shivaani Kummar⁵, Gerald Steven Falchook⁶, Russell Kent Pachynski⁷, Scott S. Tykodi⁸, Geoffrey Thomas Gibney⁹, Tanguy Y. Seiwert¹⁰, Justin F. Gainor¹¹, Patricia LoRusso¹², Manny Lazaro¹, Myles Clancy¹, Ella Li¹, Baoyu Ding¹, Elizabeth G. Trehu¹, Timothy Anthony Yap¹³

¹Jounce Therapeutics, Cambridge, MA; ²Sarah Cannon Research Institute, Nashville, TN; ³Memorial Sloan Kettering Cancer Center, New York, NY; ⁴START, San Antonio, TX; ⁵Stanford University School of Medicine, Stanford, CA; ⁶Sarah Cannon Research Institute at HealthONE, Denver, CO; ⁷Washington University School of Medicine in St. Louis, St. Louis, MO; 8University of Washington and Fred Hutchinson Cancer Center, Seattle, WA; 9Georgetown Lombardi Comprehensive Cancer Center, Houston, TX

Abstract

Background: JTX-2011 is an agonist monoclonal antibody that targets ICOS, Inducible CO-Stimulator of T cells. A dual mechanism of action is intended to induce proliferation and stimulation of CD4 T effector cells and selectively deplete intratumoral T regulatory cells. JTX-2011 has shown preclinical anti-tumor effects both as a single agent and in combination with anti-PD-1 antibodies, with single agent efficacy correlated with % of ICOS expressing T cells in tumors. An ICOS IHC assay was used to identify human tumor types with the highest levels of ICOS expressing T cells.

Methods: ICONIC is a first-in-human Phase 1/2, open label, adaptive clinical study of JTX-2011 alone or in combination with a fixed dose of nivo in subjects with advanced solid tumors. It is designed to assess safety and tolerability, determine the maximal tolerated dose (MTD) and recommended Phase 2 dose, and evaluate preliminary efficacy.

- Part A: 3+3 dose escalation of JTX-2011, with Safety/PK/PD expansion cohorts at 2 or more dose levels.
- Part B: 3+3 dose escalation of JTX-2011 in combination with nivo, with Safety/PK/PD expansion cohorts at two or more
- Part C: ≥3 JTX-2011 cohorts in tumors expected to have higher levels of ICOS expressing T cells (non small cell lung cancer [NSCLC], head and neck squamous cell cancer [HNSCC], and others), with ICOS enrichment by IHC.
- Part D: ≥ 5 JTX-2011 + nivo cohorts in tumors expected to have higher levels of ICOS expressing T cells (NSCLC, HNSCC, triple negative breast cancer (TNBC), melanoma, gastric, and others), with ICOS enrichment by IHC.
- Confirmed cancer that is recurrent, metastatic, or persistent after at least one line of therapy and with no further standard treatment options
- Part A&B: available and consent to provide archival tumor tissue
- Part C&D: available and consent to provide archival tumor tissue, have a lesion that can be biopsied at acceptable clinical risk (as judged by the investigator), and agree to a fresh biopsy

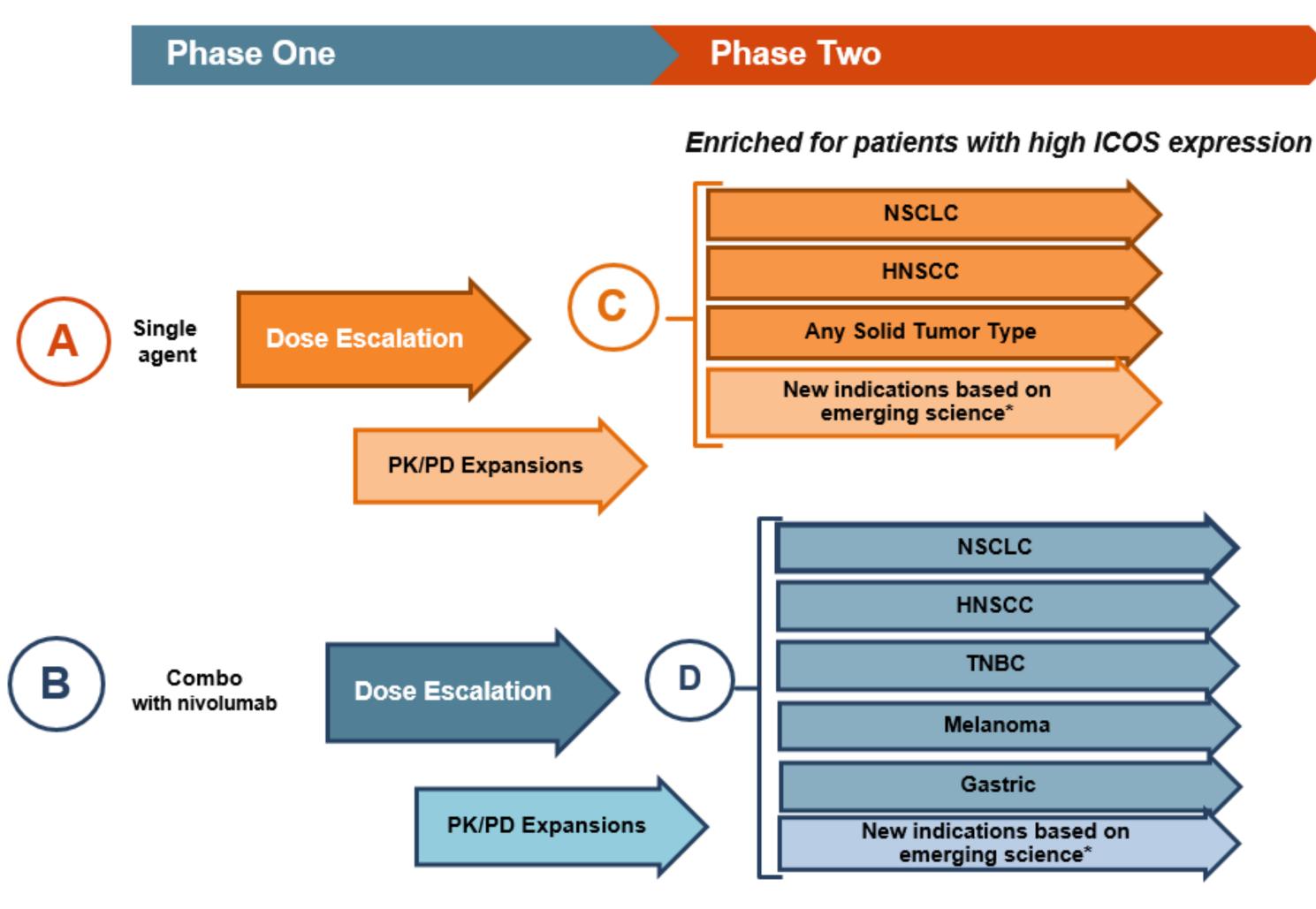
Major Exclusion Criteria:

Major Inclusion Criteria:

- Refused standard therapy
- History of intolerance, hypersensitivity, or treatment discontinuation due to severe immune adverse events on prior
- Immunodeficiency
- Active or prior history of autoimmune disease
- Symptomatic or uncontrolled brain metastases, leptomeningeal disease, or spinal cord compression **Endpoints**

Safety and tolerability

- Pharmacokinetics, target engagement, and other Pharmacodynamic markers
- Efficacy by RECIST 1.1 and irRC; Overall response rate (ORR), Duration of Response, Disease Control Rate, Progression Free Survival (PFS), Landmark PFS, Overall Survival (OS)


ICOS Agonist JTX-2011 Background

- JTX-2011 is a humanized IgG1κ agonist monoclonal antibody that specifically binds to the Inducible CO-Stimulator of T cells (ICOS) and is designed to generate an anti-tumor immune response through stimulation of T effector cells and selective reduction of T regulatory cells within tumors.
- JTX-2011 has shown preclinical anti-tumor effects both as a single agent and in combination with anti-PD-1 antibodies.
- In preclinical models, single agent efficacy correlated with percent of ICOS expressing T cells in
- JTX-2011 is being developed in patients with advanced solid tumors who have no standard therapeutic options.
- An ICOS IHC assay was used to identify human tumor types with the highest levels of ICOS expressing T cells.

Dual mechanism of action

ICONIC: Adaptive, Biomarker-Driven, Clinical Study

* Additional indications, including niche indications, identified through our Translational Science Platform

Inclusion and Exclusion Criteria

General Inclusion Criteria:

- Willing and able to participate and comply with all trial requirements and provide informed consent
- Have confirmed cancer that is recurrent, metastatic or persistent after at least one line of therapy and with no further standard treatment options
- Male or Female > 18 years of age
- ECOG Performance Status: 0-1
- Predicted life expectancy of > 3 months
- Archival tumor tissue required for all subjects

Part A/B Dose Escalation Criteria:

- Any advanced, non-hematological, extracranial malignancy with disease progression after treatment with all available therapies known to confer clinical benefit
- May have evaluable but non-measurable disease

Parts A and B PK/PD Expansion Criteria:

 Must have a tumor lesion that can be biopsied at acceptable risk and must agree to both a fresh biopsy between screening and C1D1 and a second biopsy after completion of two cycles of study treatment

Part C and D Criteria:

• All subjects must have a tumor lesion that can be biopsied at acceptable risk and must agree to a fresh biopsy between screening and C1D1

Major Exclusion Criteria:

- Refused standard therapy
- Hx of intolerance, hypersensitivity, or treatment discontinuation due to severe immune adverse events on prior immunotherapy
- Immunodeficiency
- Active or prior history of autoimmune disease
- Symptomatic or uncontrolled brain metastases, leptomeningeal disease, or spinal cord compression

Study Objectives

Phase 1 Part A and B: Assessing Safety and Tolerability of JTX-2011 as a monotherapy and as a combination therapy with nivolumab

Primary:

- Assess safety and tolerability of JTX-2011 monotherapy and in combination with nivolumab in subjects after single and multiple ascending doses
- Determine maximum tolerated dose (MTD) and recommended Phase II dose (RP2D)

Secondary:

- PK and PD of JTX-2011 when in administered as a monotherapy and in combination with nivolumab
- PK of nivolumab when administered in combination with JTX-2011

Exploratory:

- Effect on peripheral blood immune cell markers and gene signatures
- Efficacy as a combination therapy (ORR, Duration of Response, Disease Control Rate, PFS, OS)
- Correlation between predictive biomarkers and efficacy

Phase 2 Part C and D: JTX-2011 monotherapy and combination therapy expansions with selected cohorts stratified for ICOS expression

Primary:

- Preliminary Efficacy (ORR, Duration of Response, Disease Control Rate, PFS, OS) as a monotherapy and in combination with nivolumab in expansion groups with enrichment for ICOS expression
- Confirm safety and tolerability as a monotherapy and combination therapy
- Confirm MTD and RP2D

Secondary: Confirm PK and PD of JTX-2011

Exploratory:

- Examine correlation between potential predictive biomarkers of response and
- Evaluate effect on peripheral blood immune cell markers and gene signatures

Clinical Sites

- 1. Stanford University School of Medicine
- 2. Sarah Cannon Research Institute at HealthONE
- 3. Yale New Haven Hospital
- 4. The University of Chicago Medicine Comprehensive Cancer Center
- 5. Massachusetts General Hospital Cancer Center
- 6. Washington University School of Medicine
- 7. Georgetown Lombardi Comprehensive Cancer Center
- 8. University of Washington
- 9. Sarah Cannon Research Institute at TriStar Health 10. South Texas Accelerated Research Therapeutics, LLC
- 11. The University of Texas- MD Anderson Cancer Center
- 12. Memorial Sloan Kettering Cancer Center

CT035