



- Electricity
- Mechanics
- Hydraulics
- Pneumatics
- It is important to remember here that each technology has its own preferred application areas.
- The next table compares typical data for the three most commonly used technologies electricity, pneumatics and hydraulics.

|                             | Electricity                                                                                                         | Hydraulics                                                                                                                       | Pneumatics                                                                                                          |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Leakage                     |                                                                                                                     | Contamination                                                                                                                    | No disadvantages apart from<br>energy loss                                                                          |
| Environmental<br>influences | Risk of explosion in certain areas,<br>insensitive to temperature.                                                  | Sensitive in case of temperature fluctuation, risk of fire in case of leakage.                                                   | Explosion-proof,<br>insensitive to temperature.                                                                     |
| Energy storage              | Difficult, only in small quantities<br>using batteries.                                                             | Limited, with the help of gases.                                                                                                 | Easy                                                                                                                |
| Energy transmission         | Unlimited with power loss.                                                                                          | Up to 100 m,<br>flow rate $v = 2 - 6$ m/s,<br>signal speed up to 1000 m/s.                                                       | Up to 1000 m,<br>flow rate $v = 20 - 40$ m/s,<br>signal speed 20 - 40 m/s.                                          |
| Operating speed             |                                                                                                                     | v = 0.5 m/s                                                                                                                      | v = 1.5 m/s                                                                                                         |
| Power supply costs          | Low                                                                                                                 | High                                                                                                                             | Very high                                                                                                           |
|                             | 0.25                                                                                                                | : 1                                                                                                                              | 2.5                                                                                                                 |
| Linear motion               | Difficult and expensive, small<br>forces, speed regulation only<br>possible at great cost                           | Simple using cylinders, good speed<br>control, very large forces.                                                                | Simple using cylinders, limited<br>forces, speed extremely, load-<br>dependent.                                     |
| Rotary motion               | Simple and powerful.                                                                                                | Simple, high turning moment, low speed.                                                                                          | Simple, inefficient, high speed.                                                                                    |
| Positioning accuracy        | Precision to $\pm 1\mu m$ and easier to achieve                                                                     | Precision of up to ±1 µm can be<br>achieved depending on<br>expenditure.                                                         | Without load change precision of 1/10 mm possible.                                                                  |
| Stability                   | Very good values can be achieved<br>using mechanical links.                                                         | High, since oil is almost<br>incompressible, in addition, the<br>pressure level is considerably<br>higher than for pneumatics.   | Low, air is compressible.                                                                                           |
| Forces                      | Not overloadable.<br>Poor efficiency due to downstream<br>mechanical elements.<br>Very high forces can be realized. | Protected against overload, with<br>high system pressure of up to 600<br>bar, very large forces can be<br>generated F < 3000 kN. | Protected against overload,<br>forces limited by pneumatic<br>pressure and cylinder diameter<br>F < 30 kN at 6 bar. |



- Transmission of large forces using small components, i.e. great power intensity
- Precise positioning
- Start-up under heavy load
- Even movements independent of load, since liquids are scarcely compressible and flow control valves can be used
- Smooth operation and reversal
- Good control and regulation
- Favorable heat dissipation



- Pollution of the environment by waste oil (danger of fire or accidents)
- Sensitivity to dirt
- Danger resulting from excessive pressures (severed lines)
- Temperature dependence (change in viscosity)
- Unfavorable efficiency factor



Applications : Mobile Hydranlics

Typical application fields for mobile hydraulics include:

- Construction machinery
- Tippers, excavators, elevating platforms
- Lifting and conveying devices
- Agricultural machinery





## Applications : Industrial Hydraulics

The following application areas are important for stationary hydraulics:

- Production and assembly machines of all types
- Transfer lines
- Lifting and conveying devices
- Presses
- Injection molding machines
- Rolling lines
- Lifts







🌃 Typical Hydraulic System

- Hydraulic pump: converts mechanical power to fluid power.
- Cylinder or motor: converts fluid power to linear or rotary mechanical power.
- ✓ *Valves:* control the direction, pressure and rate of flow.
- ✓ *Filters, regulators and lubricators:* condition the fluid.
- Manifolds, hose, tube, fittings, couplings, ... : conduct the fluid between components.
- ✓ Sealing devices: which help contain the fluid.
- Accumulators and reservoirs: which store the fluid.
- Instruments such as pressure switches, gauges, flow meters, sensors and transducers: are used to help monitor the performance of a fluid power system.



In hydraulics, the flow rate Q is measured in *gal/min* or *liter/min*. It is a measure of the displacement volume of fluid V, divided by the time t. The general formula for flow rate is

$$Q = \frac{Displacement}{time} = \frac{V}{t}$$

Consider a cylinder as shown in the figure





where A is cross section of piston, and l is piston displacement.









- The characteristic value for Compressibility of fluid is the compression modulus K or B
- This modulus can be calculated in the usual pressure range using the following approximate formula:

$$K\approx V_{o}\cdot \frac{\Delta p}{\Delta V} ~\left[N\,/\,m^{2}\,\,or\,N\,/\,cm^{2}\,\right] \label{eq:K}$$

• V<sub>0</sub> = output volume

25

•  $\Delta V$  = volume reduction