
In the Proceedings of 8th European Conference on Software Maintenance and Reengineeringc©2004 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE.

Adaptation of Large-Scale Open Source Software
– An Experience Report –

Markus Pizka∗

Technische Universität München
Institut für Informatik - I4
Germany - 80290 Munich

pizka@in.tum.de

Abstract

Within a long-term distributed systems project we repeat-
edly stumbled across the well-known yet difficult question
to either implement from scratch or comprehend and adapt
existing software. Having tried both ways allows us to ret-
rospectively compare the effectiveness of “from scratch”
implementation versus software evolution. By using the
code bases of GNU GCC and Linux for the adaptation ap-
proach we gained valuable experiences with the compre-
hension and adaptation of large but sparsely documented
code bases. In most cases, the adaptation of existing soft-
ware proved to be by far more effective than implementing
from scratch. Surprisingly, the effort needed to comprehend
the existing voluminous source codes repeatedly proved to
be less than expected. In this paper we discuss our positive
and negative experiences and the various factors influenc-
ing success and failure. Albeit collected in an academic set-
ting, the observations described in this paper might well be
transferable to the maintenance of large-scale commercial
environments, too.

1 Retrospective Case Study

Experiences with maintenance and evolution of software
systems can either be collected by performing a goal-driven
empirical study, such as to demonstrate that technique A is
superior to technique B. Or, experiences are acquired as a
byproduct of non-maintenance motivated work on a soft-
ware system. The goal-driven approach allows to focus on
certain aspects, eliminate noise, and delivers comparable
and eventually even repeatable results. In contrast to this,
experiences gathered as a byproduct of some other work

∗Part of this work was sponsored by the German Federal Ministry for
Education and Research (BMBF) as part of the project ViSEK (Virtual
Software Engineering Competence Center).

can not be pre-planned and the various factors influencing
the observations can usually not be differentiated in a sound
way. Besides these disadvantages, a by-product experience
has the big advantage of being unbiased by goals and expec-
tations set in advance or a certain qualification. It clearly
reflects the difficulties, attempts, success, and failure en-
countered in a realistic situation.

In this paper we present such an unbiased maintenance
experience collected in the course of a long-term distributed
operating system (OS) project [10, 22, 21]. Our initial goal
was to implement a new OS. Although no team member
had specific maintenance skills, we soon faced the chal-
lenge to comprehend and evolve complex low-level yet
sparsely documented code, in particular GNU GCC [26]
and Linux [13]. By this we collected first-hand maintenance
and evolution experiences of more than 10 people-years.

Now, this work allows us to investigate the following im-
portant maintenance questions by means of a retrospective
study:

• Is sparsely documented code comprehensible?

• What’s more promising: build from scratch, provide a
wrapper, or evolve existing software?

• . . . and how can a practically oriented systems research
group survive the burden of software implementation?

Outline

Section 2 sketches the difficulties of developing system
level software and the different choices available to cope
with these difficulties. Afterwards, we first present our
initial experiences with implementation from scratch and
the development of wrappers in section 4. We discuss the
subjective expectations of the developers and their objec-
tive success or failure. We then relate these results with
our later experiences with the invasive adaptation of open
source software in section 5. In section 6 we summarize

our maintenance experiences and conclude with a perspec-
tive for future work in section 6.

2 Motivation

Operating systems (OS) along with their corresponding
infrastructure, such as the compiler, linker, and runtime sys-
tem, represent particularly complex software systems for
several reasons. The operating infrastructure must provide
extensive functionality, serve several different purposes si-
multaneously, deliver satisfactory performance combined
with a high degree of reliability, and even enforce security.
All of this has to be implemented through a uniquely large
number of levels of abstractions spanning from high-level
programming languages [2, 9] down to subtle and highly
machine-dependent details of the hardware-level [18] and
with compatibility to existing applications.

Because of this, developing innovative OS concepts,
such as in [4, 5] requires particularly strong efforts. For
a research project in the OS field there are basically four
different strategies to deal with the associated high costs:

1. no implementation: develop concepts only

2. from scratch: implement a complete new system

3. wrapping: implement on top of what is already there

4. adapt: reuse if possible but modify as needed

While strategy 1 is only of theoretical interest, strategy 2
is applied frequently [1]. It apparently provides maximum
freedom and complete control over the final product. In
reality, the immense costs of developing complex system
level software from scratch are often underestimated which
leads to either project failure [12] or changed objectives,
i. e. restricted freedom. The majority of system level R&D
projects tries to avoid these troubles by applying strategy 3.
The new concepts are implemented on top of an already ex-
isting infrastructure without changing it. Middle-ware ex-
tensions such as CORBA [19] or PVM [11] are examples
for this strategy. The advantages of this approach, such
as low cost and a high degree of compatibility, come at a
price. First, the capabilities of wrapper are constrained by
the features of the already existing infrastructure. Second, if
the services of the underlying infrastructure do not directly
match the needs of the new concept, then they have to be
implemented with the help of workarounds. This deterio-
rates the quality of the outcome in many aspects, such as
performance and maintainability.

Although performance, security, compatibility and fur-
ther aspects pose particularly difficult problems to OS de-
velopers, most of theses aspects play an important role in

many other systems, such as large scale information sys-
tems, too. We therefore claim that our observations de-
scribed below are not limited to the OS field but can be
transfered to many other environments, too.

2.1 Software Adaptation

The disadvantages of the wrapping strategy can only be
eliminated by invasive changes to the existing infrastructure
leading to strategy 4, adaptation. Here, existing artifacts
are reused as far as possible but consequently changed and
extended if needed. Software adaptation1 offers a promising
combination of the flexibility of the from-scratch approach
with the low costs of the wrapping strategy.

However, adaptation is rarely applied in practice and
there are only few experiences with it. We argue that the
reasons for this originate in a lack of software maintenance
techniques and education. Software adaptation requires
strong skills in program comprehension, reverse engineer-
ing, program transformation, and testing. Most of these
fields and there application for Product Lines, Generative
Programming [7], and others are just emerging and there is
still a long way to go before these techniques can achieve
maturity.

2.2 Setting for a Long-Term Adaptation Study

Regardless of the numerous open questions, we gained
experiences with software adaptation, in the context of the
distributed operating systems project MoDiS. In this project
we defined a new parallel and distributed programming lan-
guage INSEL [29] and designed a completely new resource
management architecture with radical changes to the run-
time system, linker, and the OS kernel [22].

In our attempts to implement these new concepts we ex-
perimented with the four implementation strategies, men-
tioned above. Our first compiler used C as an intermediate
language and a conventional C compiler to produce exe-
cutables. The resource management architecture was im-
plemented as a wrapper on top of an existing UNIX. Be-
cause of the drawbacks of these prototypes, that is lousy
performance, we later on tried to implement a new OS ker-
nel from scratch. We further on implemented a significantly
improved compiler by adapting GNU GCC [26] and finally
continued our work on the kernel by adapting Linux accord-
ing to our specific needs.

Over the period of 10 years, 10 researchers and approx-
imately 30 computer science major students with different
personal backgrounds and skills contributed to the various
implementations. By this, we were able to observe numer-
ous approaches, problems, solutions, and attitudes towards
adaptation and their final success or failure.

1synonymously used for evolution

3 Related Work

Although the OS field is not the most active fields in
computer science research there were and are still numer-
ous commercial and research projects, such as QNX, Linux,
Mach, and L4 [13, 1, 18] or even the on-going evolution of
Microsoft Windows or Solaris. All of this projects must
deal with the challenges described above and choose an
implementation strategy. Unfortunately, the experiences
acquired in these large scale projects concerning software
maintenance are usually not collected in a systematical way
and published because these projects focus in technical im-
provements.

A significant part of Brooks [14] widely respected work
on software project management is based on his personal
experiences with the development of IBM’s OS/360 prod-
uct family. This demonstrates the value of reflecting un-
biased hands-on experiences besides controlled empirical
studies. In this paper, we follow Brook’s approach by re-
flecting our software maintenance experiences gained in a
long-time project originally aimed at technical issues.

Aspects of software evolution independently of certain
types are intensively studied by Lehman [15, 16] and other
researchers in the software maintenance and evolution field.
Without any doubt, these works mark important milestones
on the way to understand the dynamics of long-lived soft-
ware systems. In this paper, we are less interested in the
principles of evolution but discuss pragmatic ways to deal
with existing systems; i. e. the how to evolve. Rajlich for
example, proposes a staged software life cycle [23], with
a development, evolution, servicing, phase out, and close-
down stage. He states that this sequence is uni-directional,
that is no system returns from servicing back to evolution.
The open source software used in our work seems to oppose
this point of view.

Techniques to assess existing software and to decide
on whether to build from scratch or to re-engineering
are discussed in the software re-engineering field. The
Software re-engineering Assesment Handbook (SRAH)[28]
provides a structured process of choosing among differ-
ent re-engineering or close-down strategies. Our OS work
stated prior to our awareness of re-engineering and assess-
ment techniques. Thus, our re-engineering decisions used
to be ad-hoc without particular software maintenance, re-
engineering, or program comprehension skills.

4 Early Experiences

As in many other research projects we also started the
implementation of our new concepts by developing new ser-
vices on top of UNIX. Now, from a distant and software
maintenance perspective, it is surprising that such an impor-
tant decision is usually made without a thorough analysis of

alternatives and consequences. In fact, there are only few
and hardly disseminated methods for the systematic analy-
sis of different implementation strategies, although this de-
cision has a major impact on both, budget and properties
of the final product. Now, taking a look back, a SRAH as-
sessment might have indicated technical limitations of the
wrapping approach if the technical analysis was detailed
enough. But usually, neither the evolving technical details
are known a priori nor are assessment processes common to
system level software developers.

4.1 Compiler Wrapper

Because INSEL is an object-based language the idea to
translate INSEL into C++ and using a C++ compiler seemed
plausible. Thus, the first compiler for INSEL translated IN-
SEL into C++ in a straight forward manner. It soon became
evident that this approach provided insufficient control es-
pecially concerning details of stack management and regis-
ter usage.

To circumvent these deficiencies, two years later, a new
compiler was developed that translated INSEL into sophis-
ticated low level C code with excessive use of address arith-
metics [29]. While this new compiler eliminated most of the
shortcomings of the C++ variant and C seemed to be highly
flexible at first sight, new restrictions became apparent. For
example, C does not support nesting of functions. There-
fore, nested INSEL functions somehow had to be mapped
on C functions by putting the local variables of the enclos-
ing function into astruct and passing a pointer to the
nested function. Other compilers like thep2cPascal com-
piler use similar techniques. This minor workaround has
already major impact on the performance. It entails a per-
formance degradation of up to 30%, already [20]!

Wrappers often cause such compromises each of which
entailing performance degradation or – to put it more gen-
eral – loss of quality. The sum of this minor losses leads
to serious decrease in quality. In our case a compiler gen-
erating target code at least two times slower than it should
be.

4.2 Runtime Wrapper

Along with the two compilers, two runtime systems were
developed on top of UNIX in C++ and C. As expected,
this approach quickly lead to executable prototypes allow-
ing experiments with the new concepts. These experiments
allowed us to show that our resource management architec-
ture is able to deliver perfect linear speed-ups with increas-
ing numbers of processors.

Unfortunately, it could also be shown, for example that
our parallel system based on C++ performed 700% worse

than sequential C code! Similar observations were made in
other projects, such as in Orca [17] and CORBA [24].

The reasons for this are analog to the troubles of the com-
piler. The wrapping strategy entails severe quality degrada-
tions if the chosen basis does not perfectly suit the concepts
implemented on top of it because workarounds are expen-
sive both during development and at runtime. It is important
to note that minor discrepancies may cause major disadvan-
tages. We assume, that other quality attributes, such as secu-
rity, reliability, and maintainability are affected in a similar
way. Indeed, functionality seems to be the only aspect [6]
that is unaffected by the wrapping strategy.

4.3 From Scratch Kernel

Based on the experiences with the wrapped runtime sys-
tems one of our groups started to develop a new, more suit-
able OS micro-kernel [8]. This group considered the possi-
bility to implement the new kernel by modifying an already
existing one. But, the group shared the common belief, that
the source codes of existing open source kernels were in-
sufficiently documented and comprehending the low level
code by reading it would be just as expensive as writing a
new kernel. They furthermore argued, that some of their
concepts could hardly be implemented by changing the ex-
isting system, at all. Thus, after assessing different imple-
mentation and re-engineering strategies they concluded that
the kernel had to be implemented anew from scratch.

The kernel project soon fell behind its schedule to de-
liver a working prototype within 2 people years. Design
and implementation took multiples of the estimated times
because technical details repeatedly proved to be a lot more
difficult then expected. After 6 people years, the kernel was
still far from being usable. The project was aborted. Dur-
ing this work a significant amount of work was devoted into
“reinventing the wheel”.

The reasons for the failure seem twofold. First, high-
level concepts often entail conceptually simple but techni-
cally demanding details. It is easy to understand preemp-
tive scheduling [25] at the conceptual level but it is far more
complicated to understand the code of an optimized sched-
uler and it is even more challenging to write a new. From
our own experience and further observations we believe that
the complexity of the detail is often either underestimated or
falsely ignored. Second, a huge amount of time was spent
on implementing and testing concepts anew although they
have already been solved in existing systems.

Taking common software engineering experiences into
concern, such as software testing takes approximately 50%
of development time, it should become clear that imple-
menting from scratch is time consuming and error-prone
even if the concept to be implemented is not new. There-
fore re-implementations are to be avoided if there are no

serious reasons to it. In the case reported here, this rule of
thumb was not respected.

4.4 Summary

It should be emphasized, that the troubles described in
this section were not caused by particularly weak skills of
the project team. In fact, numerous commercial and aca-
demic system-level software projects run into similar diffi-
culties for the same reasons. The lack of suitable mainte-
nance techniques and education leads to prejudices against
foreign code and the inability to evolve existing systems.
This in turn results in either expensive “re-inventions of the
wheel” or hard-to-maintain workarounds with weak quality.

5 Adaptations

Our own experiences with from scratch development
and wrapping along with observations of numerous similar
projects show that the impact of the costs of implementation
on progress of a field2 are stronger than expected.

SW

creativity costs

methods

Figure 1. method-creativity-cost triangle

As illustrated in figure 1 we experienced and observed
strong dependencies between methodology, creativity and
costs. Insufficient methods not only increase implementa-
tion costs but the increased costs also restrict creativity be-
cause creative ideas are often abandoned quickly if the costs
seem to be high. But without creativity there are no new
methods.

With this interdependency in mind it is clear that first, the
costs must be reduced to allow significantly advancements
of the field, later. We therefore aimed at reducing the imple-
mentation costs without sacrifying the conceptual level by
using and changing high-quality open open source software
according to our needs. We chose the compiler GNU GCC
as the starting point for the development of a new INSEL
compiler and Linux [13] as the basis for our OS kernel. The
results achieved with this maintenance approach exceeded
our expectations.

2here, system level software

5.1 Compiler

Without doubt, GCC is one of the largest and most com-
plicated open source software packages, available today.
Despite the GCC mailing lists, some online archives and
a rather general introduction [26], there is no comprehen-
sive documentation of its implementation besides in-line
code. The constantly growing core of the compiler exceeds
500.000 loc3 and supports several languages of the C fam-
ily on more than 200 platforms. At the same time, GCC is
a high quality compiler. Apple’s Max OS X (10.2) is com-
piled entirely using GCC 3.1 and companies such as SCO
offer GCC as their standard compiler.

Because of GCC’s enormous complexity, implementing
our own new imperative language INSEL by changing GCC
was considered very ambitious. Indeed, some parts of GCC
represent the maintainers nightmare at first sight. Besides
the absence of documentation, there are single functions,
such asexpand call , with 1300 loc. Furthermore, dif-
ferent parts of the compiler are written in different lan-
guages, e. g. a bison parser specification, C interspersed
with 100s of different macros and in-line assembler, and
proprietary machine and hardware description languages.
The C code makes excessive use of sophisticated C short
cuts, such as pre and post increment/decrement, and the
ternary operator.

5.1.1 First Steps

Because of this, we started the project to implemented IN-
SEL as a new language of GCC cautiously. A single under-
graduate student with at most average programming skills
received the unappreciative task to read the GCC sources
and find a way to implement INSEL on the basis of GCC.
To our surprise, this work advanced much faster then ex-
pected. Within his 3 months thesis [27] the student had an-
alyzed the architecture of GCC, understood its concepts on
different levels and implemented a first prototype of the new
GNU INSEL compiler GIC [20] capable of translating the
function shown in figure 2 from source to any supported
platform with arbitrary optimization switches.

FUNCTION foo(x,y:IN integer) RETURN R_T
lokal: integer;
R : R_T;

BEGIN
lokal := x+y+a;
R.X := Lokal;
R.Y := Lokal+1;
RETURN R;

END foo;

Figure 2. Function foo

3lines of code

Besides providing an executable compiler, we learned
several software maintenance lessons within this thesis. In
contrast to the wrapping and the from-scratch approaches,
everyone in team overestimated the time needed to accom-
plish the tasks to read the existing code and to extend it.
Code reading, understanding and modification proceeded
much faster than expected. Opposed to common belief, for-
eign code proved to be only difficult to understand in the
beginning. Once the code reader has gotten over initial frus-
tration, started to accept the different style of the code, and
found certain entry points code reading and understanding
is very quick.

5.1.2 Subsequent Work

After the success of this initial work, several students con-
tinued development of GIC over 2 years. During this period
we made two major observations:

1. Progress slowed down with increasing size.

2. The productivity varied enormously between different
developers. The ideal skills are unclear.

Though observation 1 is not surprising it seems to set an
upper bound for the successful extension of complex soft-
ware in a distributed and open source manner. In fact, the
core of GCC itself is maintained by a relatively small num-
ber of developers. Significant progress tends to occur only
outside the core where dependencies to other parts of the
system are limited. For this, it is essential that the code
based is thoroughly modularized so that individual devel-
opers are able to operate with limited knowledge. Indeed,
it can be observed that open source products are frequently
restructured as needed to allow future growth [3].

The difference between the productivity of different de-
velopers was extremely high, although most participating
students joined the project at a similar stage of their studies.
While some students implemented complex language con-
cepts, such as explicit task parallelism, within a few days,
others felt unable to make any significant contribution after
months of trying.

As of today, we can only speculate about the reasons
for this. First, adaptation requires a broad understanding
of different concepts. In our case details of C, address arith-
metics, macro usage, assembler, compiler construction, etc.
Hardly anything can be done if only one of these skills is
missing. Second, the willingness and ability to read and
to fully understand foreign code varies significantly. While
some developers more or less refuse to read code not writ-
ten in their style, others are willing to invest a large amount
of time to understand the intentions and reasons of their pre-
decessors.

5.1.3 Remark

The result of the GCC adaptation project was the fully op-
erational and highly optimizing INSEL compiler GIC [20].
In contrast to the preceding INSEL compilers, GIC did not
introduce any overhead. With GIC, INSEL achieves similar
performance like optimized C programs.

5.2 Kernel

We later on continued our adaptation work by replacing
the wrapped runtime system with a more suitable kernel by
changing Linux according to our needs for an OS kernel
targeted towards distributed and parallel computing.

Most of the GCC properties, such as large, complex, in-
completely documented, multiple languages, etc. apply for
Linux, too. Nevertheless, we also adapted Linux accord-
ing to our needs in a series of theses. The kernel was ex-
tended with additional services, the management of task
stacks along with the task data structure was changed, and
the usage of registers was modified.

From the software maintenance perspective the kernel
adaptation project reproduced the experiences gained in
the compiler adaptation project although different students
were involved in this project. Adaptation has been by far
more successful than any other implementation strategy al-
though the Linux kernel is highly complex, its code is far
from being trivial to read, and adequate maintenance tools
are still missing. Again, the individual skills of the different
developers played an important role for the success of the
adaptation work.

6 Conclusion

In the context described in this paper, the adaptation of
existing software has demonstrated its superiority compared
to development from scratch or wrappings. Our experi-
ence clearly shows that it is a myth that the understanding
of different, foreign, critical, highly complex, and undocu-
mented code for extension purposes was similarly difficult
than writing a new system. Even the complicated low-level
C source code of GCC and Linux could be analyzed and
comprehended by students within weeks after which they
were able to contribute changes and extensions.

The decision of whether to develop from scratch, to wrap
or to change existing similar software has a major impact on
the outcome. Provided that there are enough resources, it
can be expected that from scratch development is able to de-
liver products with optimal quality. But in reality, resources
are scarce and the time needed just for solving problems that
are already solved elsewhere often exceeds the available re-
sources. The effort needed for development from scratch
tends to be underestimated because the upcoming complex-
ity is not yet visible.

Wrapping provides a poor way out of this dilemma be-
cause mismatches between the actual goals and the pro-
visions of the underlying basis necessitate workarounds.
These workarounds have negative influences on the quality
of the final product in many aspects.

The invasive adaptation of existing software, that is its
consequent modification and extension, seems to be the
only realistic solution in the long run. Obviously, this is not
limited to the operating system context described in this pa-
per but can be transfered to large scale commercial software
systems as well. Interestingly, adaptation repeatedly proved
to be less time-consuming than expected because the first
estimation tends to be pessimistic due to scepticism con-
cerning foreign coding style and the size of the unknown
object.

As described in this paper the maintenance skills of the
individual developers are of predominant importance for the
success or failure of adaptation work. We believe, that the
success described in this paper could be leveraged with ad-
vanced software maintenance techniques, tools and educa-
tion in particular concerning comprehension and transfor-
mation of existing software.

Here, we presented our maintenance experience on a
very coarse and descriptive level. Our next step will be to
analyze the difficulties and phenomenons encountered dur-
ing this long-term adaptation project in detail and to com-
pare the resulting requirements with existing maintenance
techniques in a systematic way. We also want to perform
a retrospective SRAH assessment in the near future to ana-
lyze the possible impact of a structured assessment on our
project.

References

[1] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian,
and M. Young. Mach: A New Kernel Foundation For UNIX
Development. Technical report, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA 15213,
August 1986.

[2] H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A
language for parallel programming of distributed systems.
IEEE Transactions on Software Engineering, 18(3):190–
205, 1992.

[3] A. Bauer and M. Pizka. The contribution of free software to
software evolution. InProc. of the Int. Workshop on Princi-
ples of Software Evolution (IWPSE), Helsinki, Finland, Sept.
2003.

[4] V. Cahill, R. Balter, D. Harper, N. Harris, X. R. de Pina, and
P. Sousa. The Comandos distributed application platform.
The Computer Journal, 37(6):478–486, 1994.

[5] R. H. Campbell and N. Islam. Choices: A Parallel Object-
Oriented Operating System. In G. Agha, P. Wegner, and
A. Yonezawa, editors,Research Directions in Concurrent
Object-Oriented Programmi ng. MIT Press, 1993.

[6] X. Corporation. Aspect-oriented programming home page.
http://www.parc.xerox.com/aop/, 2000.

[7] K. Czarnecki and U. W. Eisenecker.Generative Program-
ming. Addison Wesley, 2000.

[8] C. Czech. Dycos - a customizable kernel architecture sup-
porting distributed operating environments. InProc. of IEEE
3rd Int’l Conf. on Algorithms & Architectures for Parallel
Processing (ICA3PP’97), Dec. 1997.

[9] C. Eckert and M. Pizka. Improving resource management
in distributed systems using language-level structuring con-
cepts. The Journal of Supercomputing, 13(1):33–55, Jan.
1999.

[10] C. Eckert and H.-M. Windisch. A new approach to match
operating systems to application needs. InIASTED – ISMM
International Conference on Parallel and Distributed Com-
puting and Systems, pages 499 – 503, Washington, USA,
Oktober 1995.

[11] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam.PVM: Parallel Virtual Machine. MIT
press, 1994.

[12] G. Hamilton and P. Kougiouris. The Spring nucleus: A mi-
crokernel for objects. InProceedings of the USENIX Sum-
mer 1993 Technical Conference, pages 147–160, Berkeley,
CA, USA, June 1993. USENIX Association.

[13] G. Hankins. The linux documentation project. World Wide
Web, 1999. http://www.go.dlr.de/linux/LDP/.

[14] F. P. B. jr.The Mythical Man-Month. Addison Wesley, 1995.
[15] M. Lehman. The programming process. Technical Re-

port RC2722, IBM Research Centre, Yorktown Heights, NY,
Sept. 1969.

[16] M. Lehman and J. F. Ramil. Rules and tools for software
evolution planning and management.Annals of Software
Engineering, 2001.

[17] W. G. Levelt, M. F. Kaashoek, H. E. Bal, and A. S.
Tanenbaum. A comparison of two paradigms for dis-
tributed shared memory.Software– Practice and Experi-
ence, 22(11):985–1010, Nov. 1992.

[18] J. Liedtke. Onµ-kernel construction. InProceedings of
the 15th ACM Symposium on Operating System Principles,
Copper Mountain Resort, Colorado, Dec. 1995.

[19] OMG. Corba services:common object services specifica-
tion, security services. Technical report, OMG and X/Open
Co Ltd., July 1997.

[20] M. Pizka. Design and implementation of the GNU INSEL-
compiler gic. Technical Report TUM-I9713, Technische
Universiẗat München, Dept. of CS, 1997.

[21] M. Pizka. Distributed virtual address space management in
the MoDiS-OS. Technical Report TUM-I9817, Technische
Universiẗat München, 1998.

[22] M. Pizka and C. Eckert. A language-based approach to con-
struct structured and efficient object-based distributed sys-
tems. InProc. of the 30th Hawaii Int. Conf. on System Sci-
ences, volume 1, pages 130–139, Maui, Hawai, Jan. 1997.
IEEE CS Press.

[23] V. T. Rajlich and K. H. Bennett. A staged model for the
software life cycle.IEEE Computer, pages 2–8, July 2000.

[24] D. C. Schmidt and S. Vinoski. Object interconnections.
SIGS C++ Report magazine, May 1995.

[25] A. Silberschatz, J. Peterson, and P. Galvin.Operating Sys-
tem Concepts. Addison Wesley, 3. edition, 1991.

[26] R. M. Stallman.Using and Porting GNU CC. Free Software
Foundation, Nov. 1995.

[27] C. Strobl. Integration der sprache INSEL in den GCC. Fort-
geschrittenenpraktikum, July 1996.

[28] STSC. Software Reengineering Assessment Handbook
v3.0. Technical report, STSC, U.S. Department of Defense,
Mar. 1997.

[29] H.-M. Windisch. The distributed programming language
INSEL – concepts and implementation. InFirst Interna-
tional Workshop on High-Level Programming Models and
Supportive Environments, pages 17 – 24, Apr. 1996.

