
BUSINESS PARTNER

PREMIER

Solution Provider

Middleware Solutions

OpenShift Container

Platform – Q & A

With the recent release of Red Hat’s OpenShift Container Platform

v3, Tier 2 puts the important questions (like “what is it and what

does it do?”) to Red Hat Senior Solutions Architect, Ian Lawson:

What on earth is a ‘Container’?

A Container is a slice of the Operating

System. Put simply it is a secure,

self-contained and sandboxed part of

the Operating System that can run

independently of, but is controlled by,

the underlying Operating System.

So it is Virtualisation?

No. Virtualisation requires a process

intensive layer that converts all the actions

of the virtualised Operating System into the

underlying Operation System – Containers

are slices of the Operating System and

can therefore run at a faster rate than

Virtualisation.

Why should I be interested?

Container technology allows you to run

many varied Operating Systems and

Application stacks much more eficiently on
a single platform. In addition the Container

itself, which is made up of a set of layered

ile systems, is transportable between any
hosts that can support Containers, making

it very easy to move, replicate and control.

That doesn’t sound very safe – is it secure?

The underlying Container technology,

called ‘Docker’, was designed and

implemented in a security-agnostic way,

meaning that it is up to the Operating

System hosting the Containers to

implement security. So no, if you use the

lowest form of technology, ‘Docker’, it is

not safe.

So how do I use these Containers safely?

Through the use of two additional

technologies on top of the Containerisation

technology. Google have produced a

technology called ‘Kubernetes’ (which, like

Docker, Red Hat contributes massively to)

that adds a control layer on top of

Containerisation, providing much better

aggregation and control. This suffers

from some of the same security issues as

Docker. On top of this technology, Red Hat

has produced a system called ‘OpenShift’,

which is currently the only Enterprise

strength secure Container orchestration

system available.

Why is OpenShift secure when the

underlying technologies are not?

OpenShift itself uses the Containerisation

technology to host the components

needed for OpenShift. It does this by

treating all Containers running within itself

as one of two types – privileged and non-

privileged. All OpenShift core components

(i.e. the bits that are OpenShift itself) run

as privileged, whereas all the user-created

and hosted Containers are forced to run as

non-privileged. This mechanism means

that OpenShift controls the execution of

potentially insecure Containers in such a

way as to disallow them the access they

need to be dangerous.

This sounds good. What’s the catch?

There is no catch. OpenShift implements

a RBAC (role-based access control)

approach which gives the administrators

total control over what user can do what

action. In addition, OpenShift applies the

OpenSCAP standard to the containers,

which is a compliance mechanism for

ensuring that Linux systems remain secure

in the way they were created. These

approaches mean that the Containers

hosted within OpenShift, and OpenShift

itself, are highly secure and locked down,

which addresses an inherent insecurity of

the underlying Container technologies.

Tier 2 Consulting Ltd

Business and Technology Centre,

Bessemer Drive, Stevenage,

SG1 2DX

Tel:

+44 (0) 1438 310124

Email:

info@tier2consulting.com

support@tier2consulting.com

So that’s security covered, what can I

do with Containers?

There’s not a lot you can’t do with

Containers. Put simply, they are slices

of the Operating System, so you can

host applications, services, web-based

functionality, basically anything you

can do with a standard Linux Operating

System. Typical use-cases for

Containers include standing up multiple,

highly-available Webservers, Enterprise

Service Buses, web-application end-

points and the like.

So, I can take my existing applications

and put them into Containers?

Absolutely. In addition, because of

the functionality provided by the

orchestration components within

OpenShift, you can massively simplify

the applications as well. You no longer

have to work out the topology of your

applications within the applications

themselves – using Containers allows

you to abstract away the data-sources,

the highly-available failover operation,

the disaster recovery options, the

networking. In fact, using OpenShift

gives you a number of features that

would be very dificult to implement
as standard, such as auto-scaling,

where an Application can be made to

replicate or shrink depending on the

metrics of the usage of the Container

(e.g. CPU usage, network load and

disk usage). All of these features are

applied to the Application as part of

the deployment mechanisms, meaning

that there is a distinct divide between

the Application functionality and the

hosting functionality. Put simply, you

no longer need to change the code

of your application to change the

nonfunctional behaviour. This greatly

simpliies the code you need to produce
for the Application, removing a lot of the

‘boilerplate’ baggage that used to make

Applications so hard to maintain.

I’ve heard about the concept of

‘Microservices’. Do these Containers

have anything to do with that?

Microservices are a different way of

implementing systems, with functionality

broken down into many small,

manageable pieces, and Applications

becoming a set of Microservice calls

instead of the old-fashioned vertical,

huge, hard-to-maintain Applications.

OpenShift was speciically designed
to make the hosting of Microservices

extremely easy, through the use of

speciic Application stacks offered
natively within the platform such

as the Apache Camel based ‘Fuse’

implementation. The nature of

Containers, especially via OpenShift,

around the multiple replication, ire-and-
forget, dependency-injection model

(which, put simply, means each of the

Containers is a sausage-machine)

means that the creation of a framework

for Microservices is extremely simple.

My present system for development

involves multiple, separate environments

for the sake of development, testing

and production.

If I use OpenShift does this mean all of

my environments will be in the same

place, as this sounds dangerous?

Absolutely not. OpenShift is a fully

distributed system and uses an approach

called ‘labelling’ to allow Containers to

be speciically targeted to execution
environments. Also the basic currency

of the system, which is Containers and

Deployment Coniguration, means you
can easily transition ‘Applications’ from

one system to another. So there’s no

mandate from the OpenShift side to force

you to either host all of your systems

in the same place, or to distribute. It is

entirely up to you.

For example, you could have a singular

OpenShift with multiple sandboxed

environments (i.e. devops, testing,

QA, pre-production, production) and

strictly control the deployment of

Applications using labelling, or you could

have physically separate and secure

OpenShift instances with a manual

stage-gate for transferring Applications

from development into testing, and then

testing into production.

The choice is entirely yours, OpenShift is

lexible enough to cater for any topology
of usage.

