SWTESTASIA PROBE TODAY, FOR TOMORROW 2019 CONFERENCE

Friday, October 18 Proceedings

THE REAL OF

Welcome to SWTest Asia 2019

2nd Annual SWTest Asia Conference

On behalf of the SWTest Asia Team it is our great pleasure to welcome you to the Second Annual SWTest Asia EXPO at the Sheraton in Hsinchu, Taiwan. We would like to thank all our sponsors (8-platinum, 8-gold, and 8-silver), the 42 exhibitors, and the committee members as well as the volunteers for their support to make SWTest Asia a valuable event for the Asian wafer test industry.

Last year, the inaugural SWTest Asia Conference drew over 450 attendees with more that 45% of attendees from outside of Taiwan. More than 35% of the registered attendees were key engineers, managers, and decision makers from IDM, Foundry, and OSAT companies.

For 2019, we are pleased to have expanded the conference schedule into a two-day Technical Program with six themed sessions as well as a sold-out EXPO with 42 booths. The top probe card, probe equipment, and related service suppliers will have an opportunity to showcase their latest product offerings and technical services. Our goal with the focused EXPO is to provide our attendees with unprecedented access to the premier suppliers of technologies and services for the wafer test industry.

The popular "Tech Showcase" track will be held during the EXPO hours but will not conflict with the technical session schedule of the conference. SWTest Asia Conference and EXPO is rapidly becoming a must-attend event for the Asia wafer test industry.

New for SWTest Asia 2019, we started the "1st Annual Sponsors and Exhibitors Golf Tournament" to facilitate relaxed technical discussions, networking, and support our student travel grant awards.

Once again, thank you for being a part of the 2nd Annual SWTest Asia Conference and EXPO; and we hope that you enjoy your time in Taiwan and the Hsinchu area.

Jerry Broz, Ph.D. General Chair SWTest Asia

Clark Liu Program Chair SWTest Asia

Rey Rincon Technical Program Co-Chair SWTest Asia

Maddie Harwood Finance Chair & Conference Management SWTest Asia

SWTest Asia 2019 - Platinum Sponsors

2019

SWTest Asia

Conference

PROGRAM

SCHEDULE

PROGRAM SCHEDULE

SWTest Asia 2019 - Gold Sponsors

2019

SWTest Asia

Conference

SWTest Asia 2019 - Silver Sponsors

Technical Innovation - Physical Solutions

2019

SWTest Asia

Conference

"Program Overview At A Glance"

PROGRAM

SCHEDULE

Day One	Thursday, October 17th, 2019
8:00 - 17:00	Attendee Registration Open
9:00 – 10:15	Chair's Opening Remarks Thursday Keynote Presentation in General Session Room Prof. Chen-Fu Chien, Ph.D. Tsinghua Chair Professor & Micron Chair Professor at National Tsing Hua University
10:15 – 10:45	Tea Break in the Registration Lobby
10:45 – 12:15	"Challenges for Next-Gen of Wafer Test" in General Session Room Full Conference Only
12:15 – 14:00	Expo Open – Lunch in Expo Hall – Two Sessions
14:00 – 15:30	<i>"Big Data, Big Future</i>" in General Session Room Full Conference Only – Expo Open
15:30 – 16:00	Expo Open & Tea Break in the Registration Lobby and Expo Hall
16:00 – 17:30	"Challenges in Process Control Monitoring" in General Session Room Full Conference Only – Expo Open
17:30 – 18:30	Welcome Reception in Expo Hall

Day Two	Friday, October 18th, 2019
8:00 - 17:00	Attendee Registration Open
9:00 – 10:15	Chair's Opening Remarks Friday Keynote Presentation in General Session Room Masahide Ozawa Technical Consultant at Tokyo Electron Technology Solutions
10:15 – 10:45	Expo Open & Tea Break in the Registration Lobby and Expo Hall
10:45 – 12:15	"Full Speed Ahead with 5G Solutions" in General Session Room Full Conference Only – Expo Open
12:15 – 14:00	Expo Open – Lunch in Expo Hall – Two Sessions
14:00 - 15:30	"Temperature Handling & Space Transformation" in General Session Room Full Conference Only – Expo Open
15:30 - 16:00	Expo Open & Tea Break in the Registration Lobby and Expo Hall
16:00 - 17:30	"Advanced Probing Interface Solutions" in General Session Room Full Conference Only – Expo Open
17:30 – 17:45	Presentation Awards Ceremony
17:45 – 18:45	Closing Reception in Expo Hall

SWTest Team is proud to announce the 2nd Annual SWTest Asia conference to be held in Hsinchu, Taiwan, October 17-18, 2019. This two-day conference is a probe technology forum where attendees come to learn about recent developments in the industry and exchange ideas. SWTest Asia promotes a friendly atmosphere with Technical Sessions, an EXPO, and a Tech Showcase, as well as our signature relaxed environment for "informal discussion and networking".

PROGRAM

SCHEDULE

This event attracts attendees from the local and regional semiconductor industry that include ASE, TSMC, Ardentec, KYEC, SPIL, Micron, ChipMOS, UMC, Winbond, PTI, and more. Visitors to the conference will come from Japan, Korea, China, Singapore, India, Philippines, and Malaysia. Conference registration includes all meals, refreshments, social activities, and technical program and exhibit attendance, as well as the eProceedings.

	Thursday, October 17th, 2019
8:00 - 17:00	Attendee Registration Open
9:00 – 10:15	Welcome to SWTest Asia 2019 – Day 1 Dr. Jerry Broz, SWTest Asia General Chair Clark Liu, SWTest Asia Technical Program Chair
	Thursday Keynote Presentation
	"Industry 3.5" to Empower Intelligent
	Manufacturing and Empirical Studies in Taiwan
	IEDICAL
	Prof. Chen-Fu Chien, Ph.D.
	Department of Industrial Engineering & Engineering Management National Tsing Hua University, Taiwan
10:15 – 10:45	Expo Open & Tea Break in the Registration Lobby and Expo Hall

Thursday Program Overview	
Technical Session 1	Challenges for Next-Gen of Wafer Test
10:45 – 12:15	Session Chair: Dr. Jerry Broz, General Chair (International Test Solutions)
10:45 – 11:15	Advanced Packaging — It's Changing The World Of Wafer Test
	Amy Leong (FormFactor Inc. – USA)
11:15 – 11:45	Methodology of VCSEL Probing and Testing
	Hector Lin, Douglas Tsai, and Gary Liu (MPI Corporation – Taiwan)
11:45 – 12:15	Probing Technology Challenge: Now and Future
	Clark Liu, Henry Tseng, and Jason Sung (PTI – Taiwan)
12:15 – 14:00	Expo Open – Lunch in Expo Hall – Two Sessions

Technical Session 2 14:00 – 15:30	Big Data, Big Future Session Chair: <u>Joey Wu (</u> SWTest Member at Large)
14:00 - 14:30	Wafer Defect Diagnosis With Test Big Data Driven Techniques <u>Prof. Katherine Shu-Min Li</u> (National Sun Yat-Sen University – Taiwan) Andrew Huang, <u>Chau Cheung Cheng</u> , Chengyen Tsai, Leon Chou, Yi Yu Liao, and Chen Hsun Lee (NXP Semiconductors - Taiwan)
14:30 - 15:00	Probe Card Electrical Quality Enhancement Using Big Data Analytics Kenny Huang, Fred Chou, Alex Wei, <u>Steven Wu</u> (MPI Corporation – Taiwan) Ying-Jen Chen (DALab Solutions x Associates Co., Ltd., Taiwan – Taiwan) Yu-Mei Ling, Yi-Yu Chen and Prof. Chen-Fu Chien (National Tsing Hua University – Taiwan)
15:00 – 15:30	Testing the Spatial Pattern Randomness on Wafer Maps <u>Prof. Jwu E Chen</u> , Prof. Hsing-Chung Liang, and <u>Tung Ying Lu</u> (National Central University – Taiwan)
15:30 – 16:00	Expo Open & Tea Break in the Registration Lobby and Expo Hall

Technical Session 3	Challenges in Process Control Monitoring
16:00 - 17:30	Session Chair: <u>Nobuhiro Kawamata (</u> FormFactor KK – Japan)
16:00 - 16:30	Reducing Wafer Parametric Test Costs By High Speed Test Solution
	Yu Cheng Su (National Instruments – Taiwan)
	<u>Mark Lu</u> (Semitronix – China)
16:30 – 17:00	Advances In Position Measurement And Analysis For Guide Plate Microholes
	Michael Cullimore and Dr. Alan Ferguson (Oxford Lasers – United Kingdom)
17:00 – 17:30	Takumi CL – New 2D-MEMS Spring Introduction to Formfactor Parametric Probe
	Card and Comparison with 3D MEMS Spring
	<u>Takao Saeki</u> (Formfactor KK – Japan)
17:30 – 18:30	Expo Open & Tea Break in the Registration Lobby and Expo Hall

2019

SWTest Asia

Conference

Friday, October 18th, 2019	
8:00 - 17:00	Attendee Registration Open
9:00 – 10:15	Welcome to SWTest Asia 2019 – Day 2 Dr. Jerry Broz, SWTest Asia General Chair Clark Liu, SWTest Asia Technical Program Chair
	Friday Keynote Presentation
	Wafer Test Value and Future
	Masahide Ozawa
	Technical Consultant Tokyo Electron Technology Solutions - Japan
10:15 – 10:45	Expo Open & Tea Break in the Registration Lobby and Expo Hall

PROGRAM SCHEDULE

Friday Program Overview	
Technical Session 4	Full Speed Ahead with 5G Solutions
10:45 – 12:15	Session Chair: Dr. Jerry Broz, General Chair (International Test Solutions)
10:45 – 11:15	Getting Ready For The Next Wave Of Growth
	John West (VLSI Research Europe – United Kingdom)
11:15 – 11:45	5G Enhanced Micro-Cantilever Membrane Probing Solutions
	Jed Hsu and Jordan Smalls (Translarity, Inc. – USA)
11:45 – 12:15	How To Successfully Embrace The Era Of 5g Mmwave Test
	<u>Yu Cheng Su</u> (National Instruments – Taiwan)
12:15 – 14:00	Expo Open – Lunch in Expo Hall – Two Sessions

Technical Session 5	Advanced Thermal Handling & Space Transformation
14:00 - 15:30	Session Chair: Dr. Alan Ferguson (Oxford Lasers – United Kingdom)
14:00 - 14:30	Ultra High Temperature Production Probe Card Solution for Automotive IC Testing
	<u>Alan Liao</u> (FormFactor – USA) and <u>Hirofumi Nagata</u> (FormFactor – Japan)
14:30 – 15:00	Space Transforming Probes
	Gary Grube and Dominik Schmidt (Translarity Inc. – USA)
15:00 – 15:30	Temperature Accuracy At High Wattage Wafer Test – A Novel Method To Control
	Device Temperature
	Klemens Reitinger (ERS electronic GmbH – Germany)
15:30 - 16:00	Expo Open & Tea Break in the Registration Lobby and Expo Hall

Technical Session 6	Advanced Probing Interface Solutions
16:00 – 17:30	Session Chair: <u>Clark Liu (PTI – Hsinchu, Taiwan)</u>)
16:00 - 16:30	Overview Of Specialized Testing For Mems Sensors; Wafer Probe & Final Test
	<u>Michael Ricci</u> (Rika Denshi Group, LTD – Japan)
16:30 – 17:00	Innovative Probe Card Analyzer Solutions For Next Generation Probe Cards
	John Strom (Rudolph Technologies – USA)
17:00 - 17:30	A New Framework to Manage Device Interface Complexity For The Next Decade
	<u>Steve Ledford</u> (Teradyne – USA)
17:30 – 18:30	Expo Open & Tea Break in the Registration Lobby and Expo Hall

PROGRAM SCHEDULE

2019 EXHIBITORS

Advantest ATT Systems GmbH Celadon Systems Inc. Chain-Logic International Corp. CHPT Dynamic Test Solutions Asia Pte Ltd. **ERS electronic GmbH** Feinmetall GmbH **Ferrotec Ceramics Corporation** FormFactor Hermes Testing Solutions Inc. Hitachi Chemical Co., Ltd. Integrated Technology Corporation **International Test Solutions** inTEST EMS ISC Co., Ltd. IWIN Co., Ltd. JEM Taiwan Probe Corp. Laser Job, Inc. **MJC** Taiwan **MPI** Corporation

Nagase (Taiwan) Co., Ltd. National Instruments NHK Spring Co., Ltd. Nidec SV TCL **Oxford Lasers** PLI Co., Ltd. Posalux SA Rudolph Technologies, Inc. Saehan Microtech SEMICS Inc. Shyan Sheng Hitech Specialty Coating Systems STAr Technologies, Inc. T.I.P.S. Messtechnik GmbH Tanaka Precious Metals Technoprobe America Inc. Teradyne, Incorporated **Veco Precision** Wentworth Laboratories Ltd. WinWay Technology Co., Ltd. **WONIK QnC Corporation**

2019

SWTest Asia

Conference

PROGRAM SCHEDULE

3nd Annual SWTest Asia

Coming in October, 2020 (dates will be announced soon!)

PROGRAM

SCHEDULE

2019

SWTest Asia

Conference

30th Anniverary SWTest June 7 to 10, 2020

Rancho Bernardo Inn San Diego, California

Technical Program SWTest Asia 2019

Friday, October 18, 2019

Hsinchu, Taiwan, October 17-18, 2019

Friday, October 18, 2019

9:00 to 9:15 - Welcome to SWTest Asia

Dr. Jerry Broz (SWTest Asia General Chair) and Clark Liu (SWTest Program Chair)

9:15 to 10:15 – Keynote Speaker

Wafer Test Value and Future

Masahide Ozawa

Technical Consultant Tokyo Electron Technology Solutions - Japan

Friday, October 18, 2019 10:45 to 12:15 – Full Speed Ahead with 5G Solutions

Getting Ready For The Next Wave Of Growth John West (VLSI Research Europe – United Kingdom)

5G Enhanced Micro-Cantilever Membrane Probing Solutions Jed Hsu and Jordan Smalls (Translarity, Inc. – USA)

How To Successfully Embrace The Era Of 5g Mmwave Test Yu Cheng Su (National Instruments – Taiwan)

Friday, October 18, 2019

14:00 to 15:30 – Advanced Thermal Handling & Space Transformation

Ultra High Temperature Production Probe Card Solution for Automotive IC Testing Alan Liao (FormFactor – USA) and <u>Hirofumi Nagata (FormFactor – Japan</u>)

> Space Transforming Probes Gary Grube and <u>Dominik Schmidt</u> (Translarity Inc. – USA)

Temperature Accuracy At High Wattage Wafer Test – A Novel Method To Control Device Temperature <u>Klemens Reitinger (ERS electronic GmbH – Germany)</u>

Friday, October 18, 2019

16:00 to 17:30 – Advanced Probing Interface Solutions

Overview Of Specialized Testing For Mems Sensors Wafer Probe & Final Test Michael Ricci (Rika Denshi Group, LTD – Japan)

A New Framework to Manage Device Interface Complexity For The Next Decade <u>Steve Ledford (Teradyne – USA)</u>

> Intelligent Method for Retesting a Wafer YC Wang and YK Huang (Teslence Technology Co., Ltd)

Technical Program SWTest Asia 2019

Friday, October 18, 2019

Hsinchu, Taiwan, October 17-18, 2019

ASIA 2019 Ome to the 2st Ar

SWTEST

Welcome to the 2st Annual SWTest Asia in Taiwan

Jerry Broz, Ph.D. General Chair, SWTest Asia International Test Solutions Clark Liu Technical Program Chair, SWTest Asia Powertech Technology, Inc.

Hsinchu, Taiwan, October 17-18, 2019

Welcome to the Sheraton, Hsinchu !

SWTest Asia and SWTest San Diego

• SWTest Conferences are Probe Technology Forums ...

- Premier Conferences for Wafer Test Professionals and Probing Technologists.
- Balanced mixture of manufacturers and suppliers as well as collaborative presentations
- Practical solutions to real problems that are faced by test engineers

Thirty-Two Combined Years of Probe Technology ...

- 2nd SWTest Asia in Taiwan brings a "workshop style" conference to Asia Semiconductor community.
- SWTest in San Diego has more than 9500 worldwide attendees to discuss probe technology.

• Informal and Networking Conferences ...

- Focused technical exchange
- Great social activities and informal discussions
- Meet new people and have a little fun !

Held During October In Asia Region

Held During June In San Diego, CA

SWTest Asia 2019 Demographics

Welcome !

SWTest Asia Chairs and Committee

• SWTest Asia Chairs

- Dr. Jerry Broz, General Chair (International Test Solutions USA)
- Clark Liu, SWTest Asia Technical Program Chair (Powertech Technology, Inc. Taiwan)
- Rey Rincon, Technical Program Co-Chair (Translarity, Inc. USA)
- Maddie Harwood, Finance and Conference Management Chair (SWTest Conferences)

• SWTest Asia Steering Committee

- Nobuhiro Kawamata (Formfactor, K.K. Japan)
- Alex Yang (MPI Corporation Taiwan)
- Alan Ferguson, Ph.D. (Oxford Lasers, Inc., United Kingdom)
- Joey Wu (SWTest Member at Large Taiwan)
- Haruko Yoshii (Formfactor, K.K. Japan)

SWTest Asia 1st Annual Benefit Tournament

Wednesday, October 16, 2019

SWTest Asia 2019 on October 17 to 18, 2019

Thursday, October 17

- Keynote from <u>Prof. Chen-Fu Chien, Ph.D.</u>, Tsinghua Chair Professor & Micron Chair Professor at National Tsing Hua University
- Technical Program with 3-podium sessions
 - 1045 1215: Challenges for Next-Gen of Wafer Test
 - 1400 1530: Big Data, Big Future
 - 1600 1730: Challenges in Process Control Monitoring
- SWTest Asia EXPO 2019 with 42-key suppliers
- Technology Showcase Presentations by Platinum Sponsors
- Welcome Reception in Expo Hall

Friday, October 18

- Keynote from <u>Masahide Ozawa</u>, Technical Consultant at Tokyo Electron Technology Solutions
 - **Technical Program with 3-podium sessions**
 - 1045 1215: Full Speed Ahead with 5G Solutions
 - 1400 1530: Advanced Thermal Handling & Space Transformation
 - 1600 1730: Advanced Probing Interface Solutions
 - Awards for "Best Presentations" selected by committee.
 - SWTest Asia EXPO 2019 with 42-key suppliers
- Technology Showcase Presentations by Platinum Sponsors
- Closing Reception in Expo Hall

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

•

Map of the Area

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Program

SWTest Asia 2019 eProceedings

eProceedings Password: yushan • Conference e-Version is available for download in a password protected file.

- Ballroom WiFi = SAP03
- Go to ... <u>http://www.swtestasia.org</u> ... to download the daily eProceedings.
- Free WiFi access will be available during the entire conference to allow attendee access to the downloads.
- Password for the download files will be announced throughout each day and at the registration desk.
- Non-password locked files (including the Keynote presentations) will be made available in the SWTest Asia Archives after the conference adjourns.

Welcome !

SWTest Asia App – "In the Palm of Your Hand"

- Up-to-the-minute updates in "SWTest News"
- Schedules of the "Technical Sessions"
- Meet with the "Exhibitors" and "Sponsors"
- Connect with the "Speakers"
- Attend the "Tech Showcase"
- Get oriented on the "Floorplan"
- Network with the "Attendees"
- Learn about "SWTest in San Diego"

Login = registration email Password = SWTA_2019

Platinum Sponsors

Welcome !

Gold Sponsors

Welcome !

Silver Sponsors

Welcome !

Friday Keynote Speaker

Wafer Test Value and Future

Masahide Ozawa

Technical Consultant Tokyo Electron Technology Solutions - Japan

Welcome !

Technical Program SWTest Asia 2019

Friday, October 18, 2019

Hsinchu, Taiwan, October 17-18, 2019

Recognition & Awards

- Best Overall Presentation
- Best Data Presentation
- "Most Inspirational" Presentation

3rd Annual SWTest Asia Coming in October, 2019 (dates will be announced soon !)

Thanks for Attending SWTest Asia ! We Hope to See you at SWTest San Diego

June 7 – 10, 2020 Rancho Bernardo Inn San Diego, California

Join us in celebrating our 30th Anniversary

PROBE TODAY, FOR TOMORROW 2020 CONFERENCE

SWTest San Diego 2020

Thanks for your Support !

Contact the SWTest Asia Team with any questions

Jerry Broz, Ph.D. General Chair SWTest Asia +1-303-885-1744 E: jerry.broz@swtest.org Clark Liu Asia Technical Program Chair SWTest Asia +886-975-658-563 E: clark.liu@swtest.org

Rey Rincon Technical Program Co-Chair SWTest Asia +1-214-402-6248 E: rey.rincon@swtest.org Maddie Harwood Finance Chair & Conference Management SWTest Asia +1-540-937-5066 E: maddie.harwood@swtest.org E: expo@swtest.org

TERMS of SERVICE

- Information included in the SWTest proceedings and websites reflect the authors opinions and are presented without change. Inclusion in any workshop proceedings (past or present) does not constitute an endorsement by the SWTest, SWTest Asia, IEEE Society, CPMT Society, Computer Society, and/or the Test Technology Council.
- SWTest and SWTest Asia publications and websites contain information that has been provided by exhibitors, sponsors, and authors. Exhibitors, sponsors, and authors are responsible for ensuring that materials submitted for inclusion within the SWTest and SWTest Asia publications and associated sites are accurate as well as in compliance with any applicable laws. SWTest and SWTest Asia does not investigate, edit without permission, or check the accuracy of the submitted materials.
- Papers previously copyrighted or with copyright restrictions cannot be presented. In keeping with a workshop environment and to avoid copyright issues, SWTest and SWTest Asia does not officially seek a copyright ownership or transfer from authors.
- Authors agree by submitting their work that it is original work and substantially not published previously or copyrighted, may be referenced in the work of others, will be assembled / distributed in the SWTest and SWTest Asia Proceedings, and made available for download by anyone from the SWTest and SWTest Asia website.

"Getting ready for the next wave of growth"

John West VLSI Research Europe

Hsinchu, Taiwan, October 17-18, 2019

The next wave of growth has already started...

John West

Here is the data to back it up

John West

But this new wave is different to the previous three

From thousands to billions...

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

4

John West

Units growing faster than revenues but the difference is narrowing

Average Selling Prices Trending Upwards

John West

Are you ready?

John West

The Main Problem for the industry

Moore's Law is slowing which means...

- 2D shrinks more difficult
- New architectures and devices required
- New materials
- Advanced packaging technology

This is driving structural change within the industry so the industry has to innovate

What this means for you...

This breaks down into three fundamental areas

Product Capacity Sales Strategies

John West

Product

In the future there will be more of all probe card types, but the trend will be for...

Probe heads with more needles / higher needle density

High performance needles: higher frequencies, higher power, wider temperature ranges, durability, etc

Are you going to run out of capacity? Some segments are growing rapidly

Do you have the right technology roadmap? Manufacturing technologies will change

A bit of inside information about capacity and capability

Chipmakers are concerned there is a gap emerging between what they need and what the industry can deliver

Sales Strategy:

If you don't align your sales strategies with the changing environment, you will lose customers

Customers:

- are on the move
- priorities are changing
- **Competitive landscape:**
 - It's changing
 - Suppliers are getting smarter

Solutions: How to use data to plan future growth

John West

Product Solutions: All probe card technologies growing

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

14

Product Solutions: Opportunities in both memory and non-memory

Capacity Solutions: You need to invest now for leading edge applications

John West

Sales Strategies Solution: know where your customers are going to be in the future

John West

Sales Strategies Solution: gain a deep understanding of customers' pain... it's not always the price of a probe card

So What Happens Next?

To succeed you need to understand:

- What products are required
- Which manufacturing technologies to invest in
- How your customers priorities are changing

And to do this effectively you need data and the stories behind the data so that you can be more solid in the discussions that are sure to come in this new wave of growth

John West

5G Enhanced Micro-Cantilever Membrane Probing Solutions

Jed Hsu Jordan Smalls Translarity, Inc.

Hsinchu, Taiwan, October 17-18, 2019

Introduction

- Market is pushing toward high frequency RF testing
- Translarity's solutions bring testing improvements to address:
 - Foreign material with tall microcantilever probes
 - CRES/lateral scrub
 - Durability and lifetime
- Objective: Create a product to test high frequency, high density devices up to 70 GHz with a focus on repeatability and durability for production stability

Probe Card Construction

• FPC (flexible printed circuit) design architecture

- Low loss materials
- For use with microcantilever and vertical probes

Designed for max overtravel of 100 µm

- Recommended 75 µm overtravel
- Custom design spring set for precise compliance
- Proprietary low loss coaxial attach process

design of FPC with pads

Modular Probe head

Tester side of PCB with 6 coaxial cables attached

SEM image of a probe tip with foreign material. 40µm particle is not a hindrance Probe tip is 88µm tall

J. Hsu, J. Smalls

Probe Card Construction

- Probe card construction is capable for a minimum 150µm pitch array
 - Microcantilever's tip prevents heel strike issues with tall tip design
- Repairability
 - Single probe repairable
 - Modular probe head enables quick probe card replacement

Modular Probe head

Microcantilever probe design for contacting 150µm pitch array

Pads

Probe tip location

 Microcantilever

Simulation & Testing Data Summary

• **RF simulations**

- Cantilever probes
- Cantilever probes + FPC
- RF measurements of complete assembly
- Cantilever probe characterization
 - Force
 - CCC
 - Durability

Microcantilever model

Test Setup

J. Hsu, J. Smalls

HFSS Simulation Results: Cantilever Probes

- Microcantilever designs simulated in isolation, suspended in air
- Frequency range: DC to 67 GHz.
- Simulated with microcantilever at 80µm and 100µm pitch

Microcantilever probes, top view

Probe design has very low signal loss

J. Hsu, J. Smalls

HFSS Simulation Results: Cantilever Probes

Microcantilever designs with various cantilever lengths simulated at 80µm and 100µm pitch for insertion loss

Cantilever length

Probe design can support various cantilever lengths and pitches

J. Hsu, J. Smalls

HFSS Simulation Results: Cantilever Probes

Microcantilever designs with various cantilever lengths simulated at 80µm and 100µm pitch for return loss

Cantilever length

Return Loss at 100µm pitch

Probe design can support various cantilever lengths and pitches

J. Hsu, J. Smalls

Simulation Model: Probes and FPC

Simulation model in GSG configuration

-Includes microcantilever probes and FPC

-Simulated microstrip transmission line

Simulation microstrip

J. Hsu, J. Smalls

Simulation Results: Probes + FPC

Simulation results for probes and FPC Target insertion loss < 5dB, return loss > 10dB

S21, Insertion Loss

S11, Return Loss

Probes + FPC perform well to about 40GHz

J. Hsu, J. Smalls

Measurement Results

- Completed probe head assembly tested by outside independent lab
- First prototype demonstrated to >20 GHz

Microscope images of cantilever probes

Test Setup

J. Hsu, J. Smalls

Probe + FPC Measurements, Rev 1 Build

Industry:

- 5 dB @ 20 GHz insertion loss
- 10 dB @ 20 GHz return loss

• Measurements:

- 3 dB @ 20 GHz insertion loss
- 12 dB @ 20 GHz return loss

Graphs above show as measured data

J. Hsu, J. Smalls

Mechanical Data: Scrub marks

Scrub depth of 160nm

- Microcantilever probes' mechanical design allows for 2-4 µm of lateral scrub
- Allows probes to self-wipe during testing and keep resistance low

Sample measurements of scrub marks

Resistance includes microcantilever probe and flex microstrip

Low magnification image of scrub marks on Accretech tester on a blank Al/Cu wafer

High magnification image

Lateral scrub ensures good electrical contact

J. Hsu, J. Smalls

Force and CCC

Force can be adjusted based on application

 4g and 5g probe data shown

• CCC

- Microcantilever probe tested from 300mA to 2000mA and did not show failure
- Current on time = 2 min
- Current off time = 10 s

Example data for medium microcantilever force, 5.2g

Fatigue Run

Microcantilever probes tested on Bruker tribometer

- Cantilever probe survived over 5.8 million cycles at an effective 100µm OT
- No failure at end of test

Microcantilever probe under compression

Fatigue run graph shows force over time at 14 cycles/second

Probes are extremely durable and reliable

J. Hsu, J. Smalls

Conclusion & Next Steps

- Novel concepts in ultra high frequency, high reliability RF testing
 - Resistant against foreign material with tall microcantilever probes
 - Good CRES with 2-4 µm lateral scrub
 - Durability of 5.8 million cycles
- Continuous improvements to higher frequencies and lower pitch
- Repairability
 - Due to the durability of the probes, repair should be very infrequent
 - Modular construction allows quick customer replaceable, inexpensive flex coupon
- Seeking customers for beta site engagements

How to successfully embrace the era of 5G mmWave test

John Su Technical Marketing Engineer

Hsinchu, Taiwan, October 17-18, 2019

Overview

- How is 5G progress status and why mmWave?
- Conquer mmWave Test Challenge
- Methodology of mmWave Test for Wafer Conductive, OTA validation & Production
- Summary / Conclusion
- Follow-On Work

3GPP 5G Timeline

Deploy

Aι

		Continue to evo	Ive LTE			
Rel-15	Rel-16		Rel-17+ evolution			
Standalone (SA) Non-Standalone (NSA) IoDTs Field trials		Rel-15 Commercialization eMBB deployments in both mmWave and sub-6 GHz.		Rel-16 Rel-17+ Commercialization New 5G NR technologies to evolve and expand the 5G ecosystem		
mmWave / Spectr Optimizations New networks New use cases	um see					
2018	2019	202	0 2021		0 2022 —	2023
2010	nd Annual S	NTest Asia I	Taiwan. October	17-18. 201	9	2023

Key Test Challenges for mmWave 5G

Author

5G mmWave Test Needs

Si Wafer Level

- Known good die
- Primarily conducted test for now
- OTA is not necessary unless for antenna on die

AiP Level

- Uniform radiated RF performance on all elements
- No conducted test exists
- OTA is a must

RRH Level

- Well calibrated RF performance & synchronization
- No beam spec tested in production
- OTA test to reduce infield replacements cost

Wafer Level Test

- Wafer Level mmWave Test is not new, typically do measurement before for Harmonic test
- Due to mmWave IC architecture revolution, DUT type not only traditional RF FEM; cover from RF Transceiver, Beamformer, Up/ Down Converter, integrated FEM, Phase Array Antenna.....
- Beamformer & Phase Array Antenna make mmWave channel requirement significantly increase

Typical Test Item

RX

- Adjustable Gain
- Gain Ripple
- Phase Shifter
- OIP3
- ISOLATION
- NF
- EVM
- ACPR

- NF
- EVM
- ACPR

- Adjustable Gain
- Gain Ripple
- Phase Shifter
- OP1dB

ΤX

- OIP3
- AMPM
- PAE
- ISOLATION

6

Author

Flexible Configuration for mmWave IC Test

1 GHz BW Baseband Modular for upgradeability

2x IF Test Ports Bi-directional, 5 – 21 GHz Test V & H Polarities

Baseband IF Up / mmWave VST LO Downconverter ZSLNO-LISE PXI PXI PXI 0 5

High IF Up/Downconverter Future proof for bands expansion -5G mmWave IF and 7 GHz WLAN

Direct TRX Ports Higher power delivery V & H polarity connections

Multiple Port Configurations Optimized mapping to array of DUT architectures

Integrated solid-state switching

Removes connectivity and calibration burden for multi-port

Remote mmWave Conversion Flexible placement Scalability for future bands

One Solution to Test the Complete Signal Chain

Example Test Configuration: Up to 8-ch – Dual Polarized or 16-ch Single Polarized RF-RF Phased Array

Author

Example Test Configuration: Up to 8-ch – Dual Polarized or 16-ch Single Polarized IF-RF Phased Array

OTA: Beamforming to Overcome High Path Loss (dB)

Frequency

	850MHz	28GHz	38GHz					
10m	51.03	81.38	84.04					
500m	85.01	115.36	118.02					
1km	91.03	121.38	124.04					
~30dB 1000x								

Author

Example Test Configuration: Up to 8-ch – Dual Polarized or 16-ch Single Polarized IF-RF Phased Array

Author

mmWave VST OTA Example Configuration: Single or Dual Polarization RF-RF Phased Array Antenna Module

Author

OTA Tests Need a Quiet Zone

Quiet zone

Minimized power and phase variations due to reflectivity Approximating far-field, plane wave conditions

Quiet zone size *S*

Must accommodate antenna under test
Bounded by desired maximum variations
Influenced by chamber design including absorbers, positioner, fixturing, cabling, ...

3GPP: Characterize the NR mmWave Quiet Zone

Reference Positions and Orientations, Polarization

Reference AUT (ref. antenna)

- Directivity similar to expected DUTs
- 3GPP defines directivity mask (min/max vs. frequency)

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

15 See 3GPP TR 38.810 v16.0.0, **§**D

Author

Spatial Scanning Grids

constant step size grid with $\Delta \theta = \Delta \phi = 15^{\circ}$ - 266 points

Author

mmWave VST for Over-the-Air Test

Reference antenna

17

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Author

Improving Test Time with HW-accelerated, Continuous Motion

- Patented positioning instrumentation synchronization
- 5x or greater measurement times than SW-controlled solutions

NI mmWave OTA Validation Test – HW Accelerated Benchmark

No. of grid points (constant density)	Competitor - Turntable 360° Rotation 160° elevation Measurements every 4°	NI HW-Timed 360° Rotation 180° elevation	
Test Setting	4-Port CW Measurements, simultaneous H-V	5G NR Waveform, independent H and V	
	polarization	sweeps	
3600	540 s (9 min)	84 s	

6X Faster

Device under Test

Types within focus:
IF to RF phased array + antenna
RF to RF phased array + antenna
Baseband to RF + antenna

Size/aperture "D"

No more than 5 cm (for UE, small cells)

Determines – through far-field distance –

Chamber size

→ Chamber size maybe 1.5m x 1m x 1m

Author

Effective Isotropic Radiated Power (EIRP)

$$P_{Rx} = P_{TE} - PL_{Rx} + G_{Rx}$$

Measurement antenna (Rx)

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Author

Author

NI help you make 5G real !

Author

SWTEST ASIA 2019 Ultra High Temperature Probe Card Solution for Automotive IC Testing

Hirofumi Nagata Alan Liao

Hsinchu, Taiwan, October 17-18, 2019

Agenda

- Automotive IC Market Overview
- Automotive IC Test Requirements and Probe Card Challenges
- FormFactor Ultra High Temperature Probe Card Solution
- Probe Characterization Result Under Ultra High Temperature Testing Environment
- Actual Probe Card Performance Result by Leading
 Automotive IC Customer
- Summary and Acknowledgement

Automotive Semiconductor Market Overview Drive Demand of New Testing Solution

Automotive electronics is a fast-growing market

- Predictions are between 3%~12% CAGR over next 5 years _
- Average number of semiconductors in a car increases _ significantly in modern cars
- Key drivers for automotive IC growth _
 - Critical safety system
 - Increased fuel efficiency
 - Navigation and communication
 - Comfort & entertainment features

Avg. semiconductor content per vehicle (US\$)

Global light vehicle production (MU)² Sources: Strategy Analytics1 and LMC Automotive

Alan Liao

Automotive Safety Consideration: Zero Defect Expectation

- IC manufacturers adopt zero defects Parts per Million (DPPM) design methodology and test to this standard
 - Finding tennis ball in football field

Reasons:

- Failure rate at the automotive level is higher

massive recall and serious economic distress

Probing Requirement:

No Dielectric punch-through

Automotive IC Wafer Sort Test Challenges

- Harsh outdoor environment
- Testing at full thermal range
- Minimize bond pad reliability impact
- Support large volume demand
- Lower test cost

Probe card requirements:

- Wafer sort test with multiple insertion: cold, room, hot temp
- High temp test required
 125°C → 150°C → 175°C
- Multiple TD at same bond pad
 Large active area + high parallelism for SoCs

Alan Liao

6

TrueScale Matrix Probe Card Thermal Planarity Control

Thermal gradients in probe card produce differential expansion across probe card components and can produce probe card bow

Design and build the probe card for better thermal planarity control

Alan Liao

- Mechanical simulation to understand thermal behavior
- Design automation (real-time probe card deformation simulation) to optimize Mechanical Coupling Link location for planarity control
- Added flexible shim kit design on inner tester side stiffener
- Bridge beam hardware add to PC outgoing PXI metrology tool to simulate test head docking condition for planarity adjustment
- AOT/POT analysis on field to further understand deflection force

Thermal Bowing of Probe Cards Tester Side Temperature 55°C-23°C =Small thermal expansion Pogo PCB PCB WSS 88°C-23°C = Large thermal expansion Hot Chuck Temperature

Net Deflection and "bowing" of probe card

TrueScale Matrix Probe Card Architecture Optimize for High Parallelism and Ultra High Temperature

Probe Card Design Requirements

- 300mm probing active area
- Support >256 DUTs, >35000 Probe Count
- Smallest Pad Size and Pitch: ~55um/65um
- Temperature Range: -40 to +165°C

TSM PC Achieved Large Active Area with Highest Parallelism

- Full 300mm active area probing to improve touchdown efficiency
- FFI proprietary touchdown efficiency analysis software and service
- T11 UHT Probe Rated -40 to +175°C
- Modified TSS and Matrix architecture achieved 30um planarity

Custom Wafer Side Stiffener for wide temp range operation

Modified Tester Side Stiffener

Alan Liao

DragonBlade T11.4 Ultra High Temperature Probe

Metric	T11	T11 UHT			
Max Temperature (°C) / AOT (um)	<=130°C/75um <=160°C/65um	175°C/100um			
Min pad Pitch (um)	50um	60um			
Scrub Ratio	~10%				
Current Carrier Capacity (ISMI)	1.2A	>1A			
Typical spring constant (gram-force / mil)	0.8 g/mil				
Tip sizes at beginning of life (um)	6um, 8.5um, or 14um ±3um				
Tip sizes at end of life (um)	20um				
lan Liao 2nd Annual SWTest Asia Taiwan, October 17-18, 2019					

9

Actual Over-Travel vs. Program Over-Travel Analysis

Using Pin and Sleeve to analyze probe actual over-travel

Install Pin & Sleeve at 5 locations on the PH. Check that the pins have shifted upwards due to the chuck loading

AOT/POT Results

Hirofumi Nagata
Final Result in Production Test Environment

• Renesas agreed to share their collecting data.

- Beam creep data
- Contact Resistance
- Probe Mark Characterization Data
- Probe Mark Photos

DragonBlade T11.4_UHT Performance Same capability as T11.2 with 2x hot temp performance

Hirofumi Nagata

Contact Resistance vs. OD

• T11.4 archived stable Cres from 30-40µm OD.

Hirofumi Nagata

Multi-Contact Performance T11.4 archived stable Cres for all cases.

- 10 times TD and move to new surface at 11th TD and 200 times TD test

Hirofumi Nagata

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

14

T11.4 Probe Mark Size Analysis Probe Mark Size Past Extreme Temperature Test

Prober Chuck Temperature: -40°C

Prober Chuck Temperature: -160°C

•T11.4

T11.2

Hirofumi Nagata

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

RENESAS

T11.4 Probe Mark and Pad Reliability Analysis Renesation No Under Pad Damage at 20TD

Cold Temperature: -40°C

Hot Temperature: -160°C

Hirofumi Nagata

Summary

- Automotive IC market continues growing with large demand and zero defects parts
- FormFactor Matrix platform with T11 Ultra High Temp probe provides capability of meeting zero defect testing requirement and the highest testing efficiency for automotive IC wafer sort test

 TrueScale Matrix with T11 UHT probe solution has been validated by key automotive customer and deployed to various tester platforms including T2000, V93K DD, J750

Acknowledgement

Special Thanks!

Tom Watson Engineering Follow

Tetsuya Miyoshi

Application Engineering Manager

Bunji Yasumura

Director of test technology development dept

Takahiro Mizoi

Senior staff engineer of test technology development dept

Alan Liao

Space Transforming Probes SWTest Asia

Dominik Schmidt, PhD Gary Grube Translarity Corp

Hsinchu, Taiwan, October 17-18, 2019

Agenda

- Introduction
- Motivation
- Space-transforming Probes for Different Application
 - FLASH
 - LCDD
 - CMOS imaging/VCSEL/LED
 - Very tight pitch applications
- Conclusions/Future Work

Introduction – today's probecard issues

Cost of space transformation is not scaling

- MLO aimed at millions of units, not 10's units
- MLOs take 8 weeks, large NREs and huge unit cost
- LT Ceramics are difficult scale below 100um
- HT Ceramics are difficult to process
- Thermal issues becoming more complex across the board
- Fundamental problem: large PCB/silicon TCE mismatch results in need for strain relief
 - MLO delamination
 - Misalignment during operation
 - Moisture, BGA attach, force balancing...

Motivation – can we improve across the board?

- Overall cost
- Lead time
- Particle tolerance
- Repeatability
- Field repair-ability
- Lifetime
- Flexibility and cost of design changes

The most versatile element is the probe

- Modern 2.5D MEMS processing can be used to create nearly arbitrary shapes
- Designs can now be "ported" between foundries
- Improvements in metallurgy mean that probes can be made extremely reliable
- Probe costs can be scaled with volume
- Unlike MLO, probes can be reused in multiple designs

The ideal probe

- No idea 'universal' probe
- Specific to lead-on-edge (single, dual and four-sided):
 - FLASH
 - CIS
 - VCSEL
 - LED
- High density in "1.5" dimensions
- This is approximately 40% of the probecard market today

10/17/2019

The ideal probe

- Pre-loaded to the PCB
 - Allows up to 100um of thermal movement (across 300mm)
- All electro-mechanicals comparable to best-in-class 800m MEMS (CCC, Planarity, Alignment)
- ALL space transformation enabled by the probe
 - 800m up to 4000m FLASH/CIS (enabling simple PCB)
 - 200m up to 1000m LCDD/LED (enabling "simple" flex/lamination)
- Simple 2D processing! Previous architectures generally used complex 3D MEMS

Space Transforming Probe Family (pat pending) for XYZ offset

- Leverages standard Translarity's 2D MEMS design portfolio. 39um, 50um, 650m, 800m
- Enables tighter pitch assemblies to connect directly to PCB
- Engineered scrub on both, PCB and ٠ wafer sides
- Configurable probe force. 1.5-8gf
- Utilizes standard test floor infrastructure – cleaning media, prober interface, etc.
- Configurable probe depth to match required prober integration •
- Enables component placement in close proximity to the probe

10/17/2019

Allows probe lateral transformation consistent with all existing PCB Technologies

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Probe at oum overtravel

Probe at 100µm overtravel

8

Tested across CCC, force, offset, space transformation, temp

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

10/17/2019

Tested in a variety of configurations

Applications:

- FLASH is the single largest application ~\$250-\$300M
- Relatively little probehead innovation over the past decade
- Typical designs use a ceramic-laminate space transformer plus an interposer
- Probes can be re-used across products, but ceramics/MLOs generally cannot
- Target with STP is to reduce cost by 50%

FLASH Probecard Application

Smart design allows room for component mounting

Distal side design MEMS probe allows for **independent** compliance to PCB

Probe at 100µm overtravel

10/17/2019

Sensor Probecard Application

1,214.3

10/17/2019

LCDD Probecard Application

- Translarity shipped a 39um pitch MEMS product recently
- Current technology can probably be pushed to ~32um (15um probe size)
- Beyond that, multiple problems appear to be intractable:
 - CCC decreases precipitously
 - X-Y accuracy in drilled holes very difficult to achieve, especially as taper becomes larger than hole size
- And yet the LCDD market and LED markets require pitches of 18-300m, maybe less

Confidential & Copyright

Extreme Pitch Applications

- Halving of 40um pitch could give 20um
- Most of the probe is still 400m
- Decouples CCC and compliance
 But
- Assembly is complicated and delicate
- Rotational errors result in x-y offsets
- Testing multiple columns is difficult

Optical Applications

- Attractive market for advanced optical probecards ~\$200M
- CMOS imagers, LEDs, LCD products, VCSELs
- Today primarily served by cantilever and needle cards
 High parallelism is difficult, pad damage, frequent repair
- High degree of complexity in instrumented probecards
 - We have added optical sensors to probecards, as well as light sources

VCSEL Probecard Application

- Provides direct device performance (optical, temp, electrical, etc) during testing for wafer sort yield
- ST Probes allow light path from VCSEL to the measurement unit
- Optical measurement to VCSEL array output

MEMS style IPC – X section

Cobra style IPC – X section

VCSEL active area on wafer near pads

10/17/2019

VCSEL 100 site card

11/10/2019

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

18

CMOS imaging/LED Applications

- Achieves 8.6mm probe depth without interposer.
- Achieves space transformation within probe design. No separate space transformer required.
- Probe is out of the optical path because of offset design.
- Single pin replaceable.

10/17/2019

Challenges

• Cost

- If the STP costs a lot more than vertical MEMS, it negates some of the benefits (target is to be within 20% of the equivalent probe cost)
- If more complex GPs are needed, this again reduces benefits (target is to use only 2 GPs with only 1 high precision – pat. pending)
- If assembly is more complex, this is also a problem (target is to be able to offer easy field repair and comparable assembly – pat. pending)
- Probes sees new lateral stresses
 - Unwanted lateral movement needs to be controlled
- Guide Plate design is more complex

Conclusions/Future Work

- XYZ Space transformation generally doubles the cost of a probe head
- Space transforming probes can eliminate this cost, potentially enabling a large cost decrease in several markets
- Translarity has developed probes that accomplish this goal and is now engaging with customers on specific implementations
- Significant work left on long-term reliability qualification, largearea precision ceramics and pitch-halving architectures

Temperature Accuracy at High Wattage Wafer Test – a Novel Method to Control Device Temperature

Klemens Reitinger CEO/CTO

Hsinchu, Taiwan, October 17-18, 2019

Agenda

- Why talk about Power in Wafer Test?
- Market Demand
- Technical Background
- Effects to Wafer Test
- Challenges and Experimental Data
- Possible Solutions
- Summary and Outlook
- Q&A

Why talk about Power in Wafer Test?

- Electrical Power induced in Microchip during test acts like a heater
- This heat creates a temperature rise in the DUT which is undesired
- Test results will be unreliable with no control over test temperature
- Worst case the test cannot be done at wafer level

Market Demand

 Demand of dealing with power is raising strongly in the past years because of:

- Massive parallel testing of low power devices (DRAM,....)
- Parallel Testing of "mid power" devices (GPU,…)
- Testing at low temperatures (-40°C and lower) is more often required
- New applications are coming up (WLBI at Silicon Photonics,...)

Technical Background: Path of the Heat

Wafer-to-Chuck Thermal Resistance is Largest Contributor When 50 Watts is applied to DUT

 R_T Wafer = 1.5°C (19.5% of Total R_T)

- R_T Wafer/Chuck = 6.0°C (77.9% of Total R_T)
- R_T Chuck = 0.2°C (2.6% of Total R_T)

Klemens Reitinger

Technical Background: k-Value

(T1-T2) / Power = k ($^{\circ}C/W$)

Chip Temperature (T1) = Chuck Temperature (T2) + (Chip Power X Thermal Resistance k)

Klemens Reitinger

Wafer Test: Practical Influence of k-Value

Thermal resistance	Chip temperature	at P100W	at P 200W
factor k*	constant T1	Chucktemp T2	Chucktemp T2
0.1	+25°C	+15°C	+5°C
0.3	+25°C	-5°C	-35°C
0.5	+25°C	-25°C	-75°C

*Chip size = constant

Klemens Reitinger

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

7
Wafer Test: Typical CPU / GPU Test

- Mid-size chip
- Single or multiple test, not too many in parallel
- Very high wattage per chip
- Importance of sensor independence
- Multiple test temperatures
- Protection against thermal runaway needed

Wafer Test: Typical DRAM / Memory test

- Mid-sized chips
- Massive parallel testing, one touch down
- Low wattage per chip
- Sensor dependence not so important
- Good uniformity needed

Typical WLBI test

- Any size chips
- Massive parallel testing, one touch down
- High wattage per chip
- Sector temperature monitoring important
- Good uniformity needed, even in case of operating and not operating devices
- Multiple temperatures needed, special attention to higher temperatures

How to Deal with Power in Wafer Test

- <u>Standard Cold</u>
 Wafer Test
 System
- Will react differently depending on position of power input in relation to sensor

How to Deal with Power in Wafer Test

- Temperaure controlled by <u>coolant only</u>
- Independent of power input position

 Unflexible regarding power fluctuation

How to Deal with Power in Wafer Test Our Solution Air

- Temperaure controlled by <u>coolant</u> exit of the chuck
- Temperature controlled by heater <u>overpowering</u>
- Independent of power input position
- Flexible regarding power fluctuation

How to Deal with Power in Wafer Test Our Solution Liquid

- Temperaure controlled by <u>coolant</u> exit of the chuck
- Temperature controlled by heater <u>overpowering</u>
- Independent of power input position
- Unflexible regarding power fluctuation

Thermal Simulation of Air Cooled Chuck

100W , 800mm² , 300l/min Air in @+20°C

- "Non High Power Chuck"
 - Uneven Temperature Uniformity
 when Power is applied locally
 - Bad transmission of Heat
 - High Chip Temperature

"High Power Chuck"

- Good Temperature Uniformity when
 Power is applied locally
- Good transmission of Heat
- Low Chip Temperature

Klemens Reitinger

Test Set Up in Lab

- Chuck with heat load and 6 sensors
- One sensor in the heater, one close to heater
- Chuck connected to liquid chiller and measurements are taken with and without load
- Heat up of the load and uniformity of the whole chuck was recorded

One sensor very close to load

Klemens Reitinger

Set Up Different Load JIGs

- 100 x 100 mm
- 20 x 40 mm
- 10x10mm
- Full Wafer 200mm and 300mm

One sensor very close to load

Klemens Reitinger

Results AirCool Chuck 100W @ 800mm²

Measurement Points on 300mm Chuck

- k-value = 7°C / 100W = 0,07°C/W
- Jig Temperature Range within + 1,5°C / 1°C

Klemens Reitinger

Results AirCool Chuck 200W @ 100cm²

Set Temperature -40°C

Confidential

Thermal Camera Film

Device Size: 15x15mm, Power 200W, Temperature +20°C, Liquid Cooled Chuck

Klemens Reitinger

Comparision Offset - Overpowering

Device Size: 20x40mm, Power 500W, Temperature +20°C, Liquid Cooled Chuck

K-value = Delta T / Power = 50K / 500 = 0,1 k/W -> Chip Temp = +70°C at +20°C Chuck

Klemens Reitinger

Comparision Different Materials

Device Size: 12x12mm, Power 120W, Temperature +20°C, Liquid Cooled Chuck

Klemens Reitinger

Comparision Different Chip Surfaces

Device Size: 15x15mm, Power 200W, Temperature +20°C, Liquid Cooled Chuck

Dry

Liquid

Klemens Reitinger

Summary

- Our method shows 3 advantageous features:
 - No dependency on sensor position
 - Heater controlled temperature can react fast on power input
 - Concept can be used for air and liquid systems

Summary

- Special chuck set-up is needed for power test in wafer test
- Sensor dependence must be avoided
- Air-cooled systems capable for larger areas of power induction and down to about 0°C
- Lower temperatures and higher wattage require liquidcooled systems
- Thermal interface between wafer backside and chuck top surface is key
- Overpowering can help to reduce temperature offset and keep k-value constant over different wattage and test times

Outlook

- Actual chip temperature monitoring becomes more important:
 - Multiple Sensors in Chuck
 - Real Time monitoring with IR sensor in probe card
- Parallel testing is increasing also in non-memory sector
- New products (e.g. silicon photonics) will require power dissipation at wafer test
- Demand for more accurate prediction of temperature for DUT is rising

Monitoring Chip Temperature in Real Time

Klemens Reitinger

Credits

- Sophia Oldeide, Ibrahim Khwaja, Laurent Giai-Miniet (ERS)
- Patty Lei, Calvin Hsu (CLIC)
- Hector Lin (MPI)

Thank You! Q&A

Overview of Specialized Testing for MEMS Sensors: Wafer Probe and Final Test

Michael Ricci Principal Engineer Solutions Technology Center - West

Hsinchu, Taiwan, October 17-18, 2019

MEMS Device Testing

- Who we are
- MEMS device/sensors overview
- Description of popular and growing applications
- MEMS market = Show me the \$
- Why is testing MEMS devices different?
- MEMS gyro test application
- On going work

Rika Denshi Group Introduction

- 57 years in business as a spring probe manufacturer
- Third generation family ownership
- HQ in Tokyo with factories in USA, Thailand and Japan
- Focused on RF/mmWave, High Temperature, Tight Pitch and Non-magnetic spring probes used for packaged test sockets and wafer probe heads
- RF testing lab, thermal testing lab, metallurgical testing lab, plating testing lab, metrology testing lab.

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Michael Ricci

MEMS Device Overview

- Micro Electromechanical Systems have now proliferated into nearly all commercial markets via standard semiconductor package integration.
- Initially developed for military, aerospace and aviation applications, MEMS sensors for automotive applications are well understood; pressure, gas, gyro, inertia, G force, acceleration, microphones, HALL effect, magnetometers, photonics, piezo electrics...
- MEMS 2.0 or Sensor Fusion = multiple MEMS die combined into one semiconductor package and maturing firmware and software solutions to enable sensor fusion ecosystems.
- IoT, Industry 4.0, Smart City, Wearables, Autonomous Vehicles as well as other applications are driving growth in this space resulting in expanded MEMS wafer and package testing solutions.

Michael Ricci

Key MEMS Device Overview

THE DIFFERENT MEMS, SENSORS, AND ACTUATORS, AND WHERE THEY CAN COMBINE

Yole Development

MEMS SENSORS & ACTUATORS: THE 5 SENSES AND MANY MORE

Yole Development

MEMS Sensor Applications Overview

DEFINITIONS: MEMS APPLICATIONS TRACKED BY YOLE (1/3)

		IJН				Si I	Microphones			
		Indus		ting (dis	oital	Co	nsumer	Medical	Automotiv	e Others
Consumer and office	Consumer and office Large/wide Format Printers - for graphics and technical		presse, label, c textile	presse, label, ceramics, textile)			ellphone Tablets Ladtods			
Thermal disposable heads Thermal permanent head Piezoelectric permanent head	Thermal per Piezoelectri	ermal permanent printhead Thermal permanent zoelectric permanent head Piezoelectric perma		nt printhe nanent he	ead ead	W Others (Hom Laptop, handhel t	/earable le Automation, PMP, d GPS, PC peripherals, toys)	Medical (Hearing Aids)	Automotive	high end
		Pre	essure sensors							
Pressure sensors for auto	rs Pressure ser for consur	nsors ner	Pressure	re sensors for Pressure sensors for aeronautics						
MAP Power Train BAP Power Train Particle filter (DPF, GPF) Power Train Fuel tank evaporation (EVAP) Power Train Exhaust gas recirculation (EGR) Power Train Engine Oil Power Train Automatic transmission oil Power Train TPMS Safety Brake Booster Safety Side airbags Safety Pedestrian protection Safety HVAC		Process contro HVAC Transportation	Smart phone tablets Drones Wearabl Smart homes/t Electronic cig	Smart phones & tablets Drones Wearable Smart homes/building Electronic cigarette		toring invasive ring non invasive iratory t inhaler thers	Air Data FADEC Hydraulic & others			
				Accel	erometers					
Single accelerometers for con	sumer	Accelerometers fo	or automotive for Medi		erometers Medical	Accelerometers for industrial		Acceleror	meters for Ac nautics	celerometers Defense
Cellphone Tablets Gaming		Standalone airbag Airbag peripher ESC acceleration	front sensor ral sensor Acceleror on sensor pacen		rometer for emaker	Seism Anter Industrial	ic - Geophones nna stabilization vibration monitoring	AF	HRS r	Missiles, guided nunitions, bomb
Remote controls Wearable Dthers (Home Automation, PMP, Laptop, baselished CPS, PC parishamile town)		ensing Accelerome 5 other healt active suspension, applicatio		ometer for healthcare	In Offshore - Dir	clinometers ectional drilling + surve	y Monito	o (vibration oring) N:	systems Vavigation and othe defense application:	

Yole Development

MEMS Sensor Applications Overview

DEFINITIONS: MEMS APPLICATIONS TRACKED BY YOLE (2/3)

		G	yroscopes		
Single Gyroscopes for Consumer	Gyroscopes for Automotive	Gyroscopes for Industrial	Gyroscopes for medical	Gyroscopes for Aeronautics	Gyroscopes for Defense
Mobile phone Mobile phone (OIS) Tablets Gaming Remote controls Wearable Others (DSC, pmp, laptop, handheld GPS, PC peripherals, toys)	Roll over ESC gyroscope GPS navigation	Stabilization systems GPS aiding - Mobile mapping ROVs / AUVs navigation for offshore First responder systems Drilling Fall detection Other commercial applications	Wearables	AHRS for general aviation / backup instrument Flight control for civil helicopters and aircrafts / navigation for civil & paramilitary UAVs / Others Space satellites, spacecraft & skyrockets	Platform stabilization Missiles guidance, Guided munitions / bombs Defense UAV & UGV navigation / control , Others

	Iner	tial combos		Inertial combos						
Consumer Accel Gyro	Consumer Accel Magneto	Consumer 9 DOF	Auto combos	Consumer Accel Gyro combos	Consumer Accel Magneto combos	Consumer 9 DOF combos	Auto combos Accel Gyro			
combos	ombos combos	Accel Gyro			Martin I.					
Mobile phone Tablets Others	Mobile phone Tablets Others	Mobile phone Tablets Medical Others (Wearables, Home Automation, PMP, Laptop)	ESC combo, rollover Robotic cars	Mobile phone Tablets Others	Mobile phone Tablets Others	Mobile phone Tablets Medical Others (Wearables, Home Automation, PMP, Laptop)	ESC combo, rollover Robotic cars			

Magnetom	eters		Optical MEMS										
Single Magnetometers Magnetometers for consumer for automotive		Optical MEMS for Telecom	Optical MEMS for Medical	Optical MEMS for	Optical MEMS for	Optical MEMS for	Optical MEMS for Consumer	Optical MEMS for Defense					
Cell phones Tablets Other consumer applications (wearables)	Auto	Switches VOAs Others (tunable filters, optical benches, transceivers)	Microspectrometers HMDs	Adaptive Optics Digital Cinema	HUDs Lidars	HUDs	Home cinema projector (including laser TV) Pico projector (stand alone and embedded) Office projector Autofocus	HMDs					

Yole Development

NYOLE

MEMS Sensor Applications Overview

DEFINITIONS: MEMS APPLICATIONS TRACKED BY YOLE (3/3)

Micro bolometers										PIR, t	hermod	odes & thermo	piles			
Microbolometers for Automotive	Microbolometers Microbolometers Microbolometers for Industrial for Defense for Consumer		ers M r	icrobolometers for Industrial		٦	hermodiodes for Industrial	PIR arrays (I 64x64) thin fil CMOS bas	x8 to ms or ed	Thermopiles arrays high end	Thermopiles low end	Thermopiles arrays (1x8 to 64x80)				
Night Vision	Firefighting, mar surveillance thermography,	refighting, maritime, surveillance, chermography, PVS Mobiles & tablets & other commercial (UAV, EVS, etc)		Predictive aintenance, bui process contr	ilding, °ol	t	Predictive maintenance, puilding, process control	People counting, spectrometry		Industrial T neasure, gas & fire detection	Wearable (spot thermometer) Medical	HVAC, smart buildings				
Mic	Microfluidics								REMEMS							
Microdispensers & Delivery	Drug Si b	iochips	F	RF switches for telecom			tches fo Istrial	or Switch for Space			RF swit	ches for defens	e RF MEMS	RF MEMS for cellphones		
Inhalers MEMS Micropumps	Inhalers MEMS Micropumps & Next Gas Sequencing		F	RF switches for base sta RF switches for small o	for base stations RF swi s for small cells Ir		for ATE	& RF Redundant Commutatio Radars & Comr		dant Matrix tation Matrix communications	RI co RF sv	switches for mmunications vitches for radars	ns BAW Filters & Di RF Switches (an adars Antenna tun			
Microneedles	& Sample	Preparation														
	Oscillators	and resona	ators			Micro	tips	Flowmeter								
Consumer	Consumer Industrial Automot			nfrastructure & telecom	Micro tips			\$ probes		Flow meter						
TV, DSLR Mobile, wearable, IoT	. IIoT	Automo	tive	Base stations, servers, routers, Probe		Micro tips Probes fo	for AFM or ATE	flow meter for medical and D flow meter for industr		l Diagnost Istrial	cs					
		Environme	ental MEI	MS					Ot	hers						
Humidity Gas C			Combos (multi temperature	mbos (multi-gas, humidity, temperature, pressure)												
Humidity for automotive Humidity for consumer Humidity for industrial Chemical MEM sensor		IEMS / Gas sor	Environm	ental hu	ıtal hub		Micro structures, micro valves Ultra sonic finger print Micro speaker									
Développement																

Yole Development

Key MEMS Device Applications

ELECTRONIC MEGATRENDS : IMPACT ON THE 2023 SENSOR & ACTUATOR MARKETS PER APPLICATION

Yole Development

11

SENSORS FOR THE SMART AUTOMOTIVE INDUSTRY - ECOSYSTEM

2017 - 2023 forecast

Yole Development

SEMICONDUCTOR-BASED SENSORS AND ACTUATORS FORECAST, BY DEVICE IN US\$M

From \$50+B in 2018 to \$100+B in 2023!

The MEMS and sensors market will reach \$100B in 2023

"Others" includes fiber-optic sensors, particle sensors, new sensor developments (such as NEMS)

©2018 | www.yole.fr | Status of the MEMS Industry 2018

Yole Development

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

14

Yole Development
Automotive MEMS Device Overview

Yole Development

MEMS Device Testing Overview

- MEMS die have mechanical structures fabricated into them requiring additional physical and environmental stimulus beyond traditional electrical and thermal cycling testing. Henceforth, legacy ATE solutions were not designed to provide these unique test stimulus; induced motion, induced magnetic fields, induced pressure, induced gasses, induced sound...
- New test solution were required and companies such as AFORE, Multitest, Solidus, SPEA, FocusTest, Tessec, Rasco/Coho, Tel and others developed ATE solutions that provide the additional stimulus to activate the MEMS structures during electrical measurements.
- In the case of IMUs, Gyros, Accelerometers and combi-sensors, directional movement, multi-axis rotation, infinite position angles, cycle magnetic fields are required to transduce the analog stimulus inputs to digital outputs.

Michael Ricci

MEMS RF Switch

Raytheon

Example Of MEMS Structures

Reference Of Previous SWTW Work

SW Test Workshop Semiconductor Wafer Test Workshop

Sensors at Test – "Magnetic" Probe Cards

Dr. Rainer Gaggl, Georg Franz T.I.P.S. Messtechnik GmbH

Al Wegleitner Texas Instruments

June 4-7, 2017

Reference Of Previous SWTW Work

Stray Magnetic Fields

- Expect no external magnetic fields at the DUT for offset measurements
- Gauss meter used to quantify stray fields in prober
 - Sharp corners on casing produce $\sim 400 \mu T$
 - Permanent magnets used for scrub pad and position switches up to 20mT (outside of DUT)
 - Fields vary $\pm 30\mu$ T at DUT level (probe head powered off)

Gaggl et al.

SW Test Workshop | June 4-7,2017

10

Reference Of Previous SWTW Work

Thermal Chuck Influence

- Initial testing over temperature displayed variation proportional to increasing chuck temperature
 - Chuck vendor measured magnetic fields >300µT
 - Heating current is not constant varies to achieve temperature set point
- "Anti-Magnetic" probe chucks developed by ERS
- Further improvement: Turn off temperature control during probing for more accurate results

SW Test Workshop | June 4-7,2017

Gaggl et al.

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

9

Example - Axis Of Motion

Gyro Animations

Example Of G-Cell MEMS Structures

Reliability Test Structure: Failure Analysis Associates, Inc.

Failure Analysis Associates, Inc

Example Of IMU MEMS Structures

Bosch IMU

Example Of 2 Axis Gyro MEMS Structures

Solidus Technologies, Inc 2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Example Of Gyro MEMS Structure

Non-Ferrous Metals For Probes

Relative Permeability Of 1.00 = Non-magnetic Properties

Material **Relative Permeability** (1) 1.00 BeCu (2)PDM(Pd-Alloy) 1.00 3 NAS604PH 1.01 (4) G4(Gold-Alloy) 1.00 5 **Electroless** Ni plating 1.02 6 Gold plating 1.00 $\overline{\mathbf{7}}$ Cu plating 1.00 (8) PB 1.00

(1) (1)

Spring Probe Materials

Components for Non-magnetic Probe

Michael Ricci

rika Denshi

MEMS Gyro Test Application

Test setup

Afore Ov

An AEM Company

Non-magnetic chuck

Coil setup to create ±XYZ magnetic field Probe card Singulated CSP magnetometer wafer on blue tape

Prober: Afore KRONOS rotating frame prober Magnetic Stimulus Unit (**MSU**) control: National Instruments PXIbased SMU setup

<u>MSU Specification</u> 800 μT stimulus for +/- XYZ axes. Homogenous area 10 mm x 10 mm Accuracy in homogenous area +/-10 μT

Non-Magnetic Probe Head

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Afore Oy

An AEM Company

31

300um Non-Magnetic Probe

Michael Ricci

200um Non-Magnetic Probe

Michael Ricci

Courtesy Of Afore Oy - Stimulus Tester

Afore Oy An AEM Company

Test Results – Sensitivity to Magnetizing

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Afore Oy

An AEM Company

On Going Work

- Surface uniformity may be a contributing factor to deviation in sensitivity to relative permeability results.
 - > Post processing of the probe barrels and plungers

On Going Work

- Location and geometries of the probed in an array may be a contributing factor to deviation in sensitivity to relative permeability results.
 - > Pitch of the probes
 - > Dimensions of the probes
- Direction of flux axis may be a contributing factor to deviation in sensitivity to relative permeability results.
 - X, Y axis magnetic flux direction = probe cross sectional area
 Z axis magnetic flux direction = probe longitudinal area
- Additional experiments will be conducted by changing these parameters as well as with various spring materials for even lower relative permeability.

Michael Ricci

Thank You

 Ari Kuukkala, Director of Sales Afore Oy Lieto, Finland

 Takahiro Okinaka, Director of R&D Rika Denshi Group Kumamoto, Japan

 Kohei Nakamura, Staff Engineer, Probe Designer Rika Denshi USA Attleboro, Massachusetts USA

Michael Ricci

Welcome to the Sheraton, Hsinchu !

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

1

A New Framework to Measure Interface Complexity

Steve Ledford Teradyne

Hsinchu, Taiwan, October 17-18, 2019

Outline

- Industry Trends Impacting Probe
 - Device Complexity
 - Convergence of technical performance & delivery on complexity
 - Interface Complexity: "2 x 4 scaling"
 - Design & Manufacturing Complexity Scale: DMC Scale
 - Breaking down the DMC Scale
- Complexity examples
 - AP probe card vs AP final test
 - Two different construction for the same application

Device Complexity Impact on Test

22-20 nm node 2012-2013

16-14 nm node 2014-2015

11-10 nm node 2016-2017

8-7 nm node 2018-2019

> Nanometer process nodes accelerating device complexity

Y.

Test Is & arms)

Random

Test Is & arms)

Random

Cogic I/Os

Info

</tr

3. New Packaging:

Deemphasize final test

- Increasing ATE test cost adds pressure for an alternative/complementary approach
- New package types and heterogeneous integration eliminate IP access at final test

Complexity Challenges

To meet the customer technical performance requires:

- New materials
- New manufacturing processes

With:

- Tighter tolerance
- More requirements
- No margin for failure to deliver

On:

A shorter timeline

Results in rapidly increasing complexity

Ledford

Interface Complexity – Attribute Interaction

Just because a design or fab can produce a single attribute, doesn't mean they can do all max capability attributes in combination for a single design.

Human analogy

- How many miles can you run without stopping?
- How much weight can you lift above your head?
- Can you whistle?

-> 10 Km -> 50 Kg -> Yes

 <u>Now, run 10 kilometers with 50 Kg above your head while</u> <u>whistling.</u>

Need a means to manage Interface design total attribute risk using an objective, fact based methodology

Ledford

Design & Manufacturing Complexity Scale

"2 x 4 scaling" 2x pins, 2x performance every 4 years

Interface Design & Manufacturing Complexity Scale objectives:

• Quantify the interface complexity

- Identify difficult combinations
- Contrast options and alternatives that achieve the best balanced outcome
- Develop risk mitigation options to:
 - Achieve reliable products
 - Deliver on-time

Manufacturing

Design

Design & Manufacturing Complexity Scale

"2 x 4 scaling" 2x pins, 2x performance every 4 years

Manufacturing

2014 - Design "B" 356 pin BGA x8

2010 - Design "A" 324 pin PBGA x4

<u> </u>						-						
ſ	1					X			害	14		+++
			9		E					2	1	4 4
										1		7
Ξ.			8	X.								
		D	2	9	0	9			221			
		1	×.				11	6.4	2	-		
	ĨΚ		×.	17	L X Kar	67						<u> 1</u>
	N	, À	14	1			Kana da	Ś	120			
	1	\checkmark	3	19					6	10	1	
ľ	1 🖉		2	Ø.	-		1	2, 1		N		
۰.		2	ø		1			6				
ļ		1	2			1	8		-			
	1	1									ш	
-	U	7	2.	-			ð.				•	7
		24	-	1-1	5	-1/	15	3				
												/

Site count:8 sites2xLayers:54 layers1.9xFilled vias:~15,0005xPanel Size:15.9" x 22.6"1.5x

Total Components:	2,972	7.8
Connection Points:	10,766	2.3

Site count:	4 sites
Layers:	28 layers
Filled vias:	~3,000
Panel Size:	15.9" x 15.9"

Total Components:385Connection Points:4,707

Ledford

Design

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Increase:

Interface Complexity: "2 x 4 scaling"

Emerging paradigm: "It is a complex system problem at the test cell level"

- Engineer the full path taking into account everything from Instrument to DUT contact
- Sustainable pin scaling curve: "2 x 4 scaling" 2x pins, 2x performance every 4 years

		2018 (today)	2028 (future)	Since June 2018 SW Test	
Pin density	The number of DUT sites and DUT pin count in the same or smaller area drive up the pin area density. Challenge: Routing out the signals to the instruments and power supplies becomes increasingly difficult.	4,000 l/O per sq in 80um C4 pitch	16,000 I/O per sq in 40 um C4 pitch	New instrument introduction	
I/O Performance	Increased challenges with high speed I/O (PCIe, DDR Interfaces, mmWave) to support BW intensive end products.	32 Gbps (dig) 6 GHz (RF)	128 Gbps (dig) +100 GHz (RF)	 UltraSerial60G – high speed s MX44 – 44 GHz 5G mmWave 	
	including safety to insure quality for the end applications.	I KVA (power)	10 KVA (power)	• ETS 88 ^{1H} & ETS 88UHV	
Power	Device Supplies < 700mV require excellent accuracy. Increasing power rails per DUT consumes high PCB layer count.	4 power rails / laver	16 power rails / laver		
Performance	<u>Challenge</u> : Increasing test standards (power impedance curve) to insure quality for the end applications.	@10% VDD droop	@5% VDD droop	the second s	
	Application circuit complexity increases component count per DUT			New quality & diagnostic tools	
Components	site. <u>Challenge:</u> Use of smaller foot print components make diagnosing and repairing defects increasingly difficult to detect and time consuming	70 comp per sq in 1 st time BIN1: 50%	200 comp per sq in 1 st time BIN1: +95%	deployed to eliminate assembly mechanical defects	
Evecution	Delivery of the device interface from pin-out freeze to wafer out for first probe contact with full performance	75% OTD	95% OTD	Leadtime reduction by optimized	
Execution	<u>Challenge</u> : Increasing DI complexity increases effort & risk of design or mfg defects. Complex mfg processes take longer.	6 week leadtime	3 week leadtime	CAM / release process	

Ledford

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

serial

and

'e

Design Complexity

Leveraging design complexity models used for IC design:

$$\mathsf{Di} = \frac{1}{\rho} \times \sum_{i=0}^{\infty} (wk \times Sk)$$

Where: Di = Design Index w_k = weighting factor S_k = attribute difficulty (see table) ρ = Design team proficiency

1	Board / MLO Outer dimensions		
2	Total wiring requirements – traces and shapes		
3	Layer count		
4	Active component count		
5	Passive component count (2 lead capacity / resistor)		
6	Relay component count		
7	Pin density – Application / DUT area		
8	Digital data rate – high speed serial or digital bus (DDR)		
9	RF/mmWave – carrier frequency		
10	Power integrity – highest frequency for PDN optimization		

Assembly Complexity

Agilent (now Keysight) introduced an Assembly complexity index¹:

Ci = ((#C + #J)/100)) * D * M

Where:

- Ci = Complexity Index
- **#C = Number components**
- **#J** = Number of joints
- D = Double sided D = 1 and Single sided D = 0.5
- M = High Mix M = 1 for high mix and M = 0.5 for low mix.

Yield = [1 – (DPMO / 1E6)] ^N

Where:

DPMO is Defects Per Million Opportunities N = Defect Opportunities

¹ A NEW TEST STRATEGY FOR COMPLEX PRINTED CIRCUIT BOARD ASSEMBLIES. Stig Oresjo, Agilent Technologies, Inc.

Complexity type	Complexity index
Low complexity	< 25
Medium complexity	>= 25 and < 75
High complexity	>= 75

Fab Complexity

Based on the observations that attributes interact with each other to create complexity, this is best represented as a weighted matrix:

 a_{mn} = Interactive attribute weight S_m = Category difficulty

8 mil Interactive Complexity Category difficulty Mechanical drill drill Mechanical drill Mechanical drill Registratior Mechanical Mechanical Microvia PCB Complexity 2 1.7 1.3 0.8 2 0.5 0 Registration 2 Mechanical drill - 4 mil 0 1.8 Mechanical drill - 5 mil 0 1.5 Mechanical drill - 5.9 mil 0 Mechanical drill - 8 mil 1 0 Mechanical drill - 10 mil 0.7 0 2 0 Mechanical 0 1 0 Impedance control ٥ Interactive Complexity **Total Complexity**

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Microvia
Fab Complexity

Each Category of a PCB complexity is it's own matrix of interactions that then "rolls up" to the PCB complexity matrix:

$$\mathbf{Ri} = \sum_{i=0}^{m} \left(\begin{bmatrix} w_{11} & \cdots & w_{1n} \\ \vdots & \ddots & \vdots \\ w_{m1} & \cdots & w_{mn} \end{bmatrix} \times \begin{bmatrix} A_1 \\ A_2 \\ A_m \end{bmatrix}$$

Where:

- **Ri** = Registration Index
- w_{mn} = Interactive attribute weight
- **A**_{*m*} = Single attribute difficulty

DMC Scale: Examples

mil mil mil

Compare similar application but different designs & manufacturing options

AP Probe Card complexity:

- 1.05x design no change
- 1.15x higher manufacturing
- +3 days longer leadtime

Probe cards will necessarily use a larger pitch PCB. Segment the architecture and introduce the complexity of MLO attach (assembly)

2022

Manufacturing

2014

2010

2018

B Co gistra echar echar echar icrovi echar peda ntera	mplexity tical drill - 4 mil nical drill - 5 mil nical drill - 5 mil nical drill - 8 mil nical drill - 10 mil a nical drill - 10 mil a ni	s' - i k - i	PCB Complexity upper type Registration 1 2 1.7 Mechanical drill - 4 mil 2 Mechanical drill - 5 mil 1.8 Mechanical drill - 5 mil 1.8 Mechanical drill - 10 mil Microvia Mechanical 1.0 Microvia 1.1 Mechanical 1.0 Microvia 1.8 Mechanical 1.0 Impedance control 1.8 Interactive Complexity 1.8	Mechanical drill - 5	T Mechanical drill - 8	2.0 Mechanical drill - 1	2 Microvia	1 Mechanical	Impedance control	T
		AP Probe Card 8//	AP Final Test 16//							
	Board Size	16 x 16"	16 x 16"							
2	Materials	Megtron 6	Megtron 6							
	Thickness	0.260"	0.250"							
	Layers	62	56							
	Pin Pitch (min)	0.5mm	0.4mm							
	Drill (min)	5.9 mil (PTH)	5.0 mil (BVH)							
	Aspect Ratio	44 : 1	30 : 1							
	Laminations	1	2							
	Components	7,700	5,772							
	Body size	0201	0201							
	Trace density	30,050	43,956							
	Flatness	+/- 1 mil (DUT area)	3 mils / in							
	Design Complexity	2842	2956							
	Mfg Complexity	465 (Fab) + 351 (Assy)	537 (Fab) + 173 (Assy)							

lim 6 lim 1 lim 1 lim 1

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

142 297.5 0 0 51.4 92.52

55 55 54 54 537.6

otal Complexity

DMC Scale: Tradeoffs

Microvia complexity:

- 1.0x design no change
- 1.5x higher manufacturing
- +6 days longer leadtime

PCB Complexity Registration Mechanical drill - 4 mil Mechanical drill - 5 mil Mechanical drill - 5 mil Mechanical drill - 10 mil Microvia Mechanical drill - 10 mil Microvia Mechanical drill - 10 mil Microvia Mechanical drill Impedance control Impedance control	Image: space of the	PCB Complexity 1 2 1.7 1.3 1 Mechanical drill - 4 mil 1 2 1.7 1.3 1 Mechanical drill - 5 mil 1 2 1.7 1.3 1 Mechanical drill - 5 mil 1.5 1 1 1.5 1 Mechanical drill - 10 mil 1.5 1 1 1.5 1 Mechanical drill - 10 mil Microvia 1.5 1 1 1 Imeedance control Interactive Complexity 1 1 1 1 1	Image: Second
	Option "A"	Option "B"	
Board Size	16 x 16"	16 x 16"	
Materials	Megtron 6	Megtron 6	
Thickness	0.250"	0.250"	1 2 2
Layers	62	60	4
Pin Pitch (min)	0.35mm	0.35mm	
Drill (min)	4.0 mil (BVH)	8 mil (PTH)	1212
Microvia	None	3 layers	
Laminations	2	4	11.4.8
Trace density	23,000	24,000	
Flatness	+/- 1 mil (DUT area)	+/- 1 mil (DUT area)	17.12
Design Complexity	2612	2680	
Mfg Complexity	573	869	
Mfg Leadtime	15 days	21 days	

Complexity: Capabilities Needed

- Fine pitch DUT area routing escape is an enabler to increase I/O density
- Smaller line / space enables more than one signal to escape on a single layer requiring fewer total layers
- As pin pitch decreases the L/S becomes smaller, requiring submicron scale process capability and control

Defect Density Size and frequency of a random defect that can cause a short / open

Process Capability The ability of a process to produce output within specification limits

- Cleanliness is a function of all critical inputs: people, process, tools.
 - Requires a wholistic yield management system.
- Characterization & testing is required to set process targets and drive continuous improvement
 - DIB TTM & quality standards don't allow experimentation on a live project
- To achieve a viable yield
 - < 0.1 defects / DIB @ 400x400mm
 - A 10um process requires Class 100
- For a 11/11um L/S feature, to maintain impedance control:
 - +/- 5% = +/- 2.5um
 - To meet a Cpk of 1.67 requires measured std deviation of <u>0.5um!</u>
- L/S control is the outcome of process capability of photo & etch
 - Since the processes are sequential the individual process capability must be even better!

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Ledford

Intelligent Method for Retesting a Wafer

Achieve Test Excellence

YC Wang / YK Huang Teslence Technology Co., Ltd

Hsinchu, Taiwan, October 17-18, 2019

Overview

- Probe Production Issues
- Concept of an intelligent retest
- Methodology
- Result analysis
- Other capability
- Summary

Teslence Technology

Probe Production Flow

Teslence Technology

What happened?

• Low site to site yield from first pass to inline retest

Site	FirstPass	Inline Retest
All	82.63%	87.60%
0	91.93%	91.93%
1	92.45%	92.45%
2	37.25%	62.75%
3	96.03%	96.03%
4	89.66%	89.66%
5	72.41%	85.52%
6	92.19%	92.19%
7	91.34%	91.34%

First Pass:

Inline Retest:

• Probe head?

- Tester?
- Prober?
- Program?
- Probe Card?
- PIB?
- Docking?
- Alignment?

Teslence Technology

Current way to improve

- Blind shift site reprobe on prober
 - Pre-defined 2nd step map
 - Fixed shift site location

• Cons:

- Need to setup for each device
- Wafer stepping optimization lost
- Performance may differ base on low yield site locations

Non-overlapping: Low Yield S2 & S5, retested with S6 & S0

Overlapping: Low Yield S2 & S6, retested with S6 & S2

Teslence Technology

Or... Intelligent Reprobe

- We called XREPROBE, use best yielding sites
- Patented : TW I639846 ; Pending in US and others

Teslence Technology

Methodology

1st step: Optimize for retest time

- Find location to test as many as rejects as possible
- Among the possible shifts, pick the best sites to retest

2nd step: Optimize for retest yield

- If chances to recover are low, look for other shift testing fewer rejects
- Rules include:
 - Possible recovery yield control
 - Retested with bad site

Teslence Technology

How We Decide? Optimize Retest Time

Options we have for retest on example (1x8 PH), to test all rejects

Teslence Technology

8

S0

S1

S0

Result Comparison – Low Yield on none overlap sites

Blind Shift

Traditional

xREPROBE

xREPROBE vs Traditional:

		F	Retest Option:	s
	FirstPass	Traditional	Blind Shift	xREPROB E
Yield	78.36%	84.77%	90.93%	90.85%
0	92.55%	12 ①	16	59
1	93.08%	11	62	80
2	26.80%	112	12	0
3	92.05%	12	16	47
4	88.97%	16	12	19
5	57.24%	62	11	3
6	90.63%	12	112	29
7	87.40%	16	12	16
TD	161	141②	160	128
RedCnt	147	85	12	1
RedPct	12.57%	7.27%	1.03%	0.09%

Number represents number of rejects tested
 Number represents number of touch downs

Teslence Technology

Result Comparison – Low Yield on overlap sites

Retest Options

Traditional

Blind Shift

xREPROBE vs Traditional:

		Retest Options						
	FirstPass	Traditional	Blind Shift	xREPROE E				
Yield	84.26%	89.39%	89.39%	92.99%				
0	91.30%	14①	7	14				
1	96.23%	6	8	83				
2	53.59%	71	61	3				
3	94.04%	9	8	11				
4	95.17%	7	14	12				
5	94.48%	8	6	38				
6	52.34%	61	71	2				
7	93.70%	8	9	21				
TD	161	112②	121	99				
RedCnt	102	57	59	1				
RedPct	8.73%	4.88%	5.05%	0.09%				

 Number represents number of rejects tested (2): Number represents number of touch downs

Teslence Technology

Result Comparison – Normal Yield Across Sites

Blind Shift

xREPROBE

		Retest Options					
	FirstPass	Traditional	Blind Shift	xREPROB E			
Yield	89.91%	93.76%	93.67%	93.76%			
0	88.20%	19	18	3			
1	86.16%	22	15	4			
2	89.54%	16	14	10			
3	95.36%	7	7	56			
4	87.59%	18	19	2			
5	89.66%	15	22	8			
6	89.06%	14	16	12			
7	94.49%	7	7	23			
TD	161	78	87	69			
RedCnt	47	5	8	7			
RedPct	4.02%	0.43%	0.68%	0.60%			

 Number represents number of rejects tested (2): Number represents number of touch downs

Teslence Technology

Result Comparison

Retest Method	Traditional	Blind Shift Site	xREPROBE
Retest Yield	 Uses same site to retest Worst recovery on site to site issue 	 Recovery rate is hard to predict depending on low yield site location Resulting in continued false fails from low yielding sites 	Best recovery yield with accurate binning
Retest Time	Standard retest TD	 Increase of TD because change site away from optimized stepping Retest time increased due to increase of TD 	 Optimized and use fewest TD to retest Calculated for each wafer so every retest is optimized

Teslence Technology

Case I: C customer with 16 site setup, high retest rate due to setup

Teslence Technology

Result on 16 sites

- Ran 3 wafers to review results
- Saved 2% on test time and wafer show no sign of site to site fail pattern after retest

Wafers	First Yld	Final Yld	Total TD	Traditiona I Rsc TD	xREPROB E Rsc TD	Rsc % Save	Traditiona I Total TD	xREPROB E Total TD	Save %
AXXXX4_14	93.97%	98.04%	396	206	192	<mark>6.80%</mark>	602	588	<mark>2.33%</mark>
AXXXX9_24	97.83%	98.28%	396	61	53	<mark>13.11%</mark>	457	449	<mark>1.75%</mark>
AXXXX0_02	89.75%	98.11%	396	226	214	<mark>5.31%</mark>	622	610	1.97%
Average	93.85%	98.14%	396	164.33	153	<mark>6.89%</mark>	560.33	549 🔰	2.02%
					P_00240		P 00021		

Teslence Technology

High Volume Production Result

- Collected from 4 months, more than 20k wafers
- Wafers needing offline retest dropped from 17.4% to 5.67%

Wafer Daily Output

Teslence Technology

Case II: S customer with 54 site setup, long retest time from site efficiency

Teslence Technology

Wafer Result (Traditional -> xREPROBE)

Probe path created differently to reduce test time

Teslence Technology

Test Time Summary

	Touch							
	r Historia	Down	1st Retest Index	Index	Test Time	Index+Test	Total	Diff %
W/14 Dog	1st Pass	54	N/A	1.14	6.17	7.32	F01 1C	Diff % 11.93% 17.35%
vv14_Reg	Reprobe	15	1.61	0.78	2.53	3.30	291.10	e fata a
W11 vTest	1st Pass	54	N/A	1.01	6.12	7.14	F20 64	11 0 20/
vv14_xTest	Reprobe	11	1.54	0.64	2.85	3.49	520.04	11.93%
W/10 Dog	1st Pass	54	N/A	1.21	6.20	7.41	662.42	
WI9_Keg	Reprobe	27	1.60	0.68	2.19	2.86	003.42	or No La
	1st Pass	54	N/A	1.01	6.18	7.19	F 40 22	17 250/
vv19_xTest	Reprobe	18	2.52	0.58	2.69	3.26	548.55	17.35%
	1st Pass	54	N/A	1.13	6.12	7.25	C00 F1	in the
VVI5_Reg	Reprobe	25	1.61	0.87	2.26	3.13	008.51	1,466,17
	1st Pass	54	N/A	1.01	6.19	7.20	500.00	10 510/
wi5_xtest	Reprobe	16	2.55	0.58	3.08	3.66	508.03	10.51%
14/1C De-	1st Pass	54	N/A	0.70	6.07	6.77	520.70	51 53 16.51% 79 79 5.18% 47 39 3.10%
WI6_Reg	Reprobe	16	1.61	0.73	2.32	3.06	520.79	
MAC	1st Pass	54	N/A	1.06	6.09	7.15	402.00	E 100/
wib_xiest	Reprobe	13	2.40	0.82	1.84	2.66	493.80	5.18%
W17 D	1st Pass	54	N/A	0.71	6.05	6.76	F10 47	
wi/_keg	Reprobe	18	1.60	0.89	1.88	2.77	518.47	1.11
A/17	1st Pass	54	N/A	1.10	6.09	7.19	502.20	2 1 0 0 /
wi/_xiest	Reprobe	13	2.62	0.63	2.04	2.66	502.39	3.10%
14/20 Dec	1st Pass	54	N/A	1.15	6.12	7.27	574 45	
W2U_Reg	Reprobe	20	3.42	0.68	1.99	2.67	574.45	
	1st Pass	54	N/A	1.02	6.12	7.14	540 70	
W20_xTest	Reprobe	14	2.66	0.57	2.60	3.17	510.70	11.10%
	1st Pass	54	N/A	1.14	6.15	7.29		
W22_Reg	Reprobe	24	4.07	0.71	2.60	3.31	602.84	1.00
	1st Pass	54	N/A	1.01	6.12	7.13	546.00	
W22_xTest	Reprobe	16	2.55	0.74	2.80	3.54	516.08	14.39%
	1st Pass	54	N/A	1.19	6.10	7.29	5 6 9 7 4	
W23_Reg	Reprobe	25	3.49	0.72	1.47	2.19	562.71	
	1st Pass	54	N/A	1.06	6.09	7.15		
W23_xTest	Reprobe	19	2.68	0.75	1.67	2.42	513.52	8.74%
	1st Pass	54	N/A	1.05	6.12	7.17		
Avg_Reg	Reprobe	21.25	2.38	0.76	2.15	2.91	580.29	
	1st Pass	54	N/A	1.03	6.13	7.16		
Avg_xTest	Reprohe	15.00	2 44	0.66	2.45	3 11	514.19	11.39%
	heprobe	15.00	2.77	0.00	2.45	3.11		

- All wafers reprobed with xREPROBE shows fewer TD count of reprobe
- Index time on regular are unstable, some longer and some shorter, xREPROBE more consistent and mostly shorter than regular
- Longer test time on xREPROBE is reasonable due to xREPROBE tested more rejects per touchdown during reprobe
- Average saving of 11.39% on probing a wafer!

Teslence Technology

Trail Run Summary

- Longer index time was observed on correlation wafer and first two wafers, program was improved and prober setting updated to met similar or better index time from normal reprobe
- Did not met site to site setup issue, hence full xREPROBE capability not demonstrated
- Test Time saving of 11.39% (or 66.1sec) per wafer on 8 wafers trail run! Or equal to \$0.92 saving per wafer

- (Calculation assumed on hour rate of \$50)

Teslence Technology

xTEST's Portfolio

xREPROBE

 Provides auto calculated reprobing path to minimize rescreen test time, maximize recovery yields, and allow production flexibility without downtime

xCLEANING

- Provides proactive control in cleaning
 - Maintain target yield
 - Provide maximum throughput by only cleaning when needed

xSETUP

- Auto-Z to setup prober for production environment and adjust overdrive on the fly
- Auto correlation / GRR for production setup

xDATA

- Provides real time data analysis for alert, monitoring and probe decisions
- Setup data stream to any database upon request

Teslence Technology

Thank you!!!

YC Wang Teslence P: +886-2-27472644 E: yenchun.wang@teslence.com

YK Huang Teslence P: +886-2-27472644 E: yk.huang@teslence.com

Teslence Technology