Useful Formulas & Constants

Physical Constants

Planck's constant h = 6.6260755×10-34 J·s = 4.5×10-15 eV·s = 6.626×10⁻²⁷ erg·s Dirac's constant $\hbar = h/2\pi = 1.054 \times 10^{-34} \text{ J} \cdot \text{s}$ = 1.054×10-27 erg.s Boltzmann's constant $k_B = 1.380 \times 10^{-16} \text{ erg/K}$ = 8.62×10⁻⁵ eV/K = 1.380×10⁻²³ J/K kT = 25.9 meV at room temperature = 0.36 meV at liquid-helium temperature (4.2 K) = 6.7 meV at liquid-nitrogen temperature (4.2 K) Velocity of light in vacuum c = 2.99792458×108 m/s Electron charge e = 1.602×10⁻¹⁹ coulombs Avogadro number N_a = 6.0221367×10²³ particles/mol Permeability of vacuum $\mu_0 = 4 \times 10^{-7} \text{ T}^2 \cdot \text{m}^3/\text{J}$ = 12.566370614×10⁻⁷ T²·m³/J Permittivity of vacuum $\varepsilon_0 = 1/(\mu_0 \cdot c^2)$ = 8.854187817×10⁻¹² C²/J·m Electron rest mass m_e = 9.1093897×10⁻³¹ kg Proton rest mass $m_p = 1.6726231 \times 10^{-27} \text{ kg}$ Neutron rest mass $m_n = 1.6749286 \times 10^{-27} \text{ kg}$

Etalon Formulas

Two parameters completely specify an etalon: the free spectral range (*FSR*) and the finesse (\Im). The *FSR* is the spacing (usually given in frequency) between transmission peaks. The finesse is the ratio of the free spectral range to the full width at half maximum (*FWHM*) of the transmission peak and is directly related to the reflectivity of the surface *R*.

$$FSR = \frac{c}{2nl} \qquad \Im = \frac{FSR}{FWHM} = \frac{\pi\sqrt{R}}{1-R}$$

c is the speed of light, n is the index of refraction of the etalon, and L is the thickness of the etalon.

At high finesse values (where R is very close to 100% or 1),

 $R \approx 1 - \frac{\pi}{\gamma}$

k = wave vector

 ν = frequency $\omega = 2\pi\nu$ = angu-

lar frequency λ = wavelength λ_0 = wavelength

in vacuum

index

n = refractive

Finesse	Reflectivity	
2	24%	
4	47%	
6	60%	
8	68%	
10	73%	
15	81%	
20	85%	

Wave Vector, Frequency, Wavelength & Wavenumbers

$k = \frac{2\pi}{\lambda} = \frac{2\pi n}{\lambda_0} = \frac{2\pi n\nu}{c} = \frac{n\omega}{c}$	$\lambda = \frac{c}{n\nu} = \frac{\lambda_0}{n} = \frac{2\pi}{k} = \frac{2\pi c}{n\omega}$
$ u = \frac{c}{\lambda_0} = \frac{c}{n\lambda} = \frac{kc}{2\pi n} = \frac{\omega}{2\pi} $	$\Delta \lambda = \frac{c\Delta \nu}{\nu^2} = \frac{\lambda^2 \Delta \nu}{c}$

An easy number to remember is a 1-pm linewidth is approximately 125 MHz at 1550 nm. Wavenumber (cm⁻¹) = $\frac{10^7}{\lambda \text{ (nm)}}$ Electron Volts (eV) = $\frac{1242}{\lambda \text{ (nm)}}$

Wavelength (in vacuum), nm	Frequency, THz	Electron Volts, eV	Wavenumber, cm ⁻¹
1561.42	192.00	0.80	6404.43
1550	193.41	0.80	6451.61
1320	227.12	0.94	7 575.76
1064	281.76	1.17	9398.50
980	305.91	1.27	10204.08
780	384.35	1.59	12820.51
632.8	473.76	1.96	15802.78
350	856.55	3.55	28571.43

International System of Units (SI) Prefixes

Factor	Name	Symbol
10 ²¹	zetta	Z
10 ¹⁸	exa	E
10 ¹⁵	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	М
10 ³	kilo	k
10 ²	hecto	h
10 ⁻²	centi	С
10 ⁻³	mili	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	а
10 ⁻²¹	zepto	Z
10 ⁻²⁴	yocto	у

Common Material Properties

Material Refractive	∆ <i>FSR*</i> , MHz	Thermal Expansion	Thermo-Optic Coefficient	
Wateria	Index, <i>n</i>		Coefficient a, ppm/°C	β or ∂ <i>n/</i> ∂ <i>T</i> , ppm/°C
Air	1.000	0.0	0.0	1.0
Fused Silica	1.444	13.1	0.55	6.57
Silicon	3.477	198.1	3.24	160
LASFN9	1.813	9.4	7.4	1.3

*Change in FSR due to dispersive effects as measured from 1510 to 1570 nm for a 50-GHz etalon

Snell's Law

Reflection Air / Material

$$R = \left(\frac{n-1}{n+1}\right)^2 \text{ at AOI=0}$$

Where n – refractive index, AOI – Angle of Incidence.

Phase Matching Types of Nonlinear Crystals

Type 1 $k_{e1}(\theta) + k_{e2}(\theta) = k_{o3}$
or "eeo interaction"Type 2 $k_{o1} + k_{e2}(\theta) = k_{o3}$
or "oeo interaction"Type 2 $k_{e1}(\theta) + k_{o2} = k_{o3}$

or "eoo interaction"

Whereas k-wave propagation vector $(k=2\pi n/\lambda)$; θ – phase matching angle in the crystal; o – ordinary polarization; e – extraordinary polarization; 1, 2, 3 indices – corresponds to wave vectors with longest (1), mid (2) and shortest (3) wavelengths.

Brewster's Angle

The angle where only *s*-polarized light is reflected

$$\theta_{Brewster} = \arctan\left(\frac{n_{transmitted medium}}{n_{incident medium}}\right)$$

Gausian Beam

ω

$${}^{2}(x) = \omega_{0}^{2} \left[1 + \left(\frac{\lambda x}{\pi \omega_{0}^{2}} \right)^{2} \right]$$

where $\omega(x)$ is the $1/e^2$ radius, λ is the wavelength, and x is the distance from the beam waist ω_q where x=0.

A Rule of Thumb for Choosing a Lens

 $f = \frac{dD\pi}{4\lambda}$

where *f* is the lens focal length, *d* is the beam diameter at the focus, *D* is the $1/e^2$ diameter of the collimated beam.

Nonlinear Crystal Thickness Limited by Group Velocity Mismatch (GVM)

$$L = \frac{t}{GVM} \qquad GVM = \frac{1}{u_1} - \frac{1}{u_2}$$
$$u = \frac{c}{n(\lambda)} \left[1 + \frac{\lambda}{n(\lambda)} \frac{\partial n(\lambda)}{\partial \lambda} \right]$$

Whereas t – pulse duration, c – speed of the light, n – refractive index, λ – wavelength.

Nonlinear Crystal acceptances

Nonlinear Crystal acceptances – Angular $\Delta \theta$, Temperature ΔT , Spectral Δv – corresponding bandwidths at Full Width of Half Maximum (FWHM) of conversion efficiency.

Total Internal Reflection Angle

$$\theta_{TIR} > \arcsin\left(\frac{n_{transmitted medium}}{n_{incident medium}}\right)$$

where $n_{transmitted medium} < n_{incident medium}$ is required for total internal reflection.

Scaling Law for Laser Radiation Damage

 $E = E_{t} \sqrt{\frac{t}{t_{t}}}$ where E [J/cm²] is the damage threshold, t is the pulse duration,

 E_1 and t_1 are the reference damage threshold and pulse duration.

Non Critical Phase Matching

NCPM – when crystal phase matching angle equals 90° ($\theta = 90^{\circ}$). NCPM is achieved at special temperatures and/or wavelengths.

Uniaxial Crystals Refractivity

Polar coordinate system for description of refractive properties of uniaxial crystal. 71

Whereas K – light propagation vector at phase matching conditions, Z – optical axis of crystal, θ – phase matching angle (or cut angle), φ – azimuthal angle.

Birefrigency angle or Walk-off

$$\mathbf{p}(\mathbf{\theta}) = \pm \arctan\left[\left(\frac{n_o}{n_{\theta}}\right)^2 \tan(\mathbf{\theta})\right] \pm \mathbf{\theta}$$

Upper signs refer to negative crystal $(n_o>n_e)$ and the lower signs refer to positive one $(n_e>n_o)$.

Beam displacement because of walk-off:

 Δ = L tan (ρ)

Whereas L – crystal length,

