
This is the accepted but pre-publication version of the following article: Faulkner SD, Ruff CA, Fehlings 
MG. The potential for stem cells in cerebral palsy - piecing together the puzzle. Semin Pediatr Neurol. 
2013 Jun;20(2):146-53. doi: 10.1016/j.spen.2013.06.002. Review. PubMed PMID: 23948689. which has 
been published in final format at: http://www.sciencedirect.com/science/article/pii/S1071909113000284  

1 

 

The Potential for Stem Cells in Cerebral Palsy – 
Piecing Together the Puzzle 
*Stuart. D. Faulkner (PhD) 123, *Crystal A. Ruff (PhD) 123, Michael G. Fehlings (MD. PhD. 

FRCSC, FACS) 1234  

1Division of Genetics and Development, Toronto Western Research Institute, Toronto, Ontario, Canada 

2Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada 

3Spinal Program, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada 

4Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada 

* Authors contributed equally to this manuscript 

 

Correspondence should be addressed to:  

Michael G. Fehlings MD. PhD. FRCSC. FACS 

Division of Neurosurgery 

University Health Network 

Toronto Western Hospital 

399 Bathurst St. 4WW-449 

Toronto, ON, M5T 2S8, Canada 

Tel:  (416) 603-5229 

Fax:  (416) 603-5745 

E-mail: michael.fehlings@uhn.on.ca 

  

http://www.sciencedirect.com/science/article/pii/S1071909113000284
mailto:michael.fehlings@uhn.on.ca


This is the accepted but pre-publication version of the following article: Faulkner SD, Ruff CA, Fehlings 
MG. The potential for stem cells in cerebral palsy - piecing together the puzzle. Semin Pediatr Neurol. 
2013 Jun;20(2):146-53. doi: 10.1016/j.spen.2013.06.002. Review. PubMed PMID: 23948689. which has 
been published in final format at: http://www.sciencedirect.com/science/article/pii/S1071909113000284  

2 

 

1) Summary 

The substantial socio-economic burden of a diagnosis of Cerebral Palsy (CP), coupled 

with a positive anecdotal and media spin on stem cell treatments, drives many affected 

families to seek information and treatment outside of the current clinical and scientific 

realm. Preclinical studies using several types of stem and adult cells – including 

mesenchymal stem cells (MSCs), neural precursor cells (NPCs), olfactory ensheathing 

glia (OEG) and Schwann cells (SCs) - have demonstrated some regenerative and 

functional efficacy in neurological paradigms. This paper describes the most common 

cell types investigated for transplant in vivo and summarizes the current state of early 

phase clinical trials. It investigates the most relevant and promising co-administered 

therapies – including rehabilitation, drug targeting, magnetic stimulation and 

bioengineering approaches. We highlight the need for adjunctive combinatorial 

strategies to successfully transfer stem cell treatments from bench to bedside. 
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2) Introduction  

Cerebral Palsy (CP) comprises a heterogeneous group of non-progressive 

developmental disorders and is marked by loss of neuromotor function. This is often 

accompanied by demyelination of cerebral white matter tracts and loss of axons and 

grey matter. Children with CP often demonstrate concomitant deficits of motor control, 

cognition, learning and other complex neurological functions. Stem cell therapy has 

become a topic of interest in the popular media and stem cell transplantation is often 

perceived as a “cure” for CP and other neurological conditions. This misperception 

(along with anecdotal claims of efficacy and denial of negative side effects by 

unregulated foreign clinics purporting to offer “stem cell therapy”) presents an unrealistic 

bias, influencing stakeholders’ perceptions of availability, efficacy and safety of “stem 

cell treatments” for CP (see review1). Despite promise in preclinical and clinical trials 

using stem cells for CP, there remains a knowledge gap surrounding the optimal source 

and type of cells, timing of treatment and possible mechanisms of action. We present 

here an updated summary of the current state of stem cell science for CP and describe 

current relevant clinical trials. This article highlights the need for additional optimization 

before stem cell treatments can be fully realised as a therapeutic option for CP. 
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I. The Etiology of CP  

CP is a heterogeneic disability and its etiology is equally multivariate. It remains poorly 

understood despite a large body of research and literature on the topic. The current 

“multi-hit” hypothesis surrounding its etiology maintains that alignment of multiple 

probabilities, rather than a single risk factor, is responsible for CP onset. Indeed, several 

neonates survive major insults without any evidence of impairment, while others 

develop severe infarcts almost spontaneously. While an exhaustive description of all 

causative mechanisms for CP is beyond the scope of this manuscript, the most 

common risk factors are: 

x Preterm birth (and associated complications) 

x Intrauterine Growth Restriction 

x Maternal infection - viral, bacterial and protozoan (most commonly TORCHS) 

T –Toxoplasmosis/ Toxoplasma Gondii 

O– “Other” infections (Coxsackievirus, Varicela-Zoster Virus, HIV and Parvovirus B19) 

R – Rubella 

C – Cytomegalovirus 

H – Herpes Simplex Virus 

S - Syphilis 

x Perinatal and Intrapartum difficulties (ex. hypoxic/ischemic injury) 

x Other congenital infections (ex. sepsis, meningitis, encephalitis, tetanus and 

chorioamnionitis 2–5) 
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II. CP Pathophysiology  

Inflammation, which may occur through transplacental cytokine passage or by fetal 

production6, plays a key role in the pathophysiology of CP. Increased serum 

concentrations of B-lymphocyte chemo-attractant, ciliary neurotrophic factor (CNTF), 

epidermal growth factors, IL-12, IL-15, monocyte chemo-attractant protein-3, and others 

were found to be present in children with CP7, and there is evidence for maturation-

dependent changes in both fetal brain structure and response to immune challenge 8. 

Pro inflammatory cytokines - which may act 1) directly on pre-oligodendrocytes, 2) via 

secondary, effector-mediated processes, or most likely, 3) through a combination of the 

two - have been linked to periventricular leukomalacia (PVL), the most common 

physiological cause of CP9.  

Due to GluR subunit composition, the immature oligodendrocyte is intrinsically 

vulnerable to ischemic and inflammatory insult, particularly to Glutamate-mediated 

excitotoxicity 10, 11. Oligodendrocytes express GluR3 and GluR4 receptors during 

development, but – unlike pre-progenitors or mature oligodendrocytes - fail to express 

GluR2. This absence of GluR2 leads to enhanced Ca2+ membrane permeability, 

increased Ca2+ influx and resultant excitotoxic cell death. Therefore, as a result, after 

global ischemic hypoperfusion, periventricular pre-oligodendrocytes, which are most 

distal to major cerebral vasculature, are selectively abolished, causing focal necrotic 

lesions and later widespread apoptosis associated with PVL 12. These areas spatially 

correspond with descending corticospinal tracts, leading to the neuromotor symptoms in 
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the most common CP phenotype. Likewise, unilateral hemorrhagic or hypoxic/ischemic 

injury leads to neuronal cell death in motor control areas, resulting in the second most 

common subtype of CP, spastic hemiplegia (Figure 1). 

 

Figure 1: Schematic Diagram Representing the Pathophysiology of Hemiplegic and 
Diplegic Cerebral Palsy 
A) Hypoxic Stroke causes hemispheric loss of cortical tissue perfused by the occluded artery. 
Affected regions overlap the corticospinal tracts, which control lower limbs, trunk and forelimbs. 
Resulting gross neuromuscular deficits on the contralateral side of the body translate to 
hemiplegic cerebral palsy. B) Chronic hypoperfusion causes ischemia in developing 
periventricular watershed regions of the brain. Since the pre-oligodendrocyte is particularly 
susceptible to ischemic injury, supporting glial cells are preferentially ablated in this region, 
causing periventricular leukomalacia. These watershed regions overlap with descending 
corticospinal axons, and without sufficient signal propagation, many motor neurons are 
damaged. Altogether, these changes lead to spastic diplegia. 
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3) Current Clinical Treatments for CP 

At this time, non-surgical clinical treatments for CP are restricted primarily to 

rehabilitation and supportive strategies. Many of the current clinical treatments for CP 

attempt to promote recovery through stimulation of plasticity via activity-dependent 

changes in excitability and synaptic strength; this enhanced plasticity could be 

complimentary to regenerative therapeutics. Future regenerative stem cell strategies 

are likely to be used in combination with these rehabilitation and physiological measures 

to facilitate clinical translation. 

A. Rehabilitation 

Rehabilitation therapy is employed under the premise that regularly utilized neuromotor 

pathways will strengthen circuit plasticity and also that repeatedly used muscle systems 

will lead to enhanced co-ordination and function. It is currently the most effective 

treatment for CP symptoms. 

B. Physiotherapy and Occupational Therapy  

Physiotherapy (PT) and Occupational Therapy (OT) are the primary health care 

professions associated with rehabilitation. PT encompasses strengthening of ability, co-

ordination, function and movement while OT focuses on application of skills toward 
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activity-defined goals. However, optimal frequency and duration of PT and OT remain to 

be fully elucidated (reviewed in 13).  

C. Constraint-Induced Movement Therapy (CIMT) and Bimanual Therapy 

CIMT is employed in hemiplegic CP and consists of unilateral constraint on the 

unaffected side – usually via casting – coupled with shaping techniques and repetitive 

practice. Alternatively, bimanual training attempts to balance interhemispheric 

neuromotor competition and involves practiced use of integrated dexterous tasks using 

both affected and unaffected limbs. Both show promising clinical results, despite little 

mechanistic preclinical animal data to support or explain their efficacy 14–16.  

D. Gaming 

Virtual reality simulators and active video games (AVGs) require advanced and co-

ordinated leg, arm and body movement. AVGs can increase a child’s participation in 

active rehabilitation, daily living and engagement in social activities. Furthermore, it can 

improve self image and mental health. A recent systematic review showed an average 

increase in energy expenditure of 222% (±100%) during AVG play in typically 

developing children17. 

E.  Intrathecal Baclofen Pumps 

Baclofen is a gamma-aminobutyric acid (GABA) agonist, which impedes the release of 

excitatory neurotransmitters in the spinal cord, and is utilized to treat generalized 
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spasticity or dystonia. Baclofen can be infused via an intrathecal infusion pump,18 

reducing some side effects such as sedation, confusion, dizziness, ataxia, weakness, 

nausea, hypotension and parasthesia19. 

F. Botulinum Toxin (Botox)  

Botulinum toxin (Botox) is a neurotoxin that causes reversible neuromotor blockage (3-6 

months duration). It can provide temporary relief of tone, manage spasticity-related 

pain, promote longitudinal muscle growth and improve general motor function in 

targeted areas. Strong safety and efficacy evidence exists for its clinical use and low 

dose injections at multiple sites can be used safely in children 20, 21. 

G. Transcranial Magnetic Stimulation (TMS)  

TMS utilizes an electromagnetic coil, placed on the scalp, to create electromagnetic 

pulses that can focally and non-invasively depolarize specific neuronal cortical and sub-

cortical targets. Repeated TMS can induce long-lasting activational changes (Long term 

potentiation (LTP) and long term depression (LTD)) in selected brain areas, particularly 

those affecting neuromotor control. In animals, intermittent, high-frequency stimulation 

is generally associated with LTP and longer periods of lower frequency stimulation 

produce LTD. Although this is promising in model systems, the frequencies and 

intensities of signals used for LTP can lead to seizures in humans22; thus, this treatment 

needs further work to establish an optimal protocol for delivery.  
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4) Stem Cells 

There are many types of mature and stem cells which have been used for experimental 

(and early-phase clinical) treatments in CP and other CNS paradigms. These studies 

utilize intraparenchymal, intrathecal and intravenous delivery. 

I. Pluripotent Stem Cells 

A. Embryonic Stem Cells (ESCs) 

Embryonic stem cells (ESCs) are derived from the inner cell mass of the developing 

blastocyst and are pluripotent in nature. The capacity of ESCs to propagate in culture 

over many passages provides an almost unlimited supply of cells. However,their 

allogenicity necessitates immunosuppression in transplant scenarios. Furthermore, their 

ethical derivation (generally requiring destruction of the embryo) remains highly 

controversial, making alternative sources more attractive.  

B. Induced Pluripotent Stem Cells (iPSCs) 

Induced pluripotent stem cells (iPSCs) can be derived from human adult somatic tissue 

and arguably resemble embryonic stem cells morphologically, antigenically and 

phenotypically, offering an alternative source of pluripotent cells. By upregulating 

“Yamanaka” transcription factors OCT4, c-Myc, Sox2 and KLF4, 23, 24 iPSCs have been 

generated from several species, including mouse and human. As they can be prepared 

from an individual’s own cells, iPSCs can potentially reduce the possibility of immune 
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rejection while circumventing ethical issues that arise from cells directly derived from 

embryonic origin. The most efficient current derivation methods use viral vectors, and 

are thus unsuitable for human translation. These methods are further hampered by low 

iPSC yield and the recent discovery that human iPSCs often display somatic coding 

mutations as well as epigenetic variability25. The recent use of non-integrating vectors, 

such as the piggybac transposon26, excisable recombinase systems such as 

Cre/picornavirus systems27, ribonucleic acid28, small molecules29 and non-integrating 

viruses 30, have addressed some of the aforementioned concerns. 

C. Epigenetic Variability 

Although iPSCs share the same genetic signature as their somatic counterparts, 

differences with pluripotency are at least partially due to epigenetic variability. Indeed, 

methylation patterns and high-order chromatin organization in large heterochromatin 

domains are differentially expressed in pluripotent and differentiated cells31. 

Furthermore, this epigenetic variability is cell-type specific. iPSCs derived from distinct 

somatic populations reveal similarly distinguishable methylation patterns, characteristics 

and differentiation potential, despite identical iPSC derivation32, 33. Functionally, synovial 

tissue MSCs were more effective in cartilage repair than MSCs derived from bone 

marrow, muscle or fat, indicating that this epigenetic variability in genetically identical 

specimens can influence performance in vivo34. Differential methylation patterns are 

also observed between ES and iPS-derived pluripotent stem cells35, indicating that 
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epigenetic, as well as genetic, reprogramming may be necessary for successful human 

translation. 

D. Fate Restriction  

Despite their relative ease of expansion, pluripotent cells display a high degree of 

plasticity and can form teratomas upon transplant. For ESC or iPSC-derived cells to be 

used in successful cell therapy, they must be differentiated into multipotent or fate-

restricted progenitors. Differentiation can be guided by using a number of factors; 

however, NPCs created via the default pathway seem to be most effective at turning 

into myelinating oligodendrocytes in vivo36. The default pathway differentiates 

pluripotent cells along a neural lineage by first fate-restricting to a primitive, LIF-

dependent, state before reaching a definitive, more differentiated LIF-independent 

phenotype37.  

Alternatively, methods such as direct lineage reprogramming, or “trans-differentiation” 

have been used to laterally reprogram cells of one mature phenotype into another. Built 

on analysis of differential transcriptional regulation made popular by iPS technology, 

trans-differentiation has been used in neural paradigms to derive neurons or tri-potent 

neural precursors from fibroblasts38–41. Functional neurons have also been generated 

from hepatocytes, which originate from a different germ layer than neural tissue38. In 

vivo, neuroectodermal trans-differentiation has been explored between post-mitotic 

callosal and corticofugal neurons39 as well as retinal photoreceptors40. 
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II. Adult Stem Cells 

A. Neural Precursor Cells (NPCs)  

Neural precursor cells (NPCs) are naturally found in the sub-granular region of the 

hippocampus, sub-ependymal zone of the spinal cord and the sub ventricular area of 

adult brain. They can also be derived from fetal and embryonic brain tissue. They can 

generate all three neural cell types - neurons, astrocytes and oligodendrocytes. In 

addition, NPCs can be differentiated from pluripotent cell sources via the default 

pathway37. When transplanted in vivo without pre-conditioning, default pathway derived-

NPCs almost exclusively differentiate into glial subtype cells, to the exclusion of 

neurons36. Other groups have used different methods to derive alternative cell types 

from pluripotent sources (Reviewed in 41) and the first investigation using iPS-derived 

NPCs has shown functional efficacy in non-human primate models, albeit with tri-

potential in vivo differentiation42. 

Preclinically, transplantation of NPCs or more differentiated glial progenitor cells (GPCs) 

– both adult and pluripotent-derived - in animal models of injury and dysmyelination is 

associated with migration of cells to the site of injury, remyelination, functional 

improvement and low rates of tumorigenesis43–47 (Figure 2). 
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Figure 2: The Function of Neural Precursor Cells for Injury Repair 
Hypoxic and hemodynamic insults lead to robust demyelination. B) Transplanted neural 
precursors can migrate to sites of demyelination and replace lost oligodendrocytes. C) This 
remyelination often leads to functional recovery and can re-establish axonal signalling. D) Cell 
transplant also frequently leads to partial restoration of brain tissue. 

Furthermore, there is a natural but functionally insufficient propensity for expansion and 

mobilization of endogenous NPC populations following neurological damage48. Although 

some work has been done to activate or preserve these endogenous populations 

following injury via drug therapy49, 50, these studies have been unable to successfully 
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mobilize numbers of cells comparable to that which can be injected from an expanded 

exogenous population.  

The propensity of many NPCs and GPCs to differentiate into glial supporting cells (to 

the exclusion of neurons) in vivo is advantageous in the context of CP, where 

demyelination predominates and additional neuronal formation or motor neuron 

connectivity can be deleterious. Glial progenitor cells (GPCs) arising from neural stem 

cells are arguably an ideal source of safe and pure oligodendrocyte producing cells for 

remyelination in demyelination disorders such as hereditary leukodystrophies and CP 

(see 51 for review). Hence, NPCs (or their derivatives) show the most potential for 

positive functional results with clinical translation, despite a relatively small number of 

studies using them in neural injury models. 

B. Mesenchymal Stem Cells (MSCs)  

Within the bone marrow and umbilical cord exist two major subsets of cells: 1) 

hematopoietic and endothelial stem cells (CD34+), which form blood cells within the 

body, and 2) non-hematopoetic mesenchymal stem cells (MSCs, CD34-), which 

generate bone, cartilage, fat, blood vessels, and connective tissue 52, 53. MSCs are 

spindle-shaped, fibroblast-like multipotent adult stem cells with limited capacity for self-

renewal, which comprise a small population of the adherent stromal cell fraction. MSCs 

are traditionally derived from bone marrow, umbilical cord or placenta, although they 

have also been found in synovium, fat, blood vessels and articular cartilage 54–58. 
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Immunogenicity of MSCs is comparatively low; they exhibit minimal expression of 

Human Leukocyte Antigen (HLA)-B59, and can demonstrate immunosuppressive and 

anti-inflammatory activity. In the transplant microenvironment, MSCs can influence 

several other cell types- either through cell-to-cell contact, trophic modulation or a 

combination of both - including T cells, natural killer cells, dendritic cells, monocytes, 

and neutrophils. MSCs are known to secrete prostaglandins, VEG-F, FGF, indoleamine 

2,3-dioxygenase, soluble HLA-G5, IL-6, IL-10, TGB-ȕ��� +*)�� %L126�� DQG� KHPH�

oxygenase- 1 (60, 61 reviewed in 62). Although there is some evidence to suggest they 

can form neural derivatives in vitro, this does not occur in vivo to a meaningful extent63. 

Hence, the potential therapeutic benefit of MSCs appears to be mainly via immune 

mediation, angiogenesis, chemotropism and cellular sparing rather than via trans-

differentiation into neural myelinating cells.  

In preclinical studies of CP, intraperitoneal, intracardiac and intrahemispheric injection 

of MSCs has resulted in highly variable outcomes (reviewed in 64). Nevertheless, 

because hematopoietic niche-derived cells have been used for decades in cell 

transplant paradigms unrelated to CP, such as leukemia and autoimmune disorders65, 

they have promptly moved laterally into safety trials for CP. Considering the 

inconsistency associated with cell-sourcing and selection conditions currently employed, 

MSCs, at present, have limited application in chronic cases of human CP. 
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III. Mature Cells 

A. Peripheral Glial Cells 

Schwann Cells (SCs) and Olfactory Ensheathing Glia (OEG) are generally agreed to be 

myelinating cells, found in the PNS and olfactory system respectively. However, they 

are not “true” stem cells. These cells have myelination capacity and can provide trophic 

and structural support following injury66.Historically, SCs were the cell type first studied 

in transplant paradigms67. Because they create potent trophic and physical substrates 

for axonal growth, proximal sensory and propriospinal axons readily enter and rarely 

leave SC grafts 68, 69. The olfactory bulb and the lamina propria of the olfactory mucosa 

are the main sources of OEG. OEG have shown some promise in SCI models, but 

mixed results in brain injury models. Their limited application in in vivo brain injury 

models might be due to their origin or culture conditions (reviewed in 70). Consequently, 

strategies that employ SC transplant generally involve co-transplanted growth factors, 

biomaterials71 or cells such as OEGs. 

 

5) Current Clinical Stem Cell Trials for CP 

Currently, eight (one suspended, one completed with results) early phase clinical trials 

are using stem cells for treatment of CP or its antecedents (according to 

www.clinicaltrials.gov72), using umbilical cord or bone marrow-derived MSCs. Most 
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consist of treatment in the chronic phase of injury and primarily recruit non gender 

specific adolescents ~1 to 12 years of age, with diagnosed CP (often mixed etiology), 

that lack seizures. The only study (from Korea) with results was a double-blinded 

randomized trial. One hundred and five participants were between 10 months and 10 

years of age, with a male: female of ~2:1. They were separated into groups which 

received either: 1) Allogeneic umbilical cord blood infusion + Erythropoietin (EPO) 

injection + active rehabilitation, 2) EPO + active rehabilitation, or 3) active rehabilitation, 

in the chronic phase of injury. Assessment was made at baseline and 1, 3 and 6 months 

post intervention. Primary outcome measures of motor function and standardized gross 

motor function were improved in the MSC group compared to other groups. Secondary 

outcome measures of cognition and neurodevelopmental outcome were also improved 

in the MSC group compared to other groups (clinical trials identifier: NCT01193660). 

Despite these results, neurodevelopmental time points beyond 12 months post 

treatment, coupled with secondary analysis, is required to fully elucidate the potential of 

this study. Seven clinical trials using NPCs exist in various CNS disorders. The first 

phase I clinical trial using human ESC derived GPCs for spinal cord injury (clinical trials 

identifier; NCT01217008) showed promise, but was halted in 2011 due to reported 

financial difficulties. Since then, fetal-derived NPCs and GPCs have been used as the 

primary source of NPCs in clinical trials. In other demyelination disorders such as 

advanced Batten’s disease (neuronal ceroid lipofuscinosis) and Pelizaeus-Merzbacher 

disease, a high intraparenchymal dose of NPCs in multiple injection sites was well 

tolerated in phase I studies73, 74.  
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Furthermore, there is a growing subversive culture of “stem cell clinics”, which operate 

outside of geographic regulation. These offer “stem cell therapies” for a variety of 

conditions, based on non-existent or sparse preclinical data. Anecdotal claims of 

efficacy from such clinics often feed a worrying trend of “Stem Cell Tourism”, with 

individuals and parents seeking treatment or “cures” for their children with 

developmental disabilities. While a detailed discussion is elsewhere (75), financial costs 

(often exceeding $30,000) and individual risks are high.  

6) Combinatorial Strategies  

The extent of brain injury in CP is often not constrained to just axonal loss and 

demyelination. Cognitive and behavioural deficits commonly involve grey matter 

damage; therefore strategies that preserve all three are important to consider in the 

context of current rehabilitative strategies and future stem cell approaches. Current 

strategies for CNS repair have largely focused on two separate approaches to promote 

recovery: exogenous cell transplantation and endogenous cell stimulation. However, it 

is increasingly likely that additional approaches, which increase plasticity and structural 

support (bioscaffolds) as well as immunomodulation, will be required in combination 

with stem cell transplantation. 

I. Growth Factors and Engineered Stem Cells 
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Growth factors, such as Neurotrophin-3 (NT-3) (which induces neuronal differentiation), 

granulocyte colony-stimulating factor (G-CSF), stem cell factor and brain derived 

neurotrophic factor (BDNF), are associated with improved transplant survival and 

migration. Furthermore, multifaceted strategies involving NPCs, combined with growth 

factors (NT-3 or multiple trophic factors), chondroitinase or Schwann cells, have 

increased functional recovery in spinal cord injury (see review 76).  

II. Bioscaffolds 

Cross linked hyaluronan (HA)-based synthetic extracellular matrix (sECM)77–79 and 

alginate scaffolds76 can secrete growth factors over days and weeks post-implantation. 

Their capacity to secrete substrate over a sustained period of time ameliorates the need 

for repeated invasive injections. In the context of brain injury, where extensive loss of 

cerebral tissue exists, providing a physical substrate to bridge the tissue gap during 

cellular regeneration strategies is vital. In experimental SCI, self-assembling peptide 

nanofibers (SAPs) from peptide amphiphile molecules have been used to bridge the 

spinal cord cavity. Additionally, use of these SAPs resulted in axonal elongation and 

glial scar inhibition.80. Evidence is emerging that SAPs, from 16 peptide (RADA16-1) 

molecules, can be effective in brain injury models. They have demonstrated integration 

into the cavity and a reduction in the number of immune reactive cells local to the lesion 

(see review81). Multifaceted strategies of polymer scaffolds, growth factors and NPC 

transplantation in experimental SCI76 indicate an important technological advancement 

for improved structural support and cell survival in clinical applications of brain injury. 
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III. Clinical Combinatorial Treatments 

Although stem cell science shows great promise for reducing CP symptom load, clinical 

rehabilitative strategies are currently the only standardized treatments that provide 

benefit. Clinical combinatorial treatments are growing in popularity in attempts to see 

additive or synergistic effects. Studies using functional neuromuscular electrical 

stimulation in combination with BTXA injection or wrist splints (see 82 for review), or 

direct current stimulation (tDSC) combined with CIMT 83 have shown promise, but 

require greater numbers for complete evaluation.  

While one current clinical trial using combinatorial strategies of EPO and cord blood 

MSCs in CP claims positive results, it is yet unclear what additional benefits combined 

treatments may have.  

7) Conclusions 

Despite preclinical progress, media focus and clinical promise, stem cell therapy for CP 

remains incomplete and in need of optimization. Easily-expandable, patient-specific 

cellular therapies are on the horizon, but are currently several years (if not decades) 

away from clinical reality. Despite this, parents of children with developmental 

disabilities are often unsure and often misguided as to what treatment options exist and 

where to seek them. The future of stem cell therapy for CP is evolving. A much better 
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understanding of basic stem cell biology must be established in the field, with 

appropriate cell type, source, derivation methods and safety profile optimized prior to 

clinical trials. Also, the correct timing, route of delivery and patient demographic must be 

taken into consideration when designing early clinical studies. Finally, successful 

regenerative medicine will involve a multifaceted, combinatorial approach combining 

current clinical rehabilitation, bioengineering and regenerative stem cell based 

strategies. Stem cell therapy shows substantial promise in the context of regenerative 

medicine. Once these important challenges and milestones are overcome, stem cell 

transplantation for CP could benefit millions of affected children worldwide. 
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