

Printer friendly version

.NET Intellectual Property Protection
The Merits of “True Encryption”

Summary

Software copy protection is an important concern of developers who wish to ensure their products are
not copied or used without authorization, which results in profit losses.

While some software protection companies utilize obfuscation to deter hackers, encryption is a
much stronger method of protecting .NET applications. Encryption is the best way to protect
software from unauthorized usage.

This white paper explains the differences between obfuscation and encryption and details why
encryption is a much stronger form of protection of .NET programs.

Introduction

Microsoft’s newest platform for development, .NET, poses some especially challenging problems for
manufacturers and vendors, who must continually guard against illegal duplication of their
software.

.NET code is wonderfully easy to effectively reverse-engineer. One can decompile the code,
crack the license, change the copyright name or simply see how the application hits the
database. Reverse engineering based on compiled code is possible but for hackers, reverse
engineering based on source is simply icing on the cake.

The good news is that you can make the process of reverse engineering harder for hackers to
achieve--in fact, much harder. To be effective, software protection must deter the reverse
engineering of code.

One way to achieve reverse engineering of code is to make understanding the code as difficult as
possible. This is the goal of obfuscating software. A second way to achieve this goal is to make
examination of the code as difficult as possible. This is the goal of encrypting software.

What Is Obfuscation?

Obfuscation is a one-way transformation of source code utilized to discourage understanding or
recompilation of the code. Obfuscation transforms programs in such a way as to not affect what
they do and at the same time impede reverse-engineering efforts.

Some techniques that obfuscators use include deleting comments, removing neat indentation and
white space, and encoding constants in unreadable ways. Obfuscators also rename identifiers in
source from their original self-explanatory names to meaningless terms that convey no information.
The larger the code, the messier this gets, making the program correspondingly more difficult to
reverse-engineer.

Security That Works

Page 1 of 5

In a nutshell, the goal of obfuscating is to remove all information that is useful for a human, but
not necessary for the computer, from the code. A simplified example would be to transform the
easily understood line of source code

Energy = Mass * SpeedOfLight
2

V1 = V2 * V3
2.

The computer will not notice the difference in these two statements once compiled but a human
will have to do much more work to figure out what is being calculated.

Why Obfuscation?

Until the release of the .NET platform, most sophisticated copy protection systems for PC
software focused on encrypting the compiled software program to discourage reverse
engineering. Over time, the format of PC executables became well understood, and methods of
encrypting it evolved.

The .NET platform radically changed the format of the executable. Instead of compiling source
code to well understood machine language, the .NET compiler compiles the source code into
MSIL code, which is essentially data that the .NET system interprets and executes.

The compiled .NET code is not executed by the well-understood and documented
microprocessor. It is executed by a little understood and mostly undocumented Microsoft
program. To make matters worse, the compiled .NET code is easily decompiled, and the
decompiled code is as understandable as the original source code.

Existing encryption copy protection techniques do not work on this type of code, and at the time of
this writing, few encryption systems for .NET have evolved. Obfuscation, although not historically
the strongest solution, has come to the forefront of .NET protection simply due to the absence of
encryption systems on the market.

Obfuscation Falls Short of Copy Protection

While obfuscation is an inexpensive, fast, extra layer of protection from reverse engineering, it
falls short as a way to protect .NET software from being copied. There are three major reasons
for this.

First, protection from reverse engineering offered by obfuscation is generally not strong enough to
discourage a hacker. Obfuscation will discourage the average person from looking into or even
decompiling .NET code; however, hackers are used to working with decompiled machine language,
which is even harder to understand that obfuscated code. For a hacker, obfuscated code is a step
forward, not backward, in the hacking process.

A second problem is that obfuscation fails to hide calls to third party software. Copy protection is
likely to be implemented by a third party, and the hacker will be seeking to circumvent it. To give a
simple example, the software may need to call a third party like:

“IsThisProgramAuthorizedTo Run()”.

Security That Works

to

Page 2 of 5

Since .NET needs to know the exact name of the function to find and run it, after the program is
obfuscated, the function is still easy to find and circumvent, because it will appear in the
obfuscated code exactly the same:

“IsThisProgramAuthorizedToRun()”.

The third problem with obfuscation is that it does not do all of the extra, important jobs that good

copy protection needs to do to discourage professional reverse engineering. It does
not:

prevent debuggers from being run on the program;
detect and prevent changes to the executable code while it is running (patching);
prevent stepping through a program one instruction at a time;
prevent code from being examined while in file; nor does it
prevent code from being examined while in memory.

While the above technically are not encryption tasks, some are a byproduct of it, and all are likely to
be included in a copy protection system that implements code encryption.

What Is Encryption?

Encryption, on the other hand, is a two-way transformation that protects against reverse
engineering by making the code completely unreadable to the human or the decompiler. An
example as simple as the one above is more challenge to provide; however, the easily
understood line of source code,

Energy = Mass * SpeedOfLight
2

would encrypt to something that, if examined with an editor, would look like:

($*%)@#H$@#^%$@$@CD$##@???@#$

Encryption is usually used on the object code that is produced by compilers. There are two
mediums where encryption can be used on a program:

1. Encryption of the code in a file. This is the easiest place to use encryption and the most
necessary. If the program file is not encrypted, modern day hacker tools such as reverse
compilers can help hackers easily reverse engineer and circumvent any copy protection
code.

2. Encryption of the code while running in the computer. This is by far much more difficult to

achieve but quite important in the copy protection effort. Without this, experienced hackers
can take a snapshot of the code while it is running unencrypted in memory and with some
effort, write the whole program back to file unencrypted.

Encryption vs. Obfuscation

While encryption is often compared to obfuscation, their goals differ. The purposes and key
differences between encryption and obfuscation are outlined below:

-

-

-

-

-

Security That Works

Page 2 of 5

Encryption

 with encryption, every bit of data originally
in a file remains after the file is uncompressed

• protects against reverse
engineering

 utilizes password or encryption key to
prevent examination of code from those
without access to the key

Obfuscation

 obfuscation reduces a file by
permanently eliminating certain,
especially redundant information;

 when a file is uncompressed, only a part
of the original information is still there,
although the user may not notice it

 prevents recompilation of software code
 goal is to destroy relationships that
exist between compiled and source-code
versions of code

 accepts a source file and generates another
functionally equivalent source file that is much
harder to understand or reverse engineer

 deletes comments, remove neat indentation
and white space and encodes constants in
unreadable ways

 renames identifiers in source from their original
self-explanatory names to meaningless terms
that convey no information

 stronger than obfuscation due to requires no changes to compilation or inability to

examine encrypted code environment

 does not prevent reverse engineering by very
determined opponents; with sufficient persistence
and know-how can be circumvented

Why Encryption?

Encryption offers very strong protection from reverse engineering. While it takes no special
training for a reasonably intelligent person to make headway understanding an obfuscated
program, it takes a person with intimate knowledge of encryption, the operating system, and
computers to reverse engineer an encrypted program. Here’s why.

To break an encryption copy protection system, the hacker is usually forced to completely
understand large amounts of machine code to find and duplicate the mechanism the program
uses to unencrypt the code. If the system only unencrypts small amounts of code at a time, the
hacker must study and understand this system and the system that is used to bring the right
piece of code to the processor at the right time.

While it is true that it is not possible to make this method “crack proof” (since the code must
eventually be decrypted to run), there is no limit to how complicated this encryption and the extra
jobs around it can be made. It can use more than one algorithm at a time, it can use different
algorithms for different chunks of code, and it can unencrypt and can run small only pieces of code
at a time. The variations and strategies are infinite. A programmer who is knowledgeable in this
area is really only limited on the amount of time he can spend. The more time spent, the longer it
takes to crack, and thus, fewer hackers will have both the time and knowledge to break the code.

Security That Works

Page 2 of 5

The “infinite complexity” feature arises from the fact that encryption doesn’t just confuse; it can
effectively prevent any examination or reverse engineering of the encrypted code. This means the
hacker must first figure out how to un-encrypt the code, which can be infinitely complicated.

Since the complications that can be created are unlimitled, the amount of time and energy spent
creating the encryption becomes a choice based on cost–benefit analysis, rather than technical
limitation.

In some cases, software revenue can be dramatically increased by a relatively simple encryption
mechanism that keeps the average person from easily copying the software.

A more complicated encryption mechanism can be used on a program to make cracking take
more time than it is worth. Such is often the case with specialized programs that have a smaller
distribution.

In other cases, a very complicated encryption mechanism can delay the availability of an
unprotected version of a program on the Internet long enough to allow the software company to
make a profit.

“True Code Encryption” = .NET Protection

The key benefit to code encryption is that it can provide a meaningful level of copy protection, and
the level of protection can be driven by cost–benefit analysis.

Obfuscation, on the other hand, can provide a limited reverse engineering deterrent but it cannot
provide a meaningful level of copy protection. While companies utilizing obfuscation claim to
protect .NET applications from illegal copying, in reality, they do not.

Conclusion

Only encryption-based systems can offer a meaningful, scalable, level of copy protection against
the modern, technically evolved, hacker. To date, CrypKey (Canada) Inc. offers one of the few
known encryption software protection solutions for .NET programs.

Resources & Information

CrypKey (Canada) Inc. is a leading developer of reliable, world-class software protection and
license management solutions for small, medium and large enterprises.

CrypKey solutions have been commercially available since 1992. CrypKey was the first company to
offer solely software copy protection solutions and is the now first to offer an encryption copy
protection solution for .NET software.

For more information, contact CrypKey at 1-403-258-6274 or visit www.CrypKey.com.

Security That Works

Page 2 of 5

http://www.crypkey.com/

