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Future Work
• Testing more CNN architectures and exploring hyper-parameter spaces.
• Adaptation to segmentation of particles in environmental dust samples.
• Evaluating multi-class segmentation for sub-particle characterisation of 

material components.
• Exploring machine learning to perform blend partitioning.

Improving Coal Characterisation Using Machine Learning

Introduction
Characterisation of the microscopic structure of coal is fundamental to
understanding its chemical and physical behaviour. Analysis of coal samples
allows benchmarking of potential yield and ash content during the exploration
stage, estimation of washability during processing including fine coal recovery
via flotation processes, and estimation of fusible content to improve coal
utilisation for coke making or power generation.

CGA software allows for the
automatic analysis of large
coal images which provide
reliable statistics on the
distribution of coal types
and impurities. It has been
successfully used to analyse
hundreds of coal samples.
One important feature of
this software is the
automatic segmentation of
coal images into foreground
(particle) and background
(resin). To date, this feature
has been implemented using
classical image processing
algorithms.

Figure 1: Top Left: microscopy image; Top Right: post-
segmentation; Lower Right: reflectance histogram; Lower Left: 
characterised image
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Due to the limitations of hand-engineered image processing and subtle
complexities in coal images, the automatic segmentation results then need to
be assessed and refined by an expert before proceeding to characterisation.
The appeal of reducing this time investment from experts led to investigations
into how machine learning could be applied to this feature of CGA software.

Semantic Segmentation
Machine learning has made significant advances in image processing tasks in
recent years. One such task is semantic segmentation, a supervised learning
task wherein a model learns how to map each pixel of an input image to its
own output class. Convolutional neural networks (CNNs) are a class of machine
learning models that have produced impressive results in the semantic
segmentation of natural images, and have been successfully applied to more
specialized image domains such as medical microscopy. CNNs are distinguished
from other types of neural networks by their use of convolutional layers that
take advantage of local spatial invariance in images by learning a set of shared
weights that are convolved over the entire 2D input much like filter kernels in
classical image processing. This avoids the curse of dimensionality and allows
CNNs to ‘go deep’ by incorporating many more layers while remaining
efficiently trainable. Very large training sets of input images and corresponding
ground truth label images are required to learn complex mappings. Many
different CNN architectures exist in the literature and they are a topic of on-
going research. For our model, we extended the well-known U-Net CNN.

Learning to Recognise Coal
Compiling a sufficiently large dataset to train our model for the task of semantic
segmentation on coal images was made possible due to existing archives of
microscopy images and label images generated with CGA software and refined
by our experts. Our initial dataset consisted of microscopy lab samples totalling
approximately 360 megapixels.

Figure 3: Left: microscopy image; Right: model output vs 
expert ground truth for label map (green: model, red: 
export, yellow: both)

Due to the complexity of
semantically segmenting coal
images, even expert-provided
label images will contain some
amount of error. However, the
literature shows that CNNs are
resistant to label noise that is
spread across the training set.
Our model was able to converge
despite this error.

Efficiently training our model required us to divide this dataset into smaller
patches to give us a sufficiently large number of individual examples.
Additionally, the size of these patches determined the maximum amount of
spatial context that could inform the classification of any given pixel, as well as
the hyper-parameters and computational requirements of training and
prediction. For coal images, experts judged that high-frequency textures and
local context around resin-particle interfaces were highly informative to
accurate segmentation, whereas longer-range spatial context (e.g.
encompassing multiple separate particles) was less informative. A patch size of
256x256 pixels adequately encompassed the typical scales of these superior
features and gave us a dataset of 10,000 unique examples. These examples
were then shuffled and split into a training set, validation set and test set in an
approximate 80%-10%-10% split. During training, randomised image
augmentations such as brightness and contrast adjustment, Gaussian blurring
and noise, rotation and translation were applied to examples.

Our model contained over 41
million learnable parameters
and was trained for 60 epochs
over approximately 10 hours on
2x Nvidia Quadro P5000 GPUs.
Prediction was then performed
on overlapping patches from
image data in the unseen test
set. Models from our latest
training efforts have achieved
over 97.8% accuracy, and 96.4%
mean intersection-over-union
on the test set.
Predictions from our models
have already been useful in
highlighting instances of human
error, and could be used to
bootstrap a process of reducing
label noise and re-training.

Figure 2: Convolutional layers assembled in a representative CNN architecture.
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Figure 4: Top: probability map (for particle class); Bottom: 
certainty map (maximum probability for any class).


