

Bio-geo analytics in the face of real data: sparse, heterogeneous, multi-dimensional – network analysis to the rescue?

Prof. Peter Fox

(pfox@cs.rpi.edu, @taswegian, #twcrpi, ORCID: 0000-0002-1009-7163) Tetherless World Constellation Chair, Earth and Environmental Science/ Computer Science/ Cognitive Science/ IT and Web Science Rensselaer Polytechnic Institute, Troy, NY USA And many people to be named as we go... C3DIS, Canberra, ACT, AUSTRALIA, May 7, 2019

What to expect...

- Bio-geo sciences data sparse, heterogeneous, ...
- Network science
- Minerals and Fossils over <when> and <where>
- Serpentinization
- Lakes and water quality
- Data science as a socio-technical undertaking
- What is the needed future for network analytics?

Deep Carbon Observatory (DCO) ...

 "We are dedicated to achieving transformational understanding of carbon's chemical and biological roles in Earth."

		TIMELINE		
2009-2012	Mid 2012-2013	Late 2012-2018	2019	2020
DCO Program Secretariat Established and Research Begins	Internal Engagement and Data Science Infrastructure Development and Implementation	External Engagement and Data Science Initiatives Launched and Research Project Activity Continues	Reporting and Synthesis Year	Dissemination Year

Building toward Synthesis and Dissemination

www.deepcarbon.net

DCO Data Legacies: Geoscience Data Journal Special Issue, Oct. 2019

- Group 1: Super-sized Sample Inventory, Inventory of "Deep Carbon" Instrumentation, Inventory of "Deep Carbon" Field Sites
- Group 2: Census of Deep Microbial Life, Thermodynamic Parameters for High-Pressure, High-Temperature Physics and Chemistry Modeling, Global map of Carbonate Lithologies of Earth
- Group 3: Global Earth Minerals Inventory, Global Abiotic Fluid Distribution, Inventory of Dynamics and Physics of Deep Fluids, Inventory of Geochemical Models, Geo Sample Curation
- Group 4: Inventory of Diamonds with Inclusions + Derived products, Carbon Cycle, Flux of Volcanic Systems (magmatic, ...), State of High P and T Carbon and Related Materials

https://deepcarbon.net/page/dco-open-access-and-data-policies

Network Analysis

- Academic field which studies complex networks considering distinct elements represented by **nodes** (or vertices) and the connections between the elements or actors as **links** (or edges).
- Successfully applied in statistical physics, particle physics, computer science, biology, economics, finance, climatology and sociology. But these methods had not been fully leveraged in many areas of Earth Science.
- Using networks can help view existing geological and biological information systems from a purely mathematical perspective, and infer new relationships or new information about existing relationships.
- Cf. neural networks (stay tuned)

Courtesy: Eleish, Morrison, Prabhu et al.

What is encoded vs What is seen

Encoded	Seen/Inferred/Calculated
Nodes	Patterns in the Network Geometry
Links	Sub-Communities formed in the Network
Layout (Mostly Force Directed)	Important Hubs in the Network
Additional Parameters for Nodes (Optional) and Links	Additional metrics that explain the complexity of the environment (assortativity, betweenness, centrality etc.)

Comparison of how different networks change = understand the given environment. I.e. network "evolution"!

Mineral Networks

(http://dtdi.carnegiescience.edu)

Mineral occurrence data

mineral name locality_id parent id mindat id is bottom level is meteorite locality name Malachite 268 255 227207 False False Miramor District 226717 True Unnamed W Occurrence (1) Malachite 307 291 False Malachite False Chohe-Arusi Cu Occurrence (Chohe-Hrusi) 313 310 227375 True 313 310 227375 True False Chohe-Arusi Cu Occurrence (Chohe-Hrusi) Azurite Malachite 315 False Ghuri-Safed Cu Occurrence 310 227383 True Calcite 315 227383 True False Ghuri-Safed Cu Occurrence 310 Azurite 315 310 227383 True False Ghuri-Safed Cu Occurrence Rod-e Duzd Cu Occurrence (Rode-Duzd) Malachite 340 336 227393 True False Rod-e Duzd Cu Occurrence (Rode-Duzd) Azurite 340 336 227393 True False 360 359 False Airistan District Magnesite 226925 False Magnesite 361 360 226583 True False Unnamed Magnesite Occurrence Malachite 505 504 226850 False False Baghran District 505 False Baghran District Azurite 504 226850 False Aragonite 515 226855 False False Garmser District (Garmsir District) 504 Malachite 533 520 227328 False False Shaida Cu-Zn Deposit 533 False Shaida Cu-Zn Deposit Azurite 520 227328 False False Shaida No. 3 Occurrence Azurite 536 533 227331 True Malachite 538 520 227338 True False Unnamed Cu Occurrence (1) 538 227338 True False Unnamed Cu Occurrence (1) Azurite 520 Zinda Jan Baryte Occurrence (Zindajan; Zandadshon) Calcite 585 582 227337 True False Malachite 609 587 226902 False False Khaki Jabar District (Khaki Jabbar District) Azurite 609 587 226902 False False Khaki Jabar District (Khaki Jabbar District)

Mineral coexistence matrix

		Chalcopyrite	Malachite	Chalcocite	Bornite	Azurite	Tetrahedrite	Covel
	Chalcopyrite	25179	6949	3935	4376	3298	3654	32
	Malachite	6949	11439	2920	2437	4603	1564	20
	Chalcocite	3935	2920	5330	2468	1706	1034	19
	Bornite	4376	2437	2468	5197	1414	1094	16
_	Azurite	3298	4603	1706	1414	5197	1071	12
	Tetrahedrite	3654	1564	1034	1094	1071	5010	1.
	Covellite	3215	2089	1935	1695	1294	1122	37

Symmetric adjacency matrix

 Rows and column names represent mineral species

Values represent **co-occurrence** of 2 minerals

Mineral Networks – data structures

•Links

Nodes

source	target	value	Name	Name (plain)	Cu redox	color	luster	hard
Abenakiite-(Ce)	Adamsite-(Y)	0.83333333	Abswurmbachite	Abswurmbachite	2	black	1	6.5
Agricolaite	Albrechtschraufite	0.83333333	Agaite	Agaite	2	blue	3	25
Adamsite-(Y)	Alexkhomyakovite	0.85714286			2	blue	0	2.5
Adamsite-(Y)	Alstonite	0.9444444	Agardite-(Ce)	Agardite-(Ce)	2	green	2	3.5
Alexkhomyakovite	Alstonite	0.85714286	Agardite-(La)	Agardite-(La)	2	green	2	3.5
Aerinite	Alumohydrocalcite	0.96	Agardite-(Nd)	Agardite-(Nd)	2	green	2	3.5
Alloriite	Alumohydrocalcite	0.83333333	Agardite-(Y)	Agardite-(Y)	2	green	2	3.5
Alstonite	Alumohydrocalcite	0.97468354	Aikinite	Aikinite		black	1	2.5
Abenakiite-(Ce)	Ancylite-(Ce)	0.83333333	Aioite	Aioite	2	blue	2	
Adamsite-(Y)	Ancylite-(Ce)	0.83333333	Aktachita	Aktochito		block	-	25
Agricolaite	Ancylite-(Ce)	0.85714286	ARIdSIIILE	AKIdSIIILE		DIACK	1	3.5
Albrechtschraufite	Ancylite-(Ce)	0.83333333	Aldridgeite	Aldridgeite	2	blue	2	3
Alexkhomyakovite	Ancylite-(Ce)	0.85714286	Algodonite	Algodonite		gray	1	4
·		1	Allochalcoselite	Allochalcoselite	1,2	brown	3	3.5

Carbon mineral bi-partite network

Colour nodes=carbon mineral species Black nodes="locations"

- R
 - igraph
 - ggnetwork
 - Network
 - SNA
 - d3Network
- JS
 - D3js
 - Threeis

Two types of network metrics:

Local (few nodes) Global

(entire network)

- How "important" is one node?
- Does one node "communicate" between two distinct groups?

- Is the network highly interconnected?
- Does the network
 form distinct groups
 or clusters?

Please make a note: metrics focus on dominance and uniformity, some nodes or all ... is this sufficient?

Metrics: local (left) and global (right)

<u>Degree</u> is the number of links connected to a given node.

Distance is the geodesic (shortest) between any two nodes.

<u>Betweenness</u> is a measure of the number of geodesic paths that pass through a given node.

<u>Diameter</u>: largest geodesic distance in a network (the shortest path between the two most separated nodes) <u>Mean Distance</u>: average "degree of separation" in a network

Metrics: Global

Centralization:

A measure of how central a network's "most central" node is relative to how central all the other nodes are.

(really important for terrorist and social networks ;-)

- Degree centralization: number of links to each node
 - Are there many highly interconnected nodes?
- <u>Betweenness centralization</u>: number of shortest paths through each node
 - Are there a few key "broker" nodes?

Mineral Global Metrics

Metric	Earth	Mars	• • • • • • • • • • • • • • • • • • •	Vesta
Density	0.64	0.27	0.69	0.78
Maximum Network Diameter	2	3	3	2
Mean Network Diameter	1.36	1.69	1.26	1.22
Degree Central.	0.34	0.62	0.23	0.22
Betweenness Centralization	0.02	0.09	0.03	0.02

13

14

Mineral Co-occurrence and "clustering"

Walktrap Community Detection

- Groups identified to correspond to Paragenetic Mode, i.e. how and when the Minerals were formed.
- They also represent a network!

Morrison SM, Liu C, Eleish A, Prabhu A, Li C, Ralph J, Downs RT, Golden JJ, Fox P, Hummer DR, Meyer MB, and Hazen RM (2017) Network analysis of mineralogical systems. American Mineralogist 102

Paleontology

Assortativity (Homophily)

Network equivalent of Pearson correlation coefficient

Values between 1 & -1 1 = similarity favors connections 0 = non-assortative -1 = opposites attract

•Muscente AD, Prabhu A, Zhong H, Eleish A, Meyer M, Fox P, Hazen R, and Knoll A (2017) The network paleoecology of mass extinctions. (Proceedings of National

Networks and time, and ..

Muscente (Nature Comm.): "Nama and White Sea fauna are different facies, whereas a mass extinction occurred after the Avalonian." science hypothesis

Pulsed extinction in Ediacaran marine fossils

Muscente et al. 2019 Nature Comm .

Serpentinization and hydrocarbon formation from experiments...

Fang Huang ^a, Samuel Barbier ^{b,c}, Muriel Andreani ^b, Renbiao Tao ^b, Jihua Hao ^b, Osama Minhas ^a, Kathy Fontaine ^a, Peter Fox ^a and Isabelle Daniel ^b

a. Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, 12180; b. Univ Lyon, UCBL, Ens Lyon, CNRS, Laboratoire de Géologie de Lyon UMR 5276, Villeurbanne, France; c. Total CSTJF, Avenue Larribau, F-64018 Pau, France;

- Serpentinization is a hydrous alteration of ultramafic rocks in hydrothermal systems, which generates H2 and organic species, and can potentially contribute to the origin of life.
- In past decades, serpentinization has been extensively studied in labs, producing methane in highly variable amounts.
- Such a large experimental variability could not be explained => retrieval of "data" from experimental literature == meta-data science!
- We have used random forest and network analysis

Random Forest Results

We use **all** experimental parameters as model features and the amount of CH4 production as model target to train a random forest model. The model gives importance scores to each features (see below).

Top factors influencing CH4 production

Network Analysis Results

Network built by calculating the cosine similarity of each experiment with all features, including experimental parameters and the amount of hydrocarbon produced.

DATA SCIENCE

Lake research challenges

Pis: Kevin Rose, Peter Fox (RPI), Harry Kolar, Mike Kelly (IBM) PhD: Ahmed Eleish, Anirudh Prabhu

Spatially -

What watershed features most influence water quality? Does spatial configuration matter? And, by extension, how can competing interests between land use demands and freshwater quality be optimized?

Temporally -

What watershed features best predict long-term changes in water quality? Does spatial configuration matter?

Multispectral Landsat satellite imagery

- ~2500 images of US lakes and their watersheds over 2013-2018, but goes back decades for previous satellites.
- 9 bands per image.
- 30m pixel size, 16 day return time.

• Water quality measurements

- In situ measurements including water clarity, algal biomass, dissolved organic carbon.
- Many other physical, chemical, and biological measurements.
- All data sources are publicly available.

First Landsat 8 composite image of the continental US.

Sour approach

- Satellite imagery processing
 - Compute mean, median, and variance image for each lake across time interval.
 - Using median images compute remote sensing indices, e.g. normalized difference vegetation index (NDVI), normalized difference water index, and modified soil-adjusted vegetation index.
- Analysis
 - Examine patterns in **relationships** between various features.
 - Using identified trends to construct and test various machine learning models that **relate** data extracted from the satellite imagery to water quality measurements.

Lake Barney, Wisconsin

Lake and watershed RGB composite

Waveband cross-correlation

Lake Barney, Wisconsin

Normalized Difference Vegetation Index

NDVI may be a useful approach to water feature detection..

Of course: network analysis...

This page is intentionally left blank.

Data Science as-a Socio-Technical System

Schematic for Deep Time Virtual Laboratory

- Multi-layer networks, and network "difference" (not just a number)
- Characterizing heterogeneity and non-uniformity
- Networks over "time" (or some other parameter)
- Overcome my dissatisfaction with network metrics being "a number"...

- Please take a look at the Science of Data Science paper (Fox and Hendler, Big Data. June 2014, 2(2): 68-70. doi:10.1089/big.2014.0011
 - Look at the call to action

• Thanks. pfox@cs.rpi.edu

3D Network Geometry

