
Rapid Process Improvement Oxford Software Engineering

3 June, 2011 Page 1 of 8

Rapid Process Improvement

-

SPI 2000, Göteborg

Clifford Shelley & Ian Seward

Oxford Software Engineering
9 Spinners Court, 53 West End, Witney, Oxfordshire, England, OX28 1NH

www.osel.co.uk/rpi/rpi.htm
shelley@osel.netkonect.co.uk

ABSTRACT

The business environment within which software
development and process improvement is
undertaken has changed to become fast-moving and
unpredictable. Software development practices are
changing to meet changing business needs; process
improvement practice must also change to meet the
need of this new environment. A revised approach to
software process improvement, called Rapid Process
Improvement, is described and tools to support this
business-oriented approach are discussed.

1. Introduction
The business environment has changed over the last
ten or fifteen years to become much more dynamic
and changeable. Software development activities
have also changed with increased pressure to deliver
rapidly and with the introduction of many new
technologies and tools. Software Process
Improvement activities need to reflect this new
environment by reacting and delivering tangible
benefits rapidly. A more appropriate approach to
process improvement, Rapid Process Improvement,
has been developed. It is intended to deliver: results
rapidly and cheaply allowing benefits to be accrued
as soon as possible; learning from mistakes without
incurring major costs; and process improvements to
respond to changes in the business environment.
This approach is supported by a developing set of
tools for process improvement. Some of these tools

are well known in the software industry others, are
new.

2. The Business Environment
Software development and support is conducted in
enormously varied environments, from major
systems development work by large defence
contractors to small commercial companies
developing their own products. One of the most
striking common characteristics of these
environments is their dynamic, or perhaps more
accurately, unstable nature. The great majority of
organizations will encounter change, either imposed
from outside or instigated internally. Change may
arise from:

?? economic , currency or market fluctuations

?? mergers and re-organizations

?? changes in business strategy

?? changes of management

?? internally generated ‘initiatives’.

For most organizations this tendency towards
uncontrolled change is a fact of business life. A
look-ahead of more than eighteen months to two
years is of limited value for Software Process
Improvement (SPI) because it is rarely clear what
will be required then. Within this changing
environment one of the key attributes of software
development is now timing – not just increased
development speed but sequencing and co-
ordination.

Rapid Process Improvement Oxford Software Engineering

3 June, 2011 Page 2 of 8

The software development and support activities that
take place in the business environment are now
being characterized as just another set of business
processes where once they were seen as specialist
activities. It is also evident that the software
processes are not clearly distinguished from other
business processes and consequently have similar
expectations placed on them. It is expected (but
rarely true) that software processes are robust
enough to survive: mergers and take-overs; new
business; restructuring; and be available when
required. However software processes and capability
are rarely managed as valued assets and are often
discarded or ‘mislaid’.

To a large extent the failure of businesses to
appreciate and manage their process assets is due to
their inability to characterize them. Often what is
labeled as ‘software development’ is either;
enhancements, bug fixes, support, integration,
acquisition or any variety or combination of these.
In addition, the nature of the activities changes as
the software matures.

The work performed to produce or support software
development is usually very well understood by
those actually performing the work, but these ways
of working are difficult to communicate accurately
or completely to others. Documentation may be
correct but is often unusable especially to new
recruits and is often only recorded as a user (of the
development processes) view narrative. Many of the
ways of working will be unique to the project or
organization and can be idiosyncratic. Many of the
development or support practices are also integrated
(or confused with) the organization's management
and business practices.

Software development (or enhancement, or bug
fix…) is almost always managed as a project1 with a
project manager assigned to ensure it delivers. This
approach is in many cases not appropriate. Many of
the activities are repeatable and repetitive low risk
activities where service or production management
models would be more appropriate. Much of the
work has attributes (repeatable, low risk) that real
projects would aspire to. The project orientation also
overloads these activities with the tools of project
management that are not useful or needed. A further
unhelpful side effect of this project orientation is the
hindering of the understanding and development of
software processes - “… our project is different … ”.

Within business environments with these
characteristics many initiatives have striven to
improve the effectiveness of software development:

1 A project is a unique complex intrinsically risky
piece of work.

?? software methods and tools

?? approaches to quality management

?? management methods

?? quality assurance

?? standards

?? metrics …

SPI has been one of the more successful and
influential approaches. SPI is effectively the
application of the SEI’s Capability Maturity Model
or its derivatives. The CMM takes much of the
learned from earlier work and incorporates it in a
simple model of software capability. This model
describes what capability looks like but there is little
useful information in the model on how the
capabilities described are achieved.

There are a number of widely held SPI assumptions
or beliefs:

?? software development processes can be
improved

?? improvement is incremental or evolutionary

?? improvement takes time

?? institutionalisation makes processes robust.

These assumptions are all well founded. Ignoring
them will lead to the failure of any SPI initiative –
but they are not invariable verities.

But often there is little to improve – to which the
typical response is “here is a process from my
previous project/assignment/employer”, or there is
no time for conventional SPI - to which the
conventional approach is “but SPI takes time”.

During the course of many SPI projects we have
been involved in or observed we have found that:

?? long term commitment2 to develop process
understanding and capability is important

?? long term plans are of little use, they are made
obsolete by events

?? SPI often takes too long to deliver real benefits
to developers or managers (and they know this)

?? predicting the effects of change is difficult

?? large scale SPI is very difficult to manage

?? large scale SPI can be inefficient and expensive

?? many of the benefits from SPI arise from small
changes made quickly

2 Deming’s ‘constancy of purpose’ manifested by
senior management scrutiny – not big budgets

Rapid Process Improvement Oxford Software Engineering

3 June, 2011 Page 3 of 8

?? some software management techniques are
fundamental

Having learned these lessons we have found it
effective to:

?? think strategically but act tactically

?? act locally

?? deliver many simple improvements

?? evaluate actual results

?? learn from cheap fast failures and build on
successes

This approach is called Rapid Process Improvement.

3. Rapid Process Improvement
Rapid process improvements have a number of
characteristics that are required and consciously
built in:

?? Clearly focussed on solving real problems.
These may be technical problems affecting the
developers or business problems that the
development processes need to address. In
either case a clear problem is there to be solved.

?? Desired results stated explicitly and preferably
measurably. What will the situation be like
when the problem is resolved?

?? Speed – scale and partition tasks to deliver
useful results in days or weeks, not months.

?? Results driven – work to achieve results rapidly
and then act on the results. Do not track
activity; track results and evaluate them.

?? Perhaps use a model to guide the work but do
not be driven by it.

?? Highly visible. The work being performed
should be visible to those affected, not just the
results.

?? Owned locally. Those affected by the changes
own and control the changes. Process
improvement is rarely successful if done to
people; it is done by people. Process
improvement is about changing behaviour and
expectations and those it affects must be
involved and in control.

?? Local Accountability: Results (good and bad)
should be accountable locally rather than be
remote committees or management steering
groups.

?? Opportunistic – if there is a chance to make
improvements or fix a problem do it now!

These characteristics should be self evidently
desirable but are often at odds with the ways of

working within software development organizations.
Unless they are consciously striven for the tendency
is for process improvements to become a ponderous
committee-driven background activity rather than
foreground activity almost indistinguishable from
day to day development work.

The benefits of RPI are:

?? Speed – improvements are in place and
delivering value rapidly. Lessons learned are
available early. The 80/20 rule applies to SPI
and with rapid improvements an organisation
begins to recognise were the value is early on.

?? Visibility – involvement by those affected by
process improvements and clear indicators of
progress, lessons learned and benefits lead to
acceptance of change, more rapid adoption of
improved processes, management endorsement
and the incentive to pursue further
improvements.

?? From a business perspective rapid process
improvement is low cost and low risk. It will
provide tangible evidence of the return on
investment early, together with shorter break-
even times.

?? There is minimal lead time – results (benefits)
come in very quickly

?? The focus on real problems eliminates the
temptation for expensive and time consuming
generic training of all staff.

4. Tools and Techniques
To perform rapid process improvement activities
that exhibit the characteristics described above the
right tools for process improvement are required.
This section describes some of these tools3. The
tools are divided into three categories:

?? tools to provide visibility

?? tools that provide frameworks and structure for
process improvement activities

?? tools for analysis, construction and change

3 The listing and description of tools for process
improvement was prompted by a question at a
national process improvement meeting asking what
tools others were using to make process
improvements. No one volunteered a tool they used.
Surprised by this response OSEL has been
identifying and classifying different SPI tools. Many
of these are now well defined and described. We
thought that we ought to do as we recommend others
to do – ‘document your procedures’.

Rapid Process Improvement Oxford Software Engineering

3 June, 2011 Page 4 of 8

4.1 Tools to Provide Visibility

The following are examples of tools that provide
visibility into the processes used:

?? Focussed Quality Assurance
Quality assurance is a valuable tool to provide
an organisation’s management with visibility of
the development processes as well as the quality
of the software produced. Where quality
assurance is not in place a simplified form of
QA can be rapidly introduced as a tool for
process improvement and management.
Focussed QA requires that the needs that
software development activities are to satisfy
are stated explicitly by the organisation's senior
management as policies. These policy
statements should be carefully structured and
worded to state clearly what is required. These
policies can then be used as the basis for a
foundation level QA system that can determine
simply whether the policies are being adhered
to. Typical policies may state, for example that
projects will have an up to date plan or that
deliverables will be reviewed and signed off.
These policies do not prescribe details of how –
that comes later - but it is a simple matter for a
competent manager to determine whether the
policies are being adhered to. This important,
simple tool gives management basic
information that can be developed when the
processes that support the policies are
developed. This evolutionary approach avoids
the common problem with the introduction of
QA where a spurious set of checklists of alleged
‘good practice’ are fabricated and used to police
software development work before there is a
good understanding of their real value.

?? Assessment
Many of the models of software development
capability, for example the CMM, are supported
by methods for assessing organisational
capability. These assessments can provide a
very detailed picture of the organisational
capability. In addition the methods may be
structured in such a way as to make the
capability very visible to the organisation. This
can be very useful as an incentive to change.
Care should be taken with assessments. A high
profile assessment is intended to raise
expectations of change and improvement. The
assessment itself provides little guidance on
making change. It delivers a statement of
capability with implicit assumptions about what
should be done next (although this should be
treated with care). An assessment does not
provide any information on how to make the
required changes.

?? Measurement
Quantitative information can be very valuable.
When methods such as Basili’s ‘Goal Question
Metric’ are used then pertinent good data,
providing valuable software quality
management and process improvement
information, can be produced. Quantitative
targets can provide a focus for performance
essentials. However the manner in which data is
defined, collected, validated and used should be
assessed carefully. Software measurement is not
easy to do well. Poor definition and incorrect
analysis can lead to deeply misleading or
meaningless information. The integrity of data
also requires monitoring; within some
organisations systematic distortion or bias is
routine.

?? Post Implementation Reviews
Post Implementation Reviews are well known
across the industry with many developers
having taken part. When they are well managed
they can provide excellent first hand
descriptions of the work and products. These
reviews are one of the very best sources of
information about the issues and concerns of
software development and management and are
also an excellent source of potential solutions to
those issues and concerns. When PIRs are
conducted over a period of time patterns and
trends in the issues may begin to emerge giving
a picture of the issues that should be addressed
by the organisation. To ensure that PIRs do not
drop out of use (as so often happens) it is
essential that actions are taken based on the
information gained. A phrase that comes up
time and again at the end of these reviews is
“That was very interesting – what are you going
to do about it?”. Do nothing and you will lose a
valuable tool.

?? Records
Rather obvious and frequently overlooked, good
records of development activity can be used to
throw light on their efficiency and effectiveness.
Good records will typically be accessible,
usable in reasonably consistent formats, and
most importantly trustworthy. The caveats are
the same as for measurements. While some
organizations will ensure the integrity of their
records other will not. You need to know
whether you can trust the records before you
use them.

4.2 Tools for Analysis, Construction and

Change

The following are examples of tools for construction
and change:

Rapid Process Improvement Oxford Software Engineering

3 June, 2011 Page 5 of 8

?? Tactical Change Method (TCM)
The Tactical Change Method was developed
following observations from a number of
sources. It is a simple 5-step process that
provides structure and time boxing to process
improvement activities. By defining a
framework for change and predefining some of
the key deliverables it increases the confidence
of those entrusted with making change that they
can deliver a result. It also safeguards against
over ambitious or ambiguous process
improvement efforts. In can be considered as a
lifecycle for a rapid process improvement.

?? Process Definition (ProcDef)
Defining processes is perhaps one of the most
widely undertaken activities of process
improvement. The majority of process
definition is based on either drafting and
reviewing processes or procedures or, more
usually, importing them from elsewhere and
tailoring them to a greater or lesser degree. The
processes are typically written as a user view
narrative, i.e. a user manual. ProcDef takes a
slightly more formal view and treats the process
definition activity in a similar manner to some
software developments. ProcDef contains 5
activities that can be used collectively or
individually as required. These activities are:

- Modelling

- Data Gathering and Refinement

- Identification

- Production and Validation

- Publication.

As a set these activities treat the processes as
elements of a system that can be formally
described and organized to meet well
understood needs. These processes are then
drafted as user guides and published and
supported in a manner that will increase the take
up and acceptability of the processes. The
outcome is a well defined set of process assets
that clearly support ways of working.

?? Prefabricated Process Components (‘Flat Pack’)
The ‘Flat Pack’ approach to process
improvement was developed in response to a
problem seen in a large number of
organisations. Successful process improvement
is usually undertaken by expensive or scarce
individuals who do not want to operate the
processes once created. The individuals that can
operate the processes often do not know how to
put them in place. Attempting to put process in
place within an organisation can take a very
long time and often fail. Process Flat Packs are
prefabricated processes that are rapidly tailored

to an organisation’s needs and capabilities and
installed in the organisation to begin operating
in a matter of days or weeks rather than months.
The benefits of the process can be assessed
rapidly, using real information and changes
made if required. This approach has lead to the
concept of ‘Software Production Engineering’
where a complete software capability could be
installed, scaled up, duplicated or moved.

?? PIR Led Process Improvement (PirL)
PirL is a logical extension of Post
Implementation Reviews. The PIRs deliver
good information about the performance of
software development and support. PirL
provides the mechanisms to ensure that this
information is acted on either in real-time, to
enable the work to be performed more
effectively immediately, or in the longer term,
by recognising patterns and trends in the
information and ensuring that the organisation
acts on this information (where individuals or
projects cannot).

?? DevPIP
Assessments (described above) provide a good
description of an organisational capability, in
effect a snapshot of capability. Assessments will
often produce a number of recommendations on
what should be done to improve capability.
However the recommendation are rarely well
considered. The assessment process focuses on
understanding capability not on producing plans
for improvement. Developing a Process
Improvement Plan (DevPIP) has been designed
to take the output of an assessment, including
recommendations and use this information as
part of the input to a process improvement
planning exercise. DevPIP develops a plan base
on capability, and business needs and priorities.
This structured process evolves a prioritised
plan that is relevant and owned by the
organisation. An important part of the DevPIP
process is the transformation of understanding
of capability by the assessment team into a plan
for improvement driven by the organisation’s
senior management and endorsed by those it
will affect.

4.3 Examples of Tools that Provide

Frameworks and Structure

The following are examples of tools that provide the
frameworks and structures for process improvement:

?? Process Improvement Templates
Not all improvements are the same. The
templates identify the different types of
improvements so that the correct approaches

Rapid Process Improvement Oxford Software Engineering

3 June, 2011 Page 6 of 8

can be deployed. In essence there are four types
of improvement:

- introduce something new

- change something already in use

- promulgate an existing but
localised best practice

- resurrect an required but perhaps
unpopular or discredited practice

The tools to ensure that the changes are made
will be different in each case. The PI templates
identify appropriate tools and tactics.

?? Process Infrastructure
A process infrastructure is a description or
definition of the components of the organisation
that support software development activities
with processes, procedures, methods and tools.
The process infrastructure provides a shared
mental model of the functions supporting
process within the organisation. It also provides
stability for processes and functions by
providing a context.

A generalized example of a process
infrastructure is shown in Fig 1.

Process Improvement Infrastructure
The process improvement infrastructure is a

specialised part of the process infrastructure. It
defines the infrastructure for process
improvement activities and explicitly describes
how senior management, managers and
developers organise and manage the limited
resources required to make improvement
happen. The two most important parts of the
process improvement infrastructure are:

- the senior management oversight
and feedback mechanism

- the resourcing model describing
how tasks get assigned and
completed

?? Process Architecture
The process architecture is an aid for those
developing processes or procedures because it
provides context. It shows how the various
elements fit together. The example diagrams
shown below is a real example developed for a
software development organisation. It was not
intended to be part of the user documentation
set of procedures and guidelines but rather, like
software design documentation, intended to aid
those managing the production of the
documentation. A more common approach used
to provide context for process and procedures is
a software development lifecycle model. This is
also very useful for managers and developers in
providing structure for plans but tends to have

problems placing ongoing processes such as
change control or formal reviews in context.

Fig. 1. An example of a process infrastructure

Senior
Management

Projects

monitors
and

support
support

reports

Standards and
Procedures

Software
Policies

states

references

justifies

directs

‘own’
and

 refine

‘defends’

reports

Process
 Group

Quality
Assurance

responds responds

monitors
and

support

Rapid Process Improvement Oxford Software Engineering

3 June, 2011 Page 7 of 8

Two components of an example process
architecture model are shown in Fig 2.

5. The Fundamentals
The tools and techniques briefly described above
have been used in a wide variety of organisations

and situations. However to make real progress
certain fundamental practices should be in place to
provide a foundation for processes and process
improvements. If these fundamentals are not in place
then they should be put in place first. They stabilize

processes and quality and can act as a catalyst for
further improvement. The fundamentals are:

?? Quality Control
formal review of documents and tests for
software

?? Change Control
to ensure assets are not lost and effort is
focussed where required

NODE: TITLE: NO.:Manage WorkA1

2

Plan Work

3

Track and
ReportWork

4

Change Control

allocated
requirements

change
requests approval to change

plans (replan)

approval
to change

requirement
s

change
authorities

draft plans to SQA
for approval

corrective action
requests

change request
(replan)

reports to senior
management

1

Manage
Requirements

requirements to be
refined

requirements for
planning

SQA approval of
plans

5

Milestone
Review

progress reports,
issues and status

reports

to Produce
Software

decision
 to

 proceed

from Do Work and Store Work
Products

SQA project
reports

FTR &
library

FTR &
library to Do

Work

plans

Plan Work

NODE: TITLE: NO.:Produce SoftwareA2

1

Do Work

2

Formal Technical
Review (or test)

3

Store Work
Products (library)

reviewed work product

rejected work product
(revise and re-eview)

CIs booked out for reference

released product

status reports

Plans

completed work product

progress reports
 and issues

corrective action requests

review records

schedule PBSWBS

change control

to Track and Report Work

Fig. 2. Two components of a process architecture model

Rapid Process Improvement Oxford Software Engineering

3 June, 2011 Page 8 of 8

?? Management Review
to assess progress (as distinct from activity) on
an ongoing basis.

Those involved in process improvement should
assess these fundamentals and ensure they are
functioning effectively. They are not only essential
for software development and management, they are
also tools for process improvement.

6. Closing Remarks
Rapid Process Improvement is a conscious effort by
OSEL to adapt Software Process Improvement
activities to the new rapidly changing small project
environment. Many of the tools for understanding
and improving software development have a role
and can be developed further. However it has been
necessary to identify and develop new ones. This
process of equipping process improvement
initiatives has only just begun and we can expect
continued development of new tools for Rapid
Process Improvement.

Further inform,ation about rpi and the rpi tool set
can be found at http://www.osel.co.uk/rpi/rpi.htm

