Software Quality Assessment in Practice: A Hypothesis-driven
Framework

Markus Schnappinger, Mohd Hafeez Osman,

Alexander Pretschner
Technical University of Munich
Munich, Germany
{schnappi,osmanm,pretschn}@in.tum.de

ABSTRACT

Software quality models describe decompositions of quality char-
acteristics. However, in practice, there is a gap between quality
models, quality measurements, and quality assessment activities.
As a first step of bridging the gap, this paper presents a novel and
structured framework to perform quality assessments. Together
with our industrial partner, we applied this framework in two case
studies and present our lessons learned. Among others, we found
that results from automated tools can be misleading. Manual in-
spections still need to be conducted to find hidden quality issues,
and concrete evidence of quality violations needs to be collected to
convince the stakeholders.

CCS CONCEPTS

« Software and its engineering — Maintaining software;

KEYWORDS
Software Quality, Quality Assessment, Software Maintenance

ACM Reference Format:

Markus Schnappinger, Mohd Hafeez Osman, Alexander Pretschner, Markus
Pizka, Arnaud Fietzke. 2018. Software Quality Assessment in Practice: A
Hypothesis-driven Framework. In ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM) (ESEM ’18),
October 11-12, 2018, Oulu, Finland. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3239235.3268922

1 INTRODUCTION

Explicit attention to characteristics of software quality can lead to
significant savings in software life-cycle costs [1]. Since the 1970s,
several quality models have been introduced, such as Boehm’s
model [1], FURPS model [11], ISO/IEC 9126 [12] and ISO/IEC
25010 [13]. Those models mostly describe the characteristics of
software quality. To this end, the measurement and the assessment
activities to evaluate these quality characteristics are still not pre-
cisely defined. In the 1980s, Garvin [9] pointed out that the notion
of quality is subject to the perspective taken. Product quality is
addressed by the ISO 9126 standard describing technical aspects of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEM 18, October 11-12, 2018, Oulu, Finland

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5823-1/18/10...$15.00
https://doi.org/10.1145/3239235.3268922

Markus Pizka, Arnaud Fietzke
itestra GmbH
Munich, Germany
{pizka,fietzke}@itestra.de

quality, while ISO 25010 also discusses the quality in use perspec-
tive. Trying to establish efficient quality control mechanisms, tools
such as ConQATl, PMD?, Findbugs3, Sonarqube4, Teamscale® and
various coding style checkers were developed. As Koc et al. [14]
point out, these tools typically detect many false positives. This
claim is supported by Voas’ finding, that static metrics can only
measure the structure of software, but not the quality of the behav-
ior [21]. Another approach to software quality are activity-based
models, as proposed by Deissenboeck et al. in [5] and Broy et al.
in [2]. Based on these models, Wagner et al. [22] tried to close the
gap between abstract quality models and quality assessments. As
shown in literature, software does indeed age [17] and software
maintenance costs increase over time [7]. Hence, Pizka and Panas
established the concept of software health checks in [18]. Still, these
quality reviews need to be convincing to overcome developers’ in-
trinsic resistance against assessments [19].

Goal. Motivated by the above context, we aim at closing the gap
between abstract quality characteristics, quality assessment activi-
ties, and concrete aspects to look into when trying to assess these
abstract qualities. This would provide a richer basis for judging the
quality itself than purely metric-based approaches. Because this is
a work in progress, we exemplify the idea with one quality, namely
maintainability, and a few insights we got from our case studies.
Our goal is to make software quality assessments systematic and
structured. The approach described in this paper follows a struc-
tured hypothesis-driven framework. It was formulated based on
15 years of our industrial partner’s practice, our observations, and
literature review. This framework includes the following activi-
ties: comprehension of software artefacts, building hypotheses,
performing analyses, collecting evidence and devising conclusions.
Together with our industrial partner, we have used this framework
to conduct quality assessments for two real-world systems. These
systems are from a well-known domain (financial), are medium
to large in size, and provide reasonable artefacts (i.e. source code,
documentation).

Contribution. The contributions of this paper are: (i) we intro-
duce a structured software quality assessment framework; (ii) our
activities in performing quality assessments of real-world software
are briefly explained; and (iii) finally, we identify limitations of
tool-based software quality assessments.

!http://www.conqat.org
“http://pmd.sourceforge.net
Shttp://findbugs.sourceforge.net
*https://www.sonarqube.org
Shttps://www.teamscale.com

https://doi.org/10.1145/3239235.3268922
https://doi.org/10.1145/3239235.3268922

ESEM ’18, October 11-12, 2018, Oulu, Finland

2 RELATED WORK

In terms of research related to quality frameworks, Cavano and
McCall [3] provided a framework to give insights into software
quality. Their research indicated that such frameworks can be useful
to identify quality problems early in the development and result in
large cost savings. Meanwhile, Lochmann [15] proposed a quality
meta-model describing the structure of quality models. This meta-
model can be used to define a hierarchy of properties, that influence
the quality of a software system.

In the following, we present work that reports observations from
quality assessment in practice. Gousios et al. [10] analyzed open
source systems and used the publicly available product and process
data to determine their quality. They enhanced the static code anal-
ysis by also taking bug management data and other data from the
version control systems into account. Stiirmer and Pohlheim [20]
mainly focussed on the quality of model-based software projects.
They assessed the systems not only with respect to quality crite-
ria form the standards, but with respect to the success of quality-
related operations like reviews and testing. Combining classical
viewpoints of quality with those of the EU in [23], Wolski et al.
evaluated projects of an EU-funded program. They regarded both
process and product-related measurements to compare the quality
of projects internally and externally. Yoo and Yoon [25] focussed on
dependability as the most important quality aspect. They assessed
software quality through test cases and applied formal checking to
verify that the dependability requirements are implemented in the
system.

Meanwhile, Fagerholm et al. [8], discuss a model for continu-
ous experimentation. Their iterative approach features phases for
building hypotheses, performing experiments, and learning from
the results before creating another hypothesis.

From our initial observation, there is not much work that dis-
cusses quality assessment in practice and explains in detail the
process, tools and measurements used. In this paper, we present
practical quality assessment in detail and introduce a tailorable
framework to analyze the quality of a system.

3 CASE STUDIES
3.1 Case Study A

In this case study, an offer management system used by an insur-
ance company was evaluated. The owner of the system wanted to
know the current quality status and asked for recommended short-
term actions that can be deduced from these insights. According
to the owner, the time to market provided by the system is non-
satisfactory. The introduction of new tariffs or products requires
high effort and is time-consuming. The system has been maintained
for more than 15 years and was technically developed based on
Model Driven Development (MDD). The system maintenance is
outsourced to an offshore provider with approximately 50 develop-
ers working on it. Table 1 shows more detailed information about
the case study A.

3.2 Case Study B

This system is an offer calculation system for brokers developed
and used by an insurance company. It has been developed for the

M. Schnappinger et al.

Table 1: Case Study A and B

Items Case Study A Case Study B

Domain Financial (Insurance) Financial (Insurance)

Purpose Offer Management Offer Calculation
System System for Brokers

Dev. Language Java Delphi

Release (year) 2000 2000

Development Outsourced In-house

Maintenance Outsourced In-house

Provided Arte- Source Code, Architec- Source Code, Archi-

facts ture Document, Data tecture Document,
Model, User Manual Data Model

Size Medium-Large Medium (486k SLOC)

(1.8M SLOC)

past 15 years by a group of 3 developers using Delphi. Now, the
management considers to replace it with a state-of-the-art tech-
nology. Therefore, the owner asked for a structured review of the
technical state of the program, a comparison with similar systems
and a draft of recommended actions for mid-term improvement.
Table 1 summarizes the case study B.

4 QUALITY ASSESSMENT FRAMEWORK

Combining our industrial partner’s 15 years of experience and our
own insights, we composed a framework that describes a structured,
activity-based assessment process for software systems. Such an
assessment is different from a Modern Code Review and can rather
be seen as a general post-release software audit. Its purpose is to
evaluate a given software system in order to find potential quality
defects and recommend actions to improve the quality of the system.
This is sometimes called software health check [18]. Before the
assessment process started, there were several preliminary activities
conducted, such as a kickoff meeting, a brief demonstration of the
system and handing over the artefacts. The quality assessment
framework is illustrated in Figure 1.

4.1 Input

As shown in Figure 1, we grouped the input information into three
categories. One category captures system and project artefacts. Typ-
ical examples of system artefacts are source code, data model, doc-
umentation, and other material needed to reproduce the technical
project. For context comprehension, we collect context information
that is not stated in the software artefacts as well. Among these are
current issues of the system, observed quality in use deficits, the
expectations of the stakeholders, the background and history of the
system, and more. The third category of input information is the
system owner’s motivation for the assessment, i.e. known problems,
questions to be answered, and the trigger for the assessment.

4.2 Process

The quality assessment process consists of three phases: overview,
building hypotheses, and analysis.

Overview: This phase aims at acquiring a high-level understanding
of the software by mapping the functionality of the system and the

Software Quality Assessment in Practice: A Hypothesis-driven Framework

software structure. The functionality of the system is derived from
the documentation that was provided by the system owner. Also,
we conducted an informal interview with a quality consultant that
is familiar with the software domain to capture several common
functionalities of such systems.
Building Hypotheses: Figure 1 visualizes that the phase of build-
ing up hypotheses consists of two aspects: Initial hypothesis and
working hypothesis. The initial hypothesis is an assumption about
the quality of the system and its problems that is purely based on
intuition and not on evidence from any detailed analysis. Quality
consultants implicitly build a first hypothesis based on the infor-
mation from the kickoff meeting, the problems motivating the
assessment, and their knowledge about common quality defects. In
contrast, the working hypothesis characterizes an assumption about
the quality of the system, that is at least partially based on evidence
but still needs to be confirmed through further analysis. Working
hypotheses represent refinements of initial hypotheses.

Analysis: The actual analysis is guided by the hypotheses and is

divided into three activities.

o Selection: This task relates quality models to the assessment. The
quality consultants specify the system parts to be analyzed and
choose what facts are to be observed in these files. This selection
is driven by a quality model, in our case the fact-and-activity
matrix presented in [2]. In this model, cost-intensive maintenance
activities are correlated with observable facts within a software
system. Sometimes a lack of information becomes obvious at this
stage, forcing the quality consultants to inquire additional input
from the system owner.

o Assessment: The presented framework allows quality consultants
to use any quality assessment method. Depending on the quality
attributes and the available information, they can apply either
automated, semi-automated or manual methods. In this task, the
system is evaluated with respect to the specified criteria.

o Evidence Collection: In order to provide valuable feedback to the
owner, it is important to augment the observations and conclu-
sions with tangible evidence. We select evidence that represents
average findings as well as very severe instances. Code fragments,
for example, can illustrate performance issues, or concrete in-
stances of misleading comments provide proof for statements
about the quality of comments. Even measurements from auto-
mated tools can be useful evidence if they are put in the right
context and are supported by concrete examples. As the evidence
provides indication either in favor of the current hypothesis or
against it, the working hypothesis is adapted according to the
new insights and the iterative analysis is continued.

4.3 Output

After several rounds of iteration, the quality consultants come
to a conclusion. This conclusion is combined with the context
information about the system to identify possible root causes for the
observed quality defects. Adequate actions to improve the quality
are deduced and proposed to the owner. This last step has a more
strategic nature and is therefore omitted in this paper, as we focus on
the technical review. In addition to a final presentation, intermediate
presentations were delivered to keep the owner up-to-date and
provide an opportunity to discuss the next steps.

ESEM ’18, October 11-12, 2018, Oulu, Finland

| Motivation of
N Assessment Datamodel Environment
P Trigger Source Code Quality-in-use
U Problems Configurations Cost Structure
T Questions Documentation L1
»l« l Overview
Overview First Impressions
| 1
» __ Building Hypotheses
Initial . Working
Hypothesis Hypothesis :
1 v :
=3
i « D
E Activities AnalySIS Y
=1
v . H-
g E Selection i3
E
S
S « Automated
* Semi-automated Assessment
« Manual Inspection
2
Measurements, . .
—— Evidence Collection
Code Fragments and Interpretation of Results
0 —_————- #, ———————————————————— - = I
u | Conclusion
T | Analysis 1
p | Conclusion] Recommended 1
u ! Actions /I
T O

Figure 1: Quality Assessment Framework

5 THE QUALITY ASSESSMENT

5.1 Case Study A

Input: The list of inputs for case study A can be found in Table 1.
Overall, the size of the provided system files exceeded 2 GB and in-
cluded more than 10,000 files labeled as documentation. The source
code was mostly written in Java and consisted of approx. 16,000 Java
files. There was only little information provided about current costs,
open requirements and the bug history. The data model was pro-
vided as a graphical representation spread over several documents.
As described in Section 3, we also knew that the software faces a
time-to-market problem, due to time-consuming implementation
changes needed to introduce new products.

Process: The results and findings of this phase are the following:
Overview: Since the software documentation only showed parts
of the software design, we rediscovered the low-level software
structure by constructing UML diagrams from the source code
using the tool Enterprise Architect CASE . From these diagrams,
it is almost explicitly shown that the modules of this software
are structured according to the system functionality. Hence, the
mapping between functionality and structure is straightforward.
Building Hypothesis: From a product quality viewpoint, the soft-
ware faces a modifiability issue that decreases its maintainability.
Therefore, we formulated the initial hypotheses based on the main-
tainability matrix from [6] and our own experience. For example,
redundancy affects the modifiability of a system. The quality of code

Chttp://www.sparxsystems.com/products/ea/

ESEM ’18, October 11-12, 2018, Oulu, Finland

comments and identifier naming influences the maintainability as
well. Hence, the initial hypotheses pertain to these aspects.
Analysis: The activities in this stage were performed based on the
formulated hypotheses. Table 2 summarizes the initial hypotheses
that were refined over time, the assessment activities performed
in each iteration step as well as findings and evidence. Since the
length limitation of the paper, we only explain five hypotheses.
Output: In the context of this case study, the quality of a system
describes the degree to which the fitness-for-purpose is reached
while the running costs of the system are kept minimal. Running
costs can be maintenance costs or operating costs. The maintenance
effort is determined by maintenance activities, that can be related
to observable facts inside the product [2] whereas operating costs
are negatively influenced by ineffective implementations. Hence,
a software system is considered good if the software fulfills its
purpose at minimal running costs. Source code is considered good if
the way it is written does not increase maintenance costs compared
to other solutions and there is no reasonably achievable way to
make it more efficient.

Table 2 only illustrates a small part of the findings. More activities
had to be performed to evaluate the complete system. At the end of
the assessment, we suggested two alternatives to the system owner:
(i) Develop a new system that incorporates new technology for
better scalability; or (ii) Buy and customize an available standard
product. This conclusion was mainly influenced by the comparison
of the maintenance costs and the perceived cost for replacing the
existing software.

5.2 Case Study B

Input: The list of inputs for case study B is denoted in Table 1. Even
though the artefacts provided were fewer than in case study A, the
artefacts were up to date and easy to walk through. The assess-
ment was supposed to answer whether the system is technically
sustainable and suitable for future requirements.

Process: The results and findings of this step are the following:
Overview: In this case study, we refer to the software architecture
and the source code to get a high level understanding of the sys-
tem’s functionality and program structure. Although the software
architecture was presented in a simple way, it was sufficient to
understand the program structure.

Building Hypotheses: The system has been maintained by the same
3 in-house developers for 15 years. Due to a high risk of lost knowl-
edge after staff turn-overs, we concentrated on maintainability and
understandability of the source code. Therefore, the initial hypothe-
ses focus, for example, on code comments and bad coding practices.
Analysis: In Table 2, we illustrate 2 examples of hypotheses, the ac-
tivities conducted in each iteration, and the corresponding findings
and evidence.

Output: The information illustrated in Table 2 is only a small part
of the findings from this assessment. The quality issue regarding the
maintainability of the system is not severe and only improvement
actions with minimal effort are recommended. However, this system
is suggested to be replaced for strategic reasons. In order to be ahead
of their competitors, the owner needs to acquire a new state-of-
the-art software that offers more functionalities and has a better
technical sustainability.

M. Schnappinger et al.

6 DISCUSSION AND LESSONS LEARNED

The presented framework is regarded as a general description. Due
to the project-specific nature of quality assessments, the framework
is kept tailorable and flexible. Nevertheless, we are working on
concrete guidelines on how to apply each step of the framework
in detail and will provide them at a later stage of our research.
The remainder of this section explains our lessons learned after
assessing the quality of the study objects and discusses possible
threats to validity.

6.1 Assessing Software Structure

When we conducted the software structure review, we observed
several metrics. However, even though some of those metrics in-
dicate an issue of the software, we experienced differently when
searching for the concrete evidence. In many cases, the metrics
were just misleading. For example, the tool identifies classes with
more than 60 attributes and operations as ’god classes’. This term
describes a class that tends to centralize the intelligence of a system
or has multiple responsibilities [16]. Looking at the concrete in-
stances, we found that the calculation of attributes and operations
also includes constants, getters, and setters. In our point of view,
those do not add any significant responsibilities to a class. Thus,
the tool led to many false positives which had to be excluded.

6.2 Interpreting Redundancy Ratios

In our study, we observed very high cloning ratios. But when ex-
amining concrete instances, we found that lots of the files account-
able for this number were actually generated files. Usually, quality
analyses omit generated files, but in case study A, many generated
sources were not labeled as such and were mixed with hand-written
code. After identifying and removing these sources, the observed re-
dundancy was significantly lower. Another example from our case
study are files that define constants. Being almost identical from
a structural point of view, these files were categorized as clones
although their content is unrelated.

6.3 Providing Evidence

Measurements are meaningless unless they are backed up by tangi-
ble, convincing and representative evidence. Even though several
measurements can provide some sort of benchmark, providing evi-
dence is necessary to prove the reliability of the measurement. In
addition, evidence is helpful to demonstrate the negative conse-
quences of found quality defects. For example, developers are more
likely to accept cloning as a dangerous practice if they are presented
concrete code snippets together with the observed statistics.

6.4 Analysing Identifiers

Browsing source code and performing program comprehension,
we experienced the importance of identifiers for this task. We can
confirm the claims from Deissenboeck and Pizka in [4], who showed
that a concise and consistent naming of attributes is crucial for
software readability. From our observations, we can support that
finding and add another dimension to it: All names should be taken
from the same language. In our case study, we found identifiers
stemmed from English, French, and German. Since we performed
this task manually, we did not collect statistic information about

Software Quality Assessment in Practice: A Hypothesis-driven Framework

ESEM ’18, October 11-12, 2018, Oulu, Finland

Table 2: Initial hypotheses, assessment activities, evidence and findings for Case Study A and B

Case Study A
Item Description
Hypothesis 1 Poor program structure obstructs the program comprehension.
Selection Source Code, Architecture Document
Assessment (i) Reverse engineer source code into UML diagrams; (ii) Extract object-oriented design metrics using SDMetrics [24];
(iii) Evaluate the size and coupling. metrics.
Evidence Structural information and KPIs about the system; Examples of nested packages and operations with many parameters.
Key Findings 181 out of 1027 packages (17.62%) were found to have a high nesting value (> 6 levels). Out of these 16126 classes, 633

classes (3.93%) show symptoms of god classes. 9.6% of 65522 operations have a long parameter list (> 6 parameters).

Hypothesis 2
Selection
Assessment

Evidence

Key Findings

The software suffers from code cloning that decreases the software maintainability.

Source Code

(i) Calculate cloning ratio using ConQat; (ii) Identify generated code; (iii) Re-calculate cloning ratio; (iv) Evaluate the
code cloning measures.

Duplication KPIs from ConQAT that describe the code clones and ratio; Examples of duplicated code that illustrate a
copy and paste policy in a specific package; Examples of generated code.

With 34.4%, the cloning ratio is considered high; The amount of generated files was surprisingly high.

Hypothesis 3

Selection
Assessment

Evidence
Key Findings

The identifier naming convention is either not existing or not maintained which affects the program com-
prehension.

Source Code

(i) Randomly select source files from key modules; (ii) Observe identifier naming convention patterns; (iii) Discover
identifier naming convention violations.

Examples of inconsistent namings; Examples of different languages used for identifiers.

A global naming convention could not be identified; Multiple languages were used to name identifiers.

Hypothesis 4
Selection
Assessment

Evidence
Key Findings

The poor quality of code comments affects the program comprehension.

Source Code

(i) Examine all comments in the key modules and randomly selected other modules; (ii) Discover issues related to those
comments.

Examples of commented-out code; Examples of confusing comments; Examples of comments with mixed languages.
A lot of source code was found in comments; Comments pointing to known problems (i.e. “Todo” and “Fixme”
annotations) were found in productive code; Comments are sometimes ambiguous or mingle multiple languages.

Hypothesis 5

There are issues in the data model that lead to a decreased modifiability of the system.

Selection Data Model

Assessment (i) Acquire a high-level comprehension of the data model; (ii) Discover the high-level data model concept or pattern;
(iil) Investigate low-level issues of the data model such as duplication, missing normalization or inconsistencies.

Evidence Examples of repeating attributes; Instances of missing normalization or standardization.

Key Findings Attributes appear in several tables. Partially, these attributes have inconsistent field types. The schema was not
normalized.

Case Study B

Item Description

Hypothesis 1 Bad coding practices such as duplicating code and hardcoding values decrease the quality of the system.

Selection Source Code

Assessment (i) Browse source code from key modules and identify hardcoded identifiers; (ii) Discover code duplication using
ConQAT; (iii) Evaluate the findings.

Evidence Examples of duplicated code and its location; Examples of hardcode values.

Key Findings ~ Code duplication is a practice in this project. Hardcoded values like paths were found in the source code.

Hypothesis 2 The poor quality of code comments affects the program comprehension.

Selection Source Code

Assessment (i) Examine all comments in key modules and randomly selected other modules; (ii) Discover issues related to those
comments.

Evidence Examples of commented-out code; Examples of unuseful comments.

Key Findings A lot of source code was commented out; Comments were used for informal discussions or as optical delimiters,

provided no additional information or used ambiguous language.

ESEM ’18, October 11-12, 2018, Oulu, Finland

the naming anomalies. The list of found anomalies was evidence
enough to explain the issue to the product owner.

6.5 Evaluating the Data Model

In case study A, the data model was evaluated manually since only
data model diagrams were provided as images. In case study B, the
data model was provided as an SQL script. Browsing the models,
we uncovered several anomalies. For example, it was impossible
to store more than one telephone number per person. In addition,
there was no strategy to manage history data - a task crucial for
insurance companies. Our lesson learned here is that the data model
is a valuable source of information. It is created to support the
current functionality and therefore a lack of flexibility in the model
can point to problems when introducing new functionalities.

6.6 Assessing Code Comments

Comments are a useful possibility to augment source code with ad-
ditional information. However, we experienced that comments are
often misused. The use of comments to discuss open issues instead
of using an issue tracking tool indicates space for improvement on
the process level. The same point can be made about “Todo” and
“Fixme” tags in productive systems. Also, we saw a lot of code being
commented out instead of removed. This code is likely to distract
maintainers and therefore increases the maintenance effort.

6.7 Threats to Validity

The internal validity of our case study can be threatened by the
small group of quality consultants (2) from just one company and
the small number of researchers from university (2) performing the
assessment. In addition, it has to be mentioned that both examined
systems were taken from the insurance domain, which can be seen
as a threat to external validity. During the analysis, all analysts
actively tried to avoid any bias and keep an open mindset. But as
the systems were selected for a quality assessment by the owner,
the quality consultants knew there was a certain likelihood to find
quality deficits. Due to the motivation of the performed assessments,
both case studies focused on maintainability.

7 CONCLUSION

This paper aims to relate abstract quality models to concrete quality
assessments. We present our tailorable framework to perform struc-
tured quality assessments. Applying it to real-world systems in
two case studies with our industrial partner, we can conclude that
blindly using automated assessment tools is not sufficient, though
we can still use their output. Other lessons learned are, e.g., that (i)
evidence collection is crucial not only to convince the system owner,
but also the software developer, and (ii) design and maintainability
of the data model may reflect the flexibility of a system.

This is a part of our early work to bridge the gap between qual-
ity characteristics, measurements, and assessments. We see several
ways to improve this work such as (i) refining the framework and
applying it to other systems from other domains; (ii) further re-
search on convincing evidence from the perspective of various
stakeholders; (iii) automatization of the activities in this approach
and (iv) building a taxonomy that shows the relation between qual-
ity characteristics, quality measures, and assessment activities.

M. Schnappinger et al.

ACKNOWLEDGMENTS

The authors would like to thank itestra GmbH for their participation
in this research cooperation. In particular, we are very grateful
for their commitment to sharing their expertise with us and the
opportunity to present their industrial practice in this paper.

REFERENCES

[1] B.W.Boehm, J.R. Brown, and M. Lipow. 1976. Quantitative evaluation of software
quality. In Proceedings of the 2nd international conference on Software engineering.
IEEE Computer Society Press, 592-605.

[2] M. Broy, F. Deissenboeck, and M. Pizka. 2006. Demystifying maintainability. In
Proceedings of the 2006 international workshop on Software quality. ACM, 21-26.

[3] J.P. Cavano and J.A. McCall. 1978. A framework for the measurement of software
quality. In ACM SIGMETRICS Performance Evaluation Review, Vol. 7. 133-139.

[4] F.Deissenboeck and M. Pizka. 2006. Concise and consistent naming. Software
Quality Journal 14, 3 (2006), 261-282.

[5] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J-F Girard. 2007. An
activity-based quality model for maintainability. In Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on. IEEE, 184-193.

[6] F Deissenboeck, S Wagner, M Pizka, S Teuchert, and J-F Girard. 2007. An activity-
based quality model for maintainability. In Software Maintenance, 2007. ICSM
2007. IEEE International Conference on. IEEE, 184-193.

[7] S.G Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. Mockus. 2001. Does code
decay? Assessing the evidence from change management data. IEEE Transactions
on Software Engineering 27, 1 (2001), 1-12.

[8] F Fagerholm, A S Guinea, H Méenpi4, and J Minch. 2017. The RIGHT model
for continuous experimentation. Journal of Systems and Software 123 (2017),
292-305.

[9] D.A.Garvin. 1984. What does - Product Quality - really mean. Sloan management
review 25 (1984).

[10] G. Gousios, V. Karakoidas, K. Stroggylos, P. Louridas, V. Vlachos, and D. Spinellis.
2007. Software Quality Assessment of Open Source. In Current Trends in Infor-
matics: 11th Panhellenic Conference on Informatics, PCI 2007. New Technologies
Publications, 303-315.

[11] Robert B. Grady and Deborah L. Caswell. 1987. Software Metrics: Establishing a

Company-wide Program. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

International Standard Organization (ISO). 2001. International Standard ISO/IEC

9126, Information technology - Product Quality - Part1: Quality Model.

ISO/IEC. 2010. ISO/IEC 25010 - Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - System and software

quality models. Technical Report.

[14] U.Koc, P. Saadatpanah, J.S. Foster, and A.A. Porter. 2017. Learning a classifier
for false positive error reports emitted by static code analysis tools. In Proceed-
ings of the 1st ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages. ACM, 35-42.

[15] K.Lochmann. 2014. Defining and Assessing Software Quality by Quality Models.

Ph.D. Dissertation. Technische Universitat Miinchen.

S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjgberg. 2010. Are all code smells harmful?

A study of God Classes and Brain Classes in the evolution of three open source

systems. In 2010 IEEE International Conference on Software Maintenance. 1-10.

[17] D.L.Parnas. 1994. Software aging. In Proceedings of the 16th international confer-

ence on Software engineering. IEEE Computer Society Press, 279-287.

M. Pizka and T. Panas. 2009. Establishing economic effectiveness through software

health-management. In 1st International Workshop on Software Health Manage-

ment, Pasadena.

[19] J. Streit and M. Pizka. 2011. Why software quality improvement fails (and how
to succeed nevertheless). In Proceedings of the 33rd International Conference on
Software Engineering. ACM, 726-735.

[20] I Stiurmer and H. Pohlheim. 2012. Model quality assessment in practice: How to
measure and assess the quality of software models during the embedded software
development process. Embedded Real Time Software and Systems (2012).

[21] J. Voas. 1997. Can clean pipes produce dirty water? IEEE Software 4 (1997), 93-95.

[22] S. Wagner, K. Lochmann, L. Heinemann, M Klis, A. Trendowicz, R. Pl6sch, A.
Seidl, A. Goeb, and J. Streit. 2012. The quamoco product quality modelling
and assessment approach. In Proceedings of the 34th international conference on
software engineering. IEEE Press, 1133-1142.

[23] M. Wolski, B. Walter, S. Kupinski, and J. Chojnacki. 2018. Software quality model
for a research-driven organization-An experience report. Journal of Software:
Evolution and Process 30, 5 (2018).

[24] J. Wist. 2018. SDMetrics. http://www.sdmetrics.com/.

[25] J. Yoo and S. Yoon. 2013. SQAF-DS: A Software Quality Assessment Frame-
work for Dependable Systems. In Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual. IEEE, 724-725.

[12

[13

[16

[18

http://www.sdmetrics.com/

	Abstract
	1 Introduction
	2 Related Work
	3 Case Studies
	3.1 Case Study A
	3.2 Case Study B

	4 Quality Assessment Framework
	4.1 Input
	4.2 Process
	4.3 Output

	5 The Quality Assessment
	5.1 Case Study A
	5.2 Case Study B

	6 Discussion and Lessons Learned
	6.1 Assessing Software Structure
	6.2 Interpreting Redundancy ratios
	6.3 Providing Evidence
	6.4 Analysing Identifiers
	6.5 Evaluating the Data Model
	6.6 Assessing Code Comments
	6.7 Threats to Validity

	7 Conclusion
	Acknowledgments
	References

