Useful Formulas \& Constants

Physical Constants

Planck's constant $\mathrm{h}=6.6260755 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.5 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$

$$
=6.626 \times 10^{-27} \mathrm{erg} \cdot \mathrm{~s}
$$

Dirac's constant $\hbar=h / 2 \pi=1.054 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

$$
=1.054 \times 10^{-27} \mathrm{erg} \cdot \mathrm{~s}
$$

Boltzmann's constant $k_{B}=1.380 \times 10^{-16} \mathrm{erg} / \mathrm{K}$

$$
=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}=1.380 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

$\mathrm{k} T=25.9 \mathrm{meV}$ at room temperature
$=0.36 \mathrm{meV}$ at liquid-helium temperature (4.2 K)
$=6.7 \mathrm{meV}$ at liquid-nitrogen temperature (4.2 K)
Velocity of light in vacuum $c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron charge $e=1.602 \times 10^{-19}$ coulombs
Avogadro number $\mathrm{N}_{\mathrm{a}}=6.0221367 \times 10^{23}$ particles $/ \mathrm{mol}$
Permeability of vacuum $\mu_{0}=4 \times 10^{-7} \mathrm{~T}^{2} \cdot \mathrm{~m}^{3} / \mathrm{J}$

$$
=12.566370614 \times 10^{-7} \mathrm{~T}^{2} \cdot \mathrm{~m}^{3} / \mathrm{J}
$$

Permittivity of vacuum $\varepsilon_{0}=1 /\left(\mu_{0} \cdot c^{2}\right)$

$$
=8.854187817 \times 10^{-12} \mathrm{C}^{2} / \mathrm{J} \cdot \mathrm{~m}
$$

Electron rest mass $m_{e}=9.1093897 \times 10^{-31} \mathrm{~kg}$
Proton rest mass $m_{p}=1.6726231 \times 10^{-27} \mathrm{~kg}$
Neutron rest mass $m_{n}=1.6749286 \times 10^{-27} \mathrm{~kg}$

Etalon Formulas

Two parameters completely specify an etalon: the free spectral range (FSR) and the finesse (J). The FSR is the spacing (usually given in frequency) between transmission peaks. The finesse is the ratio of the free spectral range to the full width at half maximum (FWHM) of the transmission peak and is directly related to the reflectivity of the surface R.

$$
F S R=\frac{c}{2 n l} \quad \mathfrak{I}=\frac{F S R}{F W H M}=\frac{\pi \sqrt{R}}{1-R}
$$

c is the speed of light, n is the index of refraction of the etalon, and L is the thickness of the etalon.

At high finesse values (where R is very close to 100% or 1),

$$
R \approx 1-\frac{\pi}{\mathfrak{J}}
$$

Finesse	Reflectivity
2	24%
4	47%
6	60%
8	68%
10	73%
15	81%
20	85%

Wave Vector, Frequency, Wavelength \& Wavenumbers

$k=\frac{2 \pi}{\lambda}=\frac{2 \pi n}{\lambda_{0}}=\frac{2 \pi n v}{c}=\frac{n \omega}{c}$

$$
\lambda=\frac{\mathrm{c}}{n v}=\frac{\lambda_{0}}{n}=\frac{2 \pi}{k}=\frac{2 \pi \mathrm{c}}{n \omega}
$$

$k=$ wave vector $v=$ frequency
$v=\frac{\mathrm{c}}{\lambda_{0}}=\frac{\mathrm{c}}{n \lambda}=\frac{k \mathrm{c}}{2 \pi n}=\frac{\omega}{2 \pi} \quad \Delta \lambda=\frac{\mathrm{c} \Delta v}{v^{2}}=\frac{\lambda^{2} \Delta v}{\mathrm{c}}$
An easy number to remember is a $1-\mathrm{pm}$ linewidth is approximately 125 MHz at 1550 nm .

$$
\begin{aligned}
& \text { Wavenumber }\left(\mathrm{cm}^{-1}\right)=\frac{10^{7}}{\lambda(\mathrm{~nm})} \\
& \text { Electron Volts }(\mathrm{eV})=\frac{1242}{\lambda(\mathrm{~nm})}
\end{aligned}
$$

International System of Units (SI) Prefixes

Factor	Name	Symbol
10^{21}	zetta	Z
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10^{-2}	centi	c
10^{-3}	mili	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a
10^{-21}	zepto	z
10^{-24}	yocto	y

Common Material Properties

Material	Refractive Index, n	$\Delta F S R^{*}, \mathrm{MHz}$	Thermal Expansion Coefficient $\alpha, \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Thermo-Optic Coefficient β or $\partial n / \partial T, \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Air	1.000	0.0	0.0	1.0
Fused Silica	1.444	13.1	0.55	6.57
Silicon	3.477	198.1	3.24	160
LASFN9	1.813	9.4	7.4	1.3

*Change in FSR due to dispersive effects as measured from 1510 to 1570 nm for a 50-GHz etalon

Snell's Law

$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

Numerical Aperture

$$
f / \#=\frac{f}{D} \approx \frac{1}{2 N A} \quad N A=n \sin \theta
$$

Focusing

Reflection Air / Material

$$
R=\left(\frac{n-1}{n+1}\right)^{2} \text { at } \mathrm{AOI}=0^{\circ}
$$

Where n - refractive index, AOI - Angle of Incidence.

Phase Matching Types of Nonlinear Crystals

Negative crystals ($\mathrm{n}_{0}>\mathrm{n}_{\mathrm{e}}$)
Type $1 \quad k_{01}+k_{02}=k_{e 3}(\theta)$
or "ooe interaction"
Type $2 k_{e 1}(\theta)+k_{02}=k_{\text {e3 }}(\theta)$
or "eoe interaction"
Type $2 \quad \mathrm{k}_{01}+\mathrm{k}_{\mathrm{e} 2}(\theta)=\mathrm{k}_{\mathrm{e}} 3(\theta)$
or "oee interaction"
Positive crystals ($\mathrm{n}_{\mathrm{e}}>\mathrm{n}_{\mathrm{o}}$)
Type $1 \quad k_{e 1}(\theta)+k_{e 2}(\theta)=k_{03}$ or "eeo interaction"
Type $2 \quad k_{01}+k_{e 2}(\theta)=k_{03}$ or "oeo interaction"
Type $2 k^{\mathrm{en}_{1}}(\theta)+\mathrm{k}_{02}=\mathrm{k}_{03}$ or "eoo interaction"

Whereas k-wave propagation vector ($\mathrm{k}=2 \pi \mathrm{n} / \lambda$); θ - phase matching angle in the crystal; o - ordinary polarization, e - extraordinary polarization;
1, 2, 3 indices - corresponds to wave vectors with longest (1), mid (2) and shortest (3) wavelengths.

Brewster's Angle

The angle where only s-polarized light is reflected

$$
\theta_{\text {Brewster }}=\arctan \left(\frac{n_{\text {transmitted medium }}}{n_{\text {incident medium }}}\right)
$$

Gausian Beam

A Gaussian beam spreads as follows,

$$
\omega^{2}(x)=\omega_{0}^{2}\left[1+\left(\frac{\lambda x}{\pi \omega_{0}^{2}}\right)^{2}\right]
$$

where $\omega(x)$ is the $1 / \mathrm{e}^{2}$ radius, λ is the wavelength, and x is the distance from the beam waist ω_{0} where $x=0$.

A Rule of Thumb for Choosing a Lens

$$
f=\frac{d D \pi}{4 \lambda}
$$

where f is the lens focal length, d is the beam diameter at the focus, D is the $1 / \mathrm{e}^{2}$ diameter of the collimated beam.

Nonlinear Crystal Thickness Limited by Group Velocity Mismatch (GVM)

$$
\begin{aligned}
L & =\frac{t}{G V M} \quad G V M=\frac{1}{u_{1}}-\frac{1}{u_{2}} \\
u & =\frac{c}{n(\lambda)}\left[1+\frac{\lambda}{n(\lambda)} \frac{\partial n(\lambda)}{\partial \lambda}\right]
\end{aligned}
$$

Whereas t - pulse duration, c - speed of the light, n - refractive index, λ - wavelength.

Nonlinear Crystal acceptances

Nonlinear Crystal acceptances Angular $\Delta \theta$, Temperature ΔT, Spectral Δv-corresponding bandwidths at Full Width of Half Maximum (FWHM) of conversion efficiency.

Total Internal Reflection Angle

$$
\theta_{T I R}>\arcsin \left(\frac{n_{\text {transmitted medium }}}{n_{\text {incident medium }}}\right)
$$

where $n_{\text {transmitted medium }}<n_{\text {incident medium }}$ is required for total internal reflection.

Scaling Law for Laser Radiation Damage

$E=E_{1} \sqrt{\frac{t}{t_{1}}}$
where $\mathrm{E}\left[\mathrm{J} / \mathrm{cm}^{2}\right]$ is the damage threshold, t is the pulse duration, E_{1} and t_{1} are the reference damage threshold and pulse duration.

Non Critical Phase Matching

NCPM - when crystal phase matching angle equals $90^{\circ}\left(\theta=90^{\circ}\right)$. NCPM is achieved at special temperatures and/or wavelengths.

Uniaxial Crystals Refractivity

Polar coordinate system for description of refractive properties of uniaxial crystal.

Whereas K - light propagation vector at phase matching conditions, Z - optical axis of crystal, θ - phase matching angle (or cut angle), φ - azimuthal angle.

Birefrigency angle or Walk-off

$\rho(\theta)= \pm \arctan \left[\left(\frac{n_{o}}{n_{e}}\right)^{2} \tan (\theta)\right] \pm \theta$
Upper signs refer to negative crystal ($\mathrm{n}_{\mathrm{o}}>\mathrm{n}_{\mathrm{e}}$) and the lower signs refer to positive one ($\mathrm{n}_{\mathrm{e}}>\mathrm{n}_{\mathrm{o}}$).

Beam displacement because of walk-off:

$$
\Delta=L \tan (\rho)
$$

Whereas L-crystal length, ρ - walk-off angle.

