O Nanotec

PLUG & DRIVE

Programming Manual for
Stepper Motor Controllers

Valid as of firmware 25.01.2013

NANOTEC ELECTRONIC GmbH & Co. KG Tel. +49(0)89-900 686-0
Kapellenstralie 6 Fax +49 (0)89-900 686-50
D-85622 Feldkirchen b. Munich, Germany info@nanotec.com

mailto:info@nanotec.de

\) Nanotec’

PLUG & DRIVE

Editorial

© 2013

Nanotec® Electronic GmbH & Co. KG

Kapellenstrafie 6

D-85622 Feldkirchen b. Munich, Germany

Tel.:
Fax:

Internet: www.nanotec.com

All rights reserved!

+49 (0)89-900 686-0
+49 (0)89-900 686-50

MS Windows 98/NT/ME/2000/XP/7 are registered trademarks of the Microsoft Corporation.

Translation of original handbook

Version/Change overview

Version Date Changes

V1.0 10.02.2009 | Command reference created (firmware version
04.12.2008)

V2.0 11.12.2009 | Instruction sets (firmware version 10.10.2009),
supplemented by Java programming and COM interface
programming, hence renamed as "Programming Manual"

V2.1 28.01.2010 | Instruction sets

V2.2 11.02.2010 |Jerkfree ramp instruction set

V2.3 08.04.2010 | New notice: Java programs and serial communication
possible at the same time

V2.4 03.11.2010 | Instruction sets and corrections for serial communication
and Java programming;
revision of COM interface programming

V2.5 03.11.2011 | Instruction set for COM interface programming and
corrections

V2.6 05.04.2012 | Updating of the command reference.

New: Setting the type of encoder

V2.7 25.06.2013 | Update

\WY Nanotec’

PLUG & DRIVE

About this manual

Target group

This technical manual is aimed at programmers who wish to program their own
control software for communication with controllers for the following Nanotec motors:

e SMCI12

e SMCI33*

e SMCI35

e SMCI36

e SMCI47-S*
e SMCP33

e PD2-N

e PD4-N

e PDG6-N

* Please note following information!

Information on SMCI33 and SMCI47-S

For drivers with firmware older than 30.04.2009, the update to the new firmware that
is described in this manual cannot be carried out by the customer.

Please send us these drivers, we will carry out the update for you quickly and, of
course, free of charge.

Contents of the manual

Please note!

This manual contains a reference to all commands for controlling Nanotec motors
(Section 1). Section 2 describes how to program them with Java (NanoJ easy),
Section 3 describes how to program them via the COM interface.

This programming manual must be read carefully before the Nanotec firmware
command references are used for creating controller programs.

In the interests of its customers and to improve the function of this product, Nanotec
reserves the right to make technical alterations and further develop hardware and
software without prior notice.

This manual was created with due care. It is exclusively intended as a technical
description of the Nanotec firmware command references and the programming by
JAVA or the COM interface. The warranty is limited to the repair or replacement of
defective equipment of the Nanotec stepper motors, according to our general terms
and conditions; liability for damage or errors resulting from the incorrect use of the
command references for the programming of the user's own motor drivers is
excluded.

For criticism, proposals and suggestions for improvement, please contact the address
given in the Editorial (page 2) or send an email to: info@nanotec.de

mailto:info@nanotec.de

\) Nanotec’

PLUG & DRIVE

Contents

o110 - | OO TP PRP PP 2
ADOUL ThIS MANUAL........eiiiiiei et e e st e st e e sbn e e s nneesnre e e nnneesnneeas 3
LO0] 1 (=T o] £ PP PR PRPR PR 4
1 Command reference of the Nanotec firmwarecccooce i 11
1.1 GeNnEral INFOIMEALION.oiiieeiiee et sane e nnnee e 11
111 COMMANT SEUCTUIE.....ciitiii ettt sttt e et e s abb e e s nbr e e e e nbe e e e e nneas 11
112 LoNg COMMANA FOIMALuiiiiiiiiiie ittt e et e e e s sabe e e e s abnreeeeanes 12
1.2 COMMANT OVEIVIEW ...ttt ettt ettt e sttt e s bbb e e e e aab e e s eabb et e s nbb e e e e nnbreeeenneas 14
13 REAA COMMEANT ...ttt et e skt e et e e e s b r e e e e anbe e e e annee 17
14 RECOIUS ...ttt ettt e e et e e ek et e e s bb e e e e e e b et e e e anbe e e e e nre e e e anene 18
15 GENEIAlI COMMEBNTS ...ttt et e st e s b e e e snbr e e e e nneas 19
15.1 SEttiNg the MOTOF tYPE ..cii i e e e e e e s et e e e e e e s e satrreeeeeaaeeeas 19
1.5.2 Setting the PRaSE CUIMTENT..........viiiii e e a e e e 19
153 Setting the phase current at Standstill..............cocciieie e 20
1.5.4 Setting the peak current for BLDCouviiiiioiiiiiiee e e e e e snaeee e e e e 20
155 Setting the current time constant for BLDCcouviiiiii i ee e 21
1.5.6 Setting the SIEP MOAEcoieeee e e e e e e e s e s eeeaaeeean 21
157 Setting the driVe A0AIESSueiii et e s 22
158 Setting the MOTON ID ...ociieiiie it e e s b e e e nneas 22
1.5.9 Setting the limit SWItCh DENAVIOL ... 23
1.5.10 Setting the error COrreCtion MOuuiiiiiiiiiieeee e e e e e e 24
1511 Setting the record for autO COMMECTHION.cciii it 24
1.5.12 Setting the eNCOAEr AIFECHIONccciii i e e e e s e e e e e e e aans 25
1.5.13 Setting the SWING QUL TIMEeiiiiiie e e s e e e e e s s re e e e e e e e as 25
1.5.14 Setting the maximum encoder deVIatiON.............ccciiieiee e e a e 26
1.5.15 Setting the feed rate NUMEIALONc..uuiiiii e e e e e e e e s s rerreeaeeeanns 26
1.5.16 Setting the feed rate deNOMINALON.............oviiiiiiiiiiee e e 27
1.5.17 Resetting the POSITION ©ITONceeiieieeee e e e s e e e e e e e nnrreaeeees 27
1.5.18 Reading out the rror MEIMOIYcoiiuiiiiiiie et 28
1.5.19 Reading out the encoder POSITIONc.ooiiiiiiiiiiie e 29
1.5.20 Reading OuUt the POSITIONoiiiiiiii et sabe e e e e anes 29
1521 Request “MOotOr iS refErENCEA"o e e 30
1.5.22 reading OUL the STATUS..........uiiiiiiii ittt e e e et e e e e e e s aabb e e e e e e ae e e aannnes 30
1.5.23 Reading out the firmWare VEISIONooiiiiiiiii e 31
1.5.24 Reading out the operating time since the firmware updatecccccccoeiiiiie e, 31
1.5.25 Setting the function of the digital INPULScooiiiiiiiiec e 32
1.5.26 Setting the function of the digital QUIPULSccciiiiiiic e 33
1.5.27 Masking and demasking INPULS.........ouiieiiiiiiiiiiicc e a e rnreree e e 34
1.5.28 Reversing the polarity of the inputs and OULPULS............eueeveee i 35

\Y Nanotec’

PLUG & DRIVE

1.5.29
1.5.30
1531
15.32
1.5.33
15.34
15.35
1.5.36
1.5.37
1.5.38
1.5.39
1.5.40
1541
1.5.42
1.5.43
1.5.44
1.5.45
1.5.46
1.5.47
1.6
16.1
1.6.2
1.6.3
16.4
165
1.6.6
1.6.7
1.6.8
1.6.9
1.6.10
1.6.11
1.6.12
1.6.13
1.6.14
1.6.15
1.6.16
1.6.17
1.6.18
1.6.19
1.6.20
1.6.21

Setting the debounce time for the INPULS ... 36
SEttNG the OULPULSveiiie e e e e e r e e e e e st re e e e e e s e e saannrraeeeaaeaeas 37
Reading out EEPROM byte (read EE DY)ccceeiiiiiiiiiiie e 38
Carrying out an EEPROM FESEL......cciiiciiiiiii e s s st e e e e st e e e e e e s s snnbaneeeaeenanns 38
Setting automatic sending Of the StAtUScoo i 38
Starting the DOOHOAUET ... e 39
Setting the reVEISE CIEATANCEeii i 39
SettiNg the FAMP TYPE ...ttt e e st n e e e anees 40
Setting the waiting time for switching off the brake voltagecccoociiiii 41
Setting the waiting time for the Motor MOVEMENT ...t 42
Setting the waiting time for switching off the motor currentcccoociiie 42
Setting baud rate of the CONLIOIIET............ueeiiii e 43
Setting the CRC ChECKSUMuviiiiic i e s e e e e e s e e e e e e e e s 44
Reading out the Hall configuration............cccouuiiiieei e 44
Reading out the temMpPerature VAIUE...........cc.uvviiiie e e e aee e 45
Setting the QUICKSTOP FAMP ..ueiiiiiieec e e s e s e e e e e e s e s aeeeaeeean s 45
Setting the quick stop ramp (WithOUt CONVEISION)cevieiiiiiiiiiieee e 46
Setting the gear factor (NUMETALON)uuiiiiiiiie et 46
Setting the gear factor (deNOMINALOT)coiiiiiiiiiiiee e 47
RECOI COMMEBNTS ...ttt e et e et e e e s si bt e e s abbe e e e e sbreeeeanes 48
Y= g (] gTo I 1410 (o) ST PP PUT TP UURTPPRRRR 48
Sy o] o] o] o Jr= T 110] (o] PP PUT T PURTPPPRRR 48
Loading a record from the EEPROMcccuiiiiiii ettt 48
Reading out the CUITENE FECOIMcviiii i e e 49
Y=Y/ 1T = W (=1 oTe] (o SRS PPRRRR 50
Setting the positioning mode (NEW SChEME)euiiiiiie e 51
Setting the travel diSTANCE..........oeiii e e e 53
Setting the MINIMUM fIEQUENCY ...oeeiiiiie e e e e e e e e 53
Setting the Maximum fFEQUENCYcooiiiiiiiiiie e 54
Setting the Maximum fFEQUENCY 2couuiiiiiiiee e 54
Setting the acCeleration FaMPoii it 55
Setting the acceleration ramp (WithOUt CONVEISION)cooiiiiiiiiiiie i 55
Setting the Drake FamMPot eeeaa e 56
Setting the brake ramp (WithOUt CONVEISION)euuiiiiiiiii e 56
Setting the direction Of rOtatioN ... 57
Setting the change of dIrECHION ...t e 57
Setting the FEPELILIONSccoiiiieic e e e e e e e e s e st b areaeeaaeeeas 58
Setting the rECOIT PAUSEveiiiiiee et e e e e e e e e e e s e e e e e e s e snnreaereaaaeenn 58
Setting the continUAtION FECOIM ..ot e e 59
Setting the maximum jerk for the acceleration rampcccccceeee e 59

Setting the maximum jerk for the braking ramp ..., 60

)] Nanotec

LUG & DRIVE

1.7
171
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6
1.7.7
1.7.8
1.7.9
1.7.10
1.7.11
1.7.12
1.7.13
18
18.1
1.8.2
1.8.3
184
1.8.5
1.8.6
1.9
191
1.9.2
193
194
195
1.9.6
1.9.7
1.9.8
199
1.9.10
1.9.11
1.9.12
1.9.13
1.90.14
1.9.15
1.9.16
1.9.17
1.9.18
1.9.19

1V/ToTo [SRES] o T=Tod ol odo] .4 10 =1 a o F-3 SR 61
Setting the dead range for the joystick MOdeceeeveiiiiiiiiiii e 61
Setting the filter for the analog and joyStick MOUEScccviviiiiie i 61
Setting the minimum voltage for the analog MOdeoocciveiiiee e 63
Setting the maximum voltage for the analog MOde ..o, 63
Setting the offset of the analog INPULcoouiiiiiii e 64
Setting the gain of the analog INPULcooiiiiiiii e 64
Resetting the SWItCh-0N COUNTET ...ttt 65
Adjusting the time until the current redUCHION ... 65
Increasing the rotationNal SPEEM.........cui i 66
RedUCING the SPEET ...ttt e e e e e e e aanbbaee s 66
Reading OUL the SPEEAccii i e e e e e s e 66
Yo (0= 11T IR (g TS o o = PSSR 67
Setting the interpolation time period for the clock direction mode..........cccccceeeviviiiiieenennenn. 67
(0fe]aalaaF=Ta o TSI {0 G VAN Y /N o T {0 [r- 2 S PRRR 68
Transferring a Java program to the CONtroller............oovvveeiiiiiiiiiee e 68
Starting the loaded Java Program...........uueeireeeiiiiie e e e e e e e e s s snnrnrereaeeean 68
Stopping the ruNNING JAVEA PrOGIaM.........eeiiiiiiiieiiiiee ettt ettt setee e sir e e s ssbre e e s snneeesnnneeas 68
Automatically starting the Java program when switching on the controller 69
Reading out the Java Program EITONc.ueeeiiieee ettt e e e e abee e e eneee 69
Reading out the warning of the Java program............ccueeiiiiiiiiii e 70
(01 [o1S=To (o o] o =TT 111 Vo 1< T PP PPRRP 71
YaXor ()77 111 9o e (o Y= To I (oo o I ' o o [SRR 71
Reading out the closed 100p MOde StatUS..........ccoeeiiiiiiiiiiie e 73
Setting the controller type for the speed Modecoeeviiiiiii e, 73
Setting the tolerance window for the limit POSItION............coccviiiiiee e 74
Setting the time for the tolerance window of the limit poSsition............cccovveerivicciieeeeee, 74
Setting the maximum permissible follOWING €ITOrccoiviiiiiiie e 75
Setting the time for the maximum fOllOWING €ITOFccuuviiiiiiiiiiee e 75
Maximum permissible speed deviation ... 76
Time for the maximum permissible speed deviation............cccocvveiiieiinii e 76
Setting the pole pairs of the MOTOr...........eiiii e 77
Setting the ENCOUET TYPEttt e e e e e e e e e e snab e e aaaaaeeas 77
Setting the nUMbEr Of INCIEMENTSeiiiiii e 78
Setting the NUMbBEr Of FEVOIULIONScvviiiiiie e 78
Setting the numerator of the P component of the speed controllercccccooviiiieneneenn. 79
Setting the denominator of the P component of the speed controller................ccccvvveeeeeennn. 79
Setting the numerator of the | component of the speed controller...........ccccceevvvciiieeeeneen, 80
Setting the denominator of the | component of the speed controller.............cccocecvvveeeeeennn. 80
Setting the numerator of the D component of the speed controller............cccccoevevvieenneennn. 81

Setting the denominator of the D component of the speed controllerccccceviieeennnnen. 81

\Y Nanotec’

PLUG & DRIVE

1.9.20
1.9.21
1.9.22
1.9.23
1.9.24
1.9.25
1.9.26
1.9.27
1.9.28
1.9.29
1.9.30
1.9.31
1.9.32
1.9.33
1.9.34
1.9.35
1.9.36
1.9.37
1.9.38
1.9.39
1.9.40
1.9.41
1.10
1.10.1
1.10.2
1.10.3
1.10.4
1.10.5
111
1111
1.11.2
1.11.3
1114
1115
1.11.6
1.11.7
1.11.8
1.11.9
1.11.10
11111
1.12

Setting the numerator of the P component of the cascading speed controller.................... 82
Setting the denominator of the P component of the cascading speed controller 82
Setting the numerator of the | component of the cascading speed controller 83
Setting the denominator of the | component of the cascading speed controller.................. 83
Setting the numerator of the D component of the cascading speed controller.................... 84
Setting the denominator of the D component of the cascading speed controller 84
Setting the numerator of the P component of the position controller.............ccooecvvveeenennn. 85
Setting the denominator of the P component of the position controller............cccccvveveeennn. 85
Setting the numerator of the | component of the position controller..............ccooecieeeeennnn. 86
Setting the denominator of the | component of the position controllerccccoceeeeene 86
Setting the numerator of the D component of the position controllerccocccieeeiennnn. 87
Setting the denominator of the D component of the position controller..............cccoveeeeen, 87
Setting the numerator of the P component of the cascading position controller 88
Setting the denominator of the P component of the cascading position controller.............. 88
Setting the numerator of the | component of the cascading position controller................... 89
Setting the denominator of the | component of the cascading position controller 89
Setting the numerator of the D component of the cascading position controller 90
Setting the denominator of the D component of the cascading position controller 90
Setting the sampling point spacing of the load angle curve............ccccccvveiiiiiciieeeeee, 91
Setting the lower limit for the cascade CONtroller ..., 91
Setting the upper limit for the cascade CONrOller ..o 92
Reading out the status of the cascade controller.............ccccoovii e, 92

Motor-dependent load angle values determined by test runs for the closed loop mode..... 93

Reading out the encoder/motor OffSEt...........uueiii i 93
Setting/reading out load angle measurement values of the motorccccccoeviiiieeneennnn, 93
Reading out the velocity measurement values of the test run.........ccccccoo v, 94
Reading out current measurement values of the test run..........ccccccceve e, 95
Reading out load angle measurement values of the test runccccccov v, 95
Yool o3 1 4o To P PP OPU PP 97
INEEGratioN Of 8 SCOPE....cii ittt e et e e et e e e s sabe e e e s nareeeeanes 97
Setting the SAMPIE TALEcoi i e e 97
Reading out the setpoint position of the ramp generator...........ccceeveveiiiiiiieiieeee e 98
Reading out the actual position of the eNCOdEruuiiiiiiiiiiii e 98
Reading out the setpoint current of the motor controller............ccoeeeeieiiiiiiii e, 99
Reading out the actual voltage of the controller ... 99
Reading out the digital iINPULS...........oueiiiiiiiie e e 100
Reading out the voltage at the analog INPULcocciiiiiie e 100
Reading out the CAN BUS 10@dueiiiiiiiiiieec e 101
Reading out the controller teMPEeratureeeoiiiciieieee e 101
Reading out the fOllOWING ©ITOFuviiiiie e 104

Configuration of the current controller for controllers with dspDrive..........c.ccocceeviiiennnnen. 105

\) Nanotec’

PLUG & DRIVE

1.12.1 Setting the P component of the current controller at standstillcccccoeeeiiiiiiiennnnen. 105
1.12.2 Setting the P component of the current controller during the run..........ccccccoooviiiieeneennnn, 105
1.12.3 Setting the scaling factor for speed-dependent adjustment of the P component of the

fodo] a1 (o] 1= o [0 T TaTo TR 1= 0 U o TS 106
1.12.4 Setting the | component of the current controller at standstill.............cccccceeeeviiciiiieeneeen. 106
1.125 Setting the | component of the current controller during the runcccceviciiiiin e, 107
1.12.6 Setting the scaling factor for speed-dependent adjustment of the | component of the

CONEIOIlEr AUMNG ThE TUN.....eeii ettt e et e e e snbe e e e eneee 107
2 Programming with Java (NANOJEASY).......cccoiuiiiiiiiiiiiiiiie e 108
2.1 OVBIVIBW ...ttt etttk e 4kt e o4kt e oo a ket e 4 s bt e e e s b et e e e s e e e e e s e e e e ennbe e e e annne 108
2.2 COMMANT OVEIVIEW ...ttt ettt ettt ekt e e st e e e e et bt e e e ab e e e e bb e e e e anbnreeeeanneas 109
2.3 INSEAIlING NANOJEGSY......uuviiiiee ittt e e st e e s e s e e e e e e s e st e e e e s e seababeeeaeessansnnnrneeeas 113
2.4 WOrking With NANOJEASYccvviiiiiee ittt eee ettt e e s et r e e e e e e e st ae e e e e e e s e nnneraeeees 114
2.4.1 Main WiNdow Of NANOJEASYcccvuiiiiee ittt e e e e e et ae e e e e e e s anneees 114
2.4.2 Development process With NANOJEASYccevveeiiiiiiiiiiieee e esesiieee e e e ssieree e e e e e e snaeeeeas 115
2.4.3 TaE=To =1 (=T I oto] 141 1 4= U o £ 116
25 Classes and fUNCHIONSeviiiieiiee it 117
251 CAPEUIE” CIASS. .. ettt ettt ettt et e st e e ab bt e e e nbr e e e enbe e e e neee 117
25.2 o] o o T3 RSO PRRRR 121
253 “COMIM” ClAISS ...ttt ettt e ettt e s b bt e e e aab bt e e e e nbe e e e enbe e e e aneee 138
254 FCONTIG" ClASS .ttt ettt et e e e s e e e e e e e e e aeeeaaeeeaaa 139
255 MV ClASS ...ttt ettt et e e e e ettt e e e e e e e saab bt e e e e e e e e e e aanbeeeeaaaeeaan 149
2.5.6 B0 Y 00 [1= ol - TP OURRR 160
2.5.7 107 CIBSS ..ttt E e nne e neas 163
2.5.8 CULIT" CIBSS 1ttt bttt e b s bt e s e e e s b e s bn e e se e nne e neas 173
2.6 Java programming EXaMPIESuueeieee e es e e s e e e e 175
2.6.1 F Y= 1[0 | ==Y aa] o] (= - V7= U 175
2.6.2 (DT 11 =1 ot T 4] 0] (ST - Y- U 176
2.6.3 TIMEIEXAMPIEJAVAeeeiiiiiie ittt ettt e et e e e st et e e s sbbe e e e s anbbeeeeanes 177
2.6.4 CoNfigDINVEEXAMPIE.JAVA.eeiiiiiiiiee e 178
2.6.5 DIGITAIOULPULJAVAttt ettt st e e s b e e s sanb b e e e s nnnneee s 179
2.6.6 EXPOITANGIOGINJAVA ... ettt e e e et e e e e e e nnneeeeas 180
2.7 Manual translation and transfer of a program without NanoJEasyccccccceeeiniiiieeeenn. 181
2.7.1 NECESSANY TOO0IS....ce ittt e ettt e e e e e e e s aa b b ee e e e e e e s e aanbeeareeeaaeeeannnrees 181
2.7.2 Translating the PrOgram ... e e e e e e e e s s re e e e e e e s e nanrreeaeees 182
2.7.3 Linking and CONVErtiNG @ PrOgraM.......ccccceiiiiiieeeeeeeseiieitreeeeeeessssanteareeseessessnnsanneeeeeesessneens 182
2.7.4 Transferring the program to the CONtroller ... 183
2.7.5 (S CCTolN v o IRt g = o] £ o -1 o o RS 183
2.8 POSSIDIE JAVA BITOr MESSAGES vvriiiieeeieiiiieieeeee e e e e s st trer e e e e e s s ssteareaeeeesssannraerrereeeseannnens 185
3 Programming via the COM iNterfaCe.......cocviiieiiiiiiie e 187

3.1 (@YY Y=L T 187

\Y Nanotec’

PLUG & DRIVE

3.2 COMMANT OVEIVIEW ...ttt sttt ettt e ss e st e s s bt e st e e e sabe s e b e e e be e e snre e e snneeennes 188
3.3 Description of the fUNCHONS..........coiiiiii e 192
3.3.1 General INFOMEALION.ciiiiei e e 192
3.3.2 LISt OF FUNCHIONS ...ttt 192
3.4 Programming @XaMPIESoeeeiiiiiiieiii e e e e et e e e s s s e e e e e e e e e e e e e s e r e e e s e aeees 235
4 Appendix: Calculating the CRC CheCKSUM........ccuviiiiieeiiiiiieiee e 236
5 PN o] oX=T Yo ID G\ (o] (o] gl I - SR 238
51 Default values for SLEPPEr MOTOISuviiiiiiiee ittt sbeeee e 238
5.2 Default values for BLDC MOTOISc.uviiiiiiieeiiiieeeesiiieee ettt sbnee e srneee e 238
5.3 Stepper Motors Of the SEIHES STXXXXuuuiiiiiiaeiiiiiiiie ettt eebee e e e e 238
5.4 BLDC motors Of the SErieS DB22.........cooiiiiieeiiiiiee ettt 239
55 BLDC motors Of the SEerieS DB28...........ooiiiiiiieiiie et 239
5.6 BLDC motors Of the SerieS DB33.......ccuii ittt 240
5.7 BLDC mOotors Of the SErieS DBA2.......cc.uoi ittt 240
5.8 BLDC mOtOrs Of the SErES DB57ccccuiiiieieieeeiiee e 244
5.9 BLDC mOotors Of the SErieS DB87cccvii it 245

\Y) Nanotec’

PLUG & DRIVE

1

Command reference of the Nanotec
firmware

1.1 General information

1.1.1 Command structure

Controller command structure

A command begins with the start character "#" and ends with a carriage return *\r".
All characters in between are ASCII characters (i.e. they are not control characters).

The start character is followed by the address of the motor as an ASCII decimal
number.

This value may be from 1 to 254. If *** is sent instead of the number, all drivers
connected to the bus are addressed.

This is followed by the actual command which generally consists of an ASCII
character and an optional ASCIl number. This number must be written in decimal
notation with a prefix of (*+* and "-7).

When the user sends a setting to the firmware, a "+" sign is not mandatory for
positive numbers.

Note:
Some commands consist of multiple characters while others do not require a number
as a parameter.

Controller response

Examples

If a controller recognizes a command as relevant to it, it confirms receipt by returning
the command as an echo, but without the "#" start character.

If the controller receives an unknown command, it responds by returning the
command followed by a question mark *?*".

The response of the controller ends with carriage return *\r ", like the command itself.

If invalid values are transmitted to the controller, these are ignored but sent back as an
echo anyway.

Example
Value transmitted to the controller: "#1G10000000\r "
Firmware response: "1G10000000\r"

(value is ignored)

If the controller responds to any arbitrary command with "?clock®, this means that
the clock direction mode is currently active and the clock frequency is greater than 65
kHz. With this, serial communication is no longer possible. To enable communication
again, a clock frequency of less than 65 kHz must be set.

Setting the travel distance of controller 1: "#1s1000\r*" »> "1s1000\r"
Starting a record: "#1A\r" > "1A\r"

Invalid command: "#H1°\r" 2> "1°?2\r"

\Y) Nanotec’

LUG & DRIVE

CanOpen interface specification

Information on programming with CanOpen can be found in the corresponding manual
for the interface at www.nanotec.com.

1.1.2 Long command format

Use

With the launch of the new firmware, commands were introduced that consist of more
than one character. These commands are used for reading and changing machine
parameters. Because these usually only have to be set during commissioning, the
slower transmission speed due to the length of the command has no effect on
operation.

Long command structure

A long command begins with the addressing scheme already described ("#<I1D>").
This is followed by a colon that marks the beginning of the long command. Next
comes the keyword and the command, followed by a carriage return character (*\r"),
which indicates the end of the command.

A long command can consist of the characters "A" to "Z" and "a” to "z*, and the
underscore (*_"). The syntax is case sensitive. Digits are not allowed.
Keywords
The following keywords are defined for long commands:
:CL For the controller settings and the motor settings (closed loop)
‘brake For the motor controller

:Capt For the scope mode

Controller response
The firmware response does not begin with a "#" like the user request.

If the values are positive, the keyword is followed by a "+" sign. For negative values,
a"- " signis used.

Both signs "+" and "-" can be used as separators.

If an unknown keyword is sent (unknown command), the firmware responds with a
guestion mark after the colon.

Example
Unknown command: "#<ID>:CL_does_not_exist\r-
Firmware response: "<ID>:?\r"

Command for reading a parameter
Read command

To read a parameter, the end of the command name is terminated with a carriage
return character.

Read command: "#<1D>:keyword_command_abc\r*
Firmware response
The firmware responds with an echo of the command and its value.

Response: "<ID>:Schlusselwort_Kommando_abc+Wert\r*

http://www.nanotec.de/

\) Nanotec’

PLUG & DRIVE

Command for changing a parameter

Example

Change command

To change a parameter, the command name is followed by a *=" character, followed
by the value to be set. For positive values, a "+ sign is not mandatory but is also not
disallowed. The command is terminated with a carriage return character.

Change command: "#<1D>:keyword_command_abc=value\r~
Firmware response

The firmware responds with an echo of the command as confirmation.
Response: "<I1D>:keyword_command_abc=value\r*

See also the following example.

The structure of the long command is shown in the following example:
"Read out the motor pole pairs"

Read parameter "#1:CL_motor_pp\r*

Firmware response "1:CL_motor_pp+50\r*

Change parameter "#1:CL_motor_pp=100\r"*

Firmware response "1:CL_motor_pp=100\r*

\Y) Nanotec’

PLUG & DRIVE

1.2 Command overview

Below you will find an overview of the serial commands of the Nanotec firmware

(characters and parameters):

— ... Reducing the speed 66
$... reads out the status 30
% ... resets the switch-on counter 65
(E ... reads out the EEPROM byte 38
(J... transfers the Java program to the motor
controller 68
(JA ... starts the loaded Java program 68
(JB ... automatically starts the Java program
when switching on the controller 69
(JE ... reads out the error of the Java program
69
(JS ... stops the running Java program 68
(JW... reads out the warning of the Java
program 70

:aaa ... sets the gain of the analog input 64

:accel ... sets the acceleration ramp (without
conversion) 55

:aoa ... sets the offset of the analog input 64

:b ... sets the maximum jerk for the
acceleration 59

:B ... sets the maximum jerk for the braking
ramp 60

:baud ... sets the baud rate of the controller 43

‘brake_ta ... sets the waiting time for switching
off the brake voltage 41

:brake_tb ... sets the waiting time for the motor
movement 42

‘brake_tc ... sets the waiting time for switching
off the motor current 42

:ca ... sets the lower limit for the cascade
controller 91

:Capt_iAnalog ... reads out the voltage at the
analog input 100

:Capt_iBus ... reads out the CAN bus load 101
:Capt_iln ... reads out the digital inputs 100

:Capt_iPos ... reads out the actual position of
the rotary encoder 98

:Capt_iVolt ... reads out the actual voltage of
the controller 99

:Capt_IFollow ... reads out the following error
104

:Capt_ITemp ... reads out the temperature of

the motor controller 101
:Capt_sCurr ... reads out the setpoint current
of the motor controller 99
:Capt_sPos ... reads out the setpoint position
of the ramp generator 98
:Capt_Time ... sets the sample rate 97
:ce ... reads out the status of the cascade
controller 92
:CL_enabile ... activates closed loop 71

:CL_following_error_timeout ... sets the time

for the maximum permissible following error
75

:CL_following_error_window ... sets the

maximum permissible following error 75

:CL_is_enabled... Closed loop mode status 73

:CL_KD_css_N ... sets the denominator of the

D component of the cascading position
controller 90

:CL_KD_css_Z ... sets the numerator of the D

component of the cascading position
controller 90

:CL_KD_csv_N ... sets the denominator of the

D component of the cascading speed
controller 84

:CL_KD _csv_Z ... sets the numerator of the D

component of the cascading speed
controller 84

:CL_KD_s N ... sets the denominator of the D

component of the position controller 87

:CL_KD_s_Z ... sets the numerator of the D

component of the position controller 87

:CL_KD_v_N ... sets the denominator of the D

component of the speed controller 81

:CL_KD_v_Z ... sets the numerator of the D

component of the speed controller 81

:CL_KI_css_N ... sets the denominator of the |

component of the cascading position
controller 89

:CL_KI_css_Z ... sets the numerator of the |

component of the cascading position
controller 89

:CL_KI_csv_N ... sets the denominator of the |

component of the cascading speed
controller 83

\Y) Nanotec’

PLUG & DRIVE

:CL_KI _csv_Z ... sets the numerator of the |
component of the cascading speed
controller 83

:CL_KI_s_ N ... sets the denominator of the |
component of the position controller 86

:CL_KI_s_Z ... sets the numerator of the |
component of the position controller 86

:CL_KI_v_N ... sets the denominator of the |
component of the speed controller 80

:CL_KI_v_Z ... sets the numerator of the |
component of the speed controller 80

:CL_KP_css N ... sets the denominator of the
P component of the cascading position
controller 88

:CL_KP_css_Z ... sets the numerator of the P
component of the cascading position
controller 88

:CL_KP_csv_N ... sets the denominator of the
P component of the cascading speed
controller 82

:CL_KP_csv_Z ... sets the numerator of the P
component of the cascading speed

controller 82
:CL_KP_s_N ... sets the denominator of the P

component of the position controller 85
:CL_KP_s Z ... sets the numerator of the P

component of the position controller 85
:CL_KP_v_N ... sets the denominator of the P

component of the speed controller 79
:CL_KP_v_Z ... sets the numerator of the P

component of the speed controller 79
:CL_la_ato

CL_la_j ... reads out the load angle
measurement values of the motor 93

:CL_la_node_distance ... sets the sampling
point spacing for the load angle curve 91

:CL_motor_pp ... sets the number of pole pairs
of the motor 77

:CL_motor_type ... sets the motor type 19
‘CL_ola_i_ato

CL_ola_i_g ... reads out the current
measurement values of the test run 95

:CL ola_ | ato

CL_ola_|_g ... reads out the load angle
measurement values of the test run 95

:CL_ola_v_ato

CL_ola_v_g ... reads out the velocity
measurement values of the test run 94

:CL_poscnt_offset... reads out encoder/motor

offset 93

:CL_position window ... sets the tolerance

window for the limit position 74

:CL_position window_time ... sets the time for

the tolerance window of the limit position 74

:CL_rotenc_inc ... sets the number of

increments 78

:CL_rotenc_rev ... sets the number of

revolutions 78

:CL_rotenc_type ... sets the encoder type 77

:CL_speed_error_timeout ... time for maximum

speed deviation 76
:CL_speed_error_window ... maximum

permissible speed deviation 76
:clock_interp ... sets the interpolation time

period for the clock direction mode 67
:crc ... sets the CRC checksum 44

:Cs ... sets the upper limit for the cascade

controller 92

:decel ... sets the brake ramp (without

conversion) 56

:decelquick ... sets the quickstop ramp (without

conversion) 46

:dspdrive_KI_hig ... sets the | component of

the current controller during the run 107

:dspdrive_KI_low ... sets the | component of

the current controller when idling 106

:dspdrive_KI_scale ... sets the scaling factor

for the speed-dependent 107

:dspdrive_KP_hig ... sets the P component of

the current controller during the run 105

:dspdrive_KP_low... sets the P component of

the current controller when idling 105

:dspdrive_KP_scale ... sets the scaling factor

for speed-dependent 106

:feed_const_denum ... sets the feed rate

denominator 27

:feed_const_num ... sets the feed rate

numerator 26

:gd ... sets the gear factor (denominator) a7
:gn ... sets the gear factor (humerator) 46

:hall_mode ... reads out the Hall configuration

44

lipeak ... sets the peak current for BLDC 20

lis_referenced ... motor is referenced 30

\Y) Nanotec’

PLUG & DRIVE

:itime ... sets the current time constant for

BLDC 21
:mt... sets the motor ID 22
:optime ... reads out the operating time since

the last firmware update 31
:port_in_a to h ... sets the function of each

digital input 32
port_out_a to h ... sets the function of the

digital outputs 33
:ramp_mode ... sets the ramp type 40
:speedmode_control ... sets the control type for

the Speed Mode 73
‘temp_adc ... reads out the temperature value

45
'v ... reads out the rotational speed 66
@S ... starts the bootloader 39
| (Pipe) ... reads out the current record 49
~... EEPROM Reset 38
+ ... increases the rotational speed 66
=... sets the dead range for the joystick mode

61
> ... saves a record 50
A ... starts the motor 48
b ... sets the acceleration ramp 55
B ... sets the brake ramp 56
C ... reads out the position 29
D ... resets the position error 27
d ... sets the direction of rotation 57
E ... reads out the error memory 28
f ... sets the filter for the analog and joystick

modes 61
F ... sets the record for auto correction 24
g ... sets the step mode 21
G ... time until the current reduction 65
h ... reverses the polarity of the inputs and

outputs 35

H ... sets the quickstop ramp 45
i ... sets the phase current 19
... reads out the encoder position 29

... Sets automatic sending of the status 38

J
K ... sets the debounce time for the inputs 36
L

... masks and demasks inputs 34
| ... sets the limit switch behavior 23
m... sets the motor address 22
N ... sets the continuation record 59
n ... sets the maximum frequency 2 54
0 ... sets the maximum frequency 54
O ... sets the swing out time 25
p ... sets the positioning mode 51
P ... sets the record pause 58
g ... sets the encoder direction 25
Q ... sets the minimum voltage for the analog

mode 63
R ... sets the maximum voltage for the analog

mode 63
r ... sets the phase current at standstill 20
S ... sets the travel distance 53
S ... stops the motor 48
T ... actuates the trigger 67
t ... sets the change of direction 57
U ... sets the error correction mode 24
u ... sets the minimum frequency 53
Vv ... reads out the firmware version 31
W ... sets the repetitions 58
X ... sets the maximum encoder deviation 26
y ... loads a record from the EEPROM 48
Y ... sets the outputs 37
Z ... sets the reverse clearance 39
Z + parameter ... read command 17

\) Nanotec’

PLUG & DRIVE

1.3 Read command

Function
A series of settings that can be set with a specific command can be read out with a
corresponding read command.
Command
Symbol Parameters
"Z + parameter” The read command is composed of the "Z*
character and the command for the corresponding
parameter
Example

Reading out the travel distance: "#1Zs\r" - "1Zs1000\r"

Firmware response

Returns the required parameter.

Description

This is used to read out the current settings of the values of certain commands. For
example, the travel distance is read out with *Zs*®, to which the firmware responds
with *Zs1000°".

If the parameter of a specific record is to be read out, the number of the record must
be placed in front of the respective command.

Example: "#1Z5s*" - "175s2000"

A list of record commands can be found under "1.4 Records".

\Y Nanotec’

PLUG & DRIVE

1.4 Records

Saving travel distances

The firmware supports the saving of travel distances in records. These data are saved
in an EEPROM and, consequently, are retained even if the device is switched off.

The EEPROM can accommodate 32 records with record numbers 1 to 32.

Saved settings per record

The following settings are saved in every record:

ramp

the braking ramp

Setting Para- | See Section Page
meter

Position mode "P" | 1.6.6 Setting the positioning mode 51

(new scheme)

Travel distance "s™ | 1.6.7 Setting the travel distance 53

Initial step frequency “u® | 1.6.8 Setting the minimum frequency 53

Maximum step frequency "o” 1.6.9 Setting the maximum frequency | 54

Second maximum step "n® | 1.6.10 Setting the maximum 54

frequency frequency 2

Acceleration ramp "b*" 1.6.11 Setting the acceleration ramp 55

Brake ramp "B" | 1.6.13 Setting the brake ramp 56

Direction of rotation "d® 1.6.15 Setting the direction of rotation | 57

Reversal of direction of “tt 1.6.16 Setting the change of direction | 57

rotation for repeat records

Repetitions "WT | 1.6.17 Setting the repetitions 58

Pause between "P" | 1.6.18 Setting the record pause 58

repetitions and

continuation records

Record number of "N" | 1.6.19 Setting the continuation record | 59

continuation record

Maximum jerk for ":b® | 1.6.20 Setting the maximum jerk for 59

acceleration ramp the acceleration ramp

Maximum jerk for brake "IB" | 1.6.21 Setting the maximum jerk for 60

\) Nanotec’

PLUG & DRIVE

1.5 General commands

1.5.1 Setting the motor type

Parameters
Symbol Permissible Writable | Data type Default
values value
":CL_motor_type" | 0to 2 Yes ul6 0
(integer)

Firmware response

Confirms the command through an echo.

Description
Defines the connected motor type:
e Value 0O: stepper motor
e Value 1: BLDC motor with hall sensors
¢ Value 2: BLDC motor with hall sensors and encoder
ATTENTION:
If a stepper motor is operated with the setting 1 or 2 (BLDC motor), the motor
controller and the motor may be damaged!
Reading out

Command " :CL_motor_type" is used to read out the current setting of the value.

1.5.2 Setting the phase current

Parameters
Symbol | Permissible Writable Data type Default value
values
1T 0to 150 Yes u8 (integer) depending on
controller

Firmware response

Confirms the command through an echo.

Description

Sets the phase current in percent. Values above 100 should be avoided.

Reading out

Command "Zi " is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.5.3 Setting the phase current at standstill

Parameters

Symbol | Permissible Writable Data type Default value
values
rr 0to 150 Yes u8 (integer) depending on
controller

Firmware response

Description

Reading out

Confirms the command through an echo.

Sets the current of the current reduction in percent. Like the phase current, this current
is relative to the end value and not relative to the phase current. Values above 100
should be avoided.

Command "Zr*" is used to read out the current valid value.

1.5.4 Setting the peak current for BLDC

Parameters

Symbol Permissible Writable Data type Default value
values
"-ipeak® | 0to 150 Yes u8 (integer) | 0

Firmware response

Description

Reading out

Confirms the command through an echo.

Sets the peak current for BLDC motors in percent. This value must be at least as large
as the set phase current; otherwise, the phase current value is used

Command " :ipeak"” is used to read out the current setting of the value.

\) Nanotec’

PLUG & DRIVE

1.5.5 Setting the current time constant for BLDC

Parameters
Symbol Permissible Writable Data type Default value
values
"iitime” | 0to 65535 Yes ul6 (integer) | 0

Firmware response

Confirms the command through an echo.

Description

Sets the current time constant for BLDC motors in ms. This defines the duration for
which the set peak current can flow.

Reading out

Command " :itime" is used to read out the current setting of the value.

1.5.6 Setting the step mode

Parameters
Symbol | Permissible Writable Data type Default value
values
"g" 1,2,4,5,8, 10, Yes u8 (integer) 2 = half step
16, 32, 64, 254,
255

Firmware response

Confirms the command through an echo.

Description
Sets the step mode. The number handed over equals the number of microsteps per
full step, with the exception of the value 254 which selects the feed rate mode, and
with the exception of the value 255 which selects the adaptive step mode.
Feed rate mode contained in firmware later than 15.03.2010.

Reading out

Command "Zg" is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

1.5.7 Setting the drive address

Parameters

Symbol | Permissible Writable Data type Default value
values
“m* 1to 254 Yes u8 (integer) 1

Firmware response

Description

Confirms the command through an echo.

Sets the motor address. Ensure that only one controller is connected and that the
newly set address is not already occupied by another motor as this would make
communication impossible.

In addition, if rotary address switches exist on the motor controller, they must be set to
0x00 or 0x80 (0 or 128) for SMCI36, SMCI47-S and PD6-N, or to 0x0 or 0x8 for PD4-
N. Otherwise, the address set by the switches will be used.

Addresses 0 and 255 are reserved for faults of the EEPROM.

1.5.8 Setting the motor ID

Parameters

Symbol | Permissible Writable Data type Default value
values
"imt® | 0to 2147483647 Yes u32 0

Firmware response

Description

Reading out

Confirms the command through an echo.

Returns and sets the motor ID set in NanoPro.

This motor ID uniquely identifies the motor type, motor designation and connection
type (e.g. ST5918 connected in parallel) and is used to store in the motor controller
which motor is currently connected (used by NanoPro to determine the maximum
permissible phase current, for example).

Command " :mt" is used to read out the current setting of the value.

Y Nanotec’

PLUG & DRIVE

1.5.9 Setting the limit switch behavior

Parameters
Symbol | Permissible Writable Data type Default value
values
"1 0 to 4294967295 Yes u32 (integer) | 17442

Firmware response

Confirms the command through an echo.

Description

Sets the limit switch behavior. The integer parameter is interpreted as a bit mask. The
bit mask has 16 bits.

Note:
Effective value: bit masks between 2565 and 17442.

"Free travel" means that, when the switch is reached, the controller travels away from
the switch at the set lower speed.

"Stop" means that, when the switch is reached, the controller stops immediately. The
switch remains pressed.

Behavior of the internal limit switch during a reference run:

BitO: Free travel forwards
Bitl: Free travel backwards (default value)
Exactly one of the two bits must be set.

Behavior of the internal limit switch during a normal run:

Bit2: Free travel forwards

Bit3: Free travel backwards

Bit4: Stop

Bit5: Ignore (default value)

Exactly one of the four bits must be set.

This setting is useful when the motor is not allowed to turn more than one rotation.

Behavior of the external limit switch during a reference run:

Bit9: Free forwards
Bit10: Free backwards (default value)
Exactly one of the two bits must be set.

Behavior of the external limit switch during a normal run:

Bitll: Free travel forwards

Bit12: Free travel backwards

Bit13: Stop

Bitl14: Ignore (default value)

Exactly one of the four bits must be set.

With this setting, the travel distance of the motor can be precisely limited by a limit
switch.

Reading out

Command "ZI " is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

1.5.10 Setting the error correction mode

Parameters
Symbol | Permissible Writable Data type Default value
values
U Oto2 Yes u8 (integer) 0

Firmware response

Confirms the command through an echo.

Description
Sets the error correction mode:
e Value 0: Off
e Value 1: Correction after travel
e Value 2: Correction during travel

In a motor without an encoder, this value must be explicitly set to 0; otherwise, it will
continuously attempt to make a correction because it assumes that there are step
losses.

The "Correction during travel" setting exists for compatibility reasons and is equivalent
to the "Correction after travel" behavior. To actually make a correction during travel,
the closed loop mode should be used.

Reading out

Command "ZU" is used to read out the current setting of the value.

1.5.11 Setting the record for auto correction

Parameters
Symbol | Permissible Writable Data type Default value
values
F* 0to 32 Yes u8 (integer) 0

Firmware response

Confirms the command through an echo.

Description
The ramp and the speed in the selected record (integer) are used for the correction
run.
If 0 is set, no correction run is performed; instead, an error is output if the error
correction (command "U") is activated.
See command 1.5.10 Setting the error correction mode "U*".

Reading out

Command "ZF" is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

1.5.12 Setting the encoder direction

Parameters
Symbol | Permissible Writable Data type Default value
values
qT Oand 1 Yes u8 (integer) 0

Firmware response

Confirms the command through an echo.

Description

If the parameter is setto "1" the direction of the rotary encoder is reversed.

Reading out

Command "Zqg" is used to read out the current valid value.

1.5.13 Setting the swing out time

Parameters
Symbol | Permissible Writable Data type Default value
values
0" 0 to 250 Yes u8 (integer) 8

Firmware response

Confirms the command through an echo.

Description

Defines the settling time in 10 ms steps between the end of the run and when the
position is checked by the encoder.

This parameter is only valid for the positional check after a run.

See command 1.5.10 Setting the error correction mode “U*".

Between repetitions or continuation records, this position is only checked if the pause
time (see command 1.6.18 Setting the record pause "P*) is longer than the settling

time.

After a record, the settling time is awaited before the motor indicates that it is ready

again.

Reading out

Command "Z0" is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.5.14 Setting the maximum encoder deviation

Parameters
Symbol | Permissible Writable Data type Default value
values
"X* 0 to 250 Yes u8 (integer) 2

Firmware response

Confirms the command through an echo.

Description
Specifies the maximum deviation in steps between the setpoint position and the
encoder position.
In step modes greater than 1/10 step in 1.8° and 1/5 step in 0.9° motors, this value
must be greater than 0 since, even then, the encoder has a lower resolution than the
microsteps of the motor.

Reading out

Command "ZX" is used to read out the current valid value.

1.5.15 Setting the feed rate numerator

Parameters
Symbol Permissible Writable | Data type Default
values value
" :feed_const_num” | 0 to 2147483647 Yes u32 0
(integer)

Firmware response

Confirms the command through an echo.

Description
Sets the numerator for the feed rate. This value defines the number of steps per
rotation of the motor shaft for the feed rate step mode. The feed rate is only used if
numerator and the denominator are not equal to 0. Otherwise, the encoder resolution
is used.

Reading out

Command " :feed_const_num” is used to read out the current setting of the value.

\) Nanotec’

UG & DRIVE

1.5.16 Setting the feed rate denominator

Parameters

Symbol Permissible Writable | Data type | Default
values value
" :feed_const_denum® | 0to 2147483647 Yes u32 0
(integer)

Firmware response

Description

Reading out

1.5.17 Resetting the position error

Parameters

Confirms the command through an echo.

Sets the denominator for the feed rate. This value defines the number of steps per
rotation of the motor shaft for the feed rate step mode. The feed rate is only used if
numerator and the denominator are not equal to 0. Otherwise, the encoder resolution

is used.

Command " :feed_const_denum® is used to read out the current setting of the

value.

Symbol | Permissible Writable Data type Default value
values
D" -100000000 to Yes s32 (integer) | O
+100000000

Firmware response

Description

Confirms the command through an echo.

Resets an error in the speed monitoring and sets the current position to the position
indicated by the encoder (for input without parameters, C is set to |; see Sections

1.5.18 and 1.5.19).

For input with parameters, C and | are set to the parameter value.
Ex.: "D100" - C=100; 1=100

\) Nanotec’

PLUG & DRIVE

1.5.18 Reading out the error memory

Parameters

Symbol | Permissible Writable Data type Default value
values

"E* - No - -

Firmware response

Returns the index of the error memory with the last error that occurred.

Description
The firmware contains 32 error memory locations.

The last 32 errors are stored. When memory location 32 is reached, the next error is
again stored at memory position 1. In this case, memory position 2 contains the oldest
error code that can be read out.

This command is used to read out the index of the memory space with the last error
that occurred and the corresponding error code.

Reading out

With the *Z" + Index number + "E* command the error number of the respective
error memory can be read out.
Ex.: "Z32E" returns the error number of index 32.

Error codes
//!' Error codes for error byte in EEPROM
#define ERROR_LOWVOLTAGE 0x01

#define ERROR_TEMP 0x02
#define ERROR_TMC 0x04
#define ERROR_EE 0x08
#define ERROR_QEI 0x10
#define ERROR_INTERNAL 0x20
#define ERROR_DRIVER 0x80
Meaning
Error Meaning
LOWVOLTAGE Undervoltage
TEMP Temperature of the motor controller is outside of the
specified range
T™C Overcurrent switch-off of the dspDrive was triggered
EE Incorrect data in the EEPROM, e.g. step resolution is
25th of one step
QEI Position error
INTERNAL Internal error (equivalent to the Windows blue screen).

DRIVER Driver component returned one error.

)] Nanotec

LUG & DRIVE

Controller status

The status of the controller can be read out with the command1.5.22 reading out the
status "$".

If one of the errors listed above occurs, then the motor controller changes to the "Not
ready" state (status bit 0 = 0, see 1.5.22 reading out the status) and output 3 (error
output) is set. If the error is reversible and has been rectified, then it can be reset by
means of the command "D* (see 1.5.17 Resetting the position error). The controller
then changes to the "Ready" state again and the error output is reset.

If the error is irreversible, the motor controller must be restarted or repaired,
depending on the error.

1.5.19 Reading out the encoder position

Parameters

Symbol | Permissible Writable Data type Default value
values

— No — —

Firmware response

Returns the current position of the motor according to the encoder.

Description

In motors with an encoder, this command returns the current position of the motor in
motor steps as indicated by the encoder. Provided that the motor has not lost any
steps, the values of the 1.5.20 Reading out the position *C* command and the 1.6.4
Reading out the current record " | * (pipe) command are the same.

However, it should be noted that the encoder has a resolution that is too low for step
modes greater than 1/10 in 1.8° motors and 1/5 in 0.9° motors, and differences will
therefore still arise between the two values specified above.

1.5.20 Reading out the position

Parameters

Symbol | Permissible Writable Data type Default value
values

¢t |- No - -

Firmware response

Returns the current position.

Description

Returns the current position of the motor in steps of the set step mode. This position is
relative to the position of the last reference run.

If the motor is equipped with an angle transmitter, this value should be very close to
the value of command " 1" with a very low tolerance.

The tolerance depends on the step mode and the motor type (0.9° or 1.8°) since the
angle transmitter has a lower resolution than the motor in the microstep mode.

The value range is that of a 32-bit signed integer (range of values £ 100000000).

\) Nanotec’

PLUG & DRIVE

1.5.21 Request “Motor is referenced”

Parameters
Symbol Permissible Writable Data type | Default value
values
":is_referenced” | 0and 1 No u8 0
(integer)

Firmware response

If the motor has already been referenced, "1" is returned, otherwise "0".

Description
Parameter is "1" after the reference run.

See also 1.5.17 Resetting the position error.

1.5.22 reading out the status

Parameters

Symbol Permissible | Writable Data type | Default value
values

8" - No - -

Firmware response

Returns the status of the firmware as a bit mask.

Description
The bit mask has 8 bits.
Bit 0: 1: Controller ready
Bit 1: 1: Zero position reached
Bit 2: 1: Position error

Bit 3: 1: Input 1 is set while the controller is ready again. This occurs when the
controller is started via input 1 and the controller is ready before the input has been
reset.

Bits 4 and 6 are always set to 0, bits 5 and 7 are always set to 1.

\) Nanotec’

PLUG & DRIVE

1.5.23 Reading out the firmware version

Parameters

Symbol | Permissible Writable Data type Default value
values

“v* - No - -

Firmware response

Returns the version string of the firmware.

Description
The return sting consists of several blocks:
"v" echo of the command
" " separator (space)

Hardware: Possible: SMCI47-S, PD6-N, PD4-N, PD2-N, SMCI33, SMCI35, SMCI36,
SMCI12, SMCP33

" _" separator

Communication: "USB" or "RS485*

" _" separator

Release date: dd-mm-yy e.g. 26-09-2007
"-" separator

Revision number: revXXXX, e.g. rev1234

Example of a complete response
"001v SMC147-S_RS485 17-05-2011-rev3711\r"

1.5.24 Reading out the operating time since the firmware update

Parameters

Symbol Permissible Writable Data type Default value
values

":optime” | — No - -

Firmware response
Returns the operating time of the controller.

Description

Delivers the operating time of the controller since the last firmware update in seconds.
When a firmware update is performed, the value is reset to 0 and counting starts from
the beginning.

\Y Nanotec’

PLUG & DRIVE

1.5.25 Setting the function of the digital inputs

Parameters

Symbol Permissible Writable | Data Default value
values type

"Iport_in_a" bis Oto13 Yes u8 Different for

"sport_in_h" (integer) | each input

Firmware response

Description

Examples

Reading out

Confirms the command through an echo.

Sets the function of each digital input. Each function is represented by a unique
number:

Input function Number

User defined

Start record/error reset

Record selection bit 0

Record selection bit 1

Record selection bit 2

Record selection bit 3

Record selection bit 4

External reference switch

Trigger

Ol N|O|Un|M~lW|IN|FL]|O

Direction

Enable

Clock

Clock direction mode, mode selection 1

[N
o

=
=

[iny
N

Clock direction mode, mode selection 2 | 13

User-defined (0) means that the input/output is not used by the firmware and is
available to the user as a general purpose /0.

If a run is started via an 1/0O with "Start record/error reset" (1), the record is started that
has been selected via the record selection bits.
If a record is not selected here, the first of the 32 records is run.

¢ Defining input 3 as a trigger input for controller 1: *#1 :port_in_c8\r"
e Defining input 6 as a clock input for controller 2: "#2:port_in_fl11\r"

The commands ":port_in_a" to ":port_in_h", without an argument, can be
used to read out the current function set for the respective input.

\) Nanotec’

PLUG & DRIVE

1.5.26 Setting the function of the digital outputs

Parameters

Symbol Permissible Writable | Data Default value
values type

"Iport_out_a“ bis Oto3 Yes u8 Different for

"Iport_out_h* (integer) | each output

Firmware response

Confirms the command through an echo.

Sets the function of each digital output. Each function is represented by a unique

User-defined (0) means that the input/output is not used by the firmware and is

Description
number:
Output function | Number
User defined 0
Ready 1
Running 2
Error 3
available to the user as a general purpose /0.
Examples
[]
[]
[]
Reading out

Defining output 1 for the travel display for controller 1: *#1:port_out_a2\r~
Defining output 2 for the ready display for controller 2: *#2:port_out_bi\r*
Defining output 3 for the ready display for controller 3: *#3:port_out_c3\r~

The commands " :port_out_a“ to ":port_out_h", without an argument, can be
used to read out the current function set for the respective output.

\Y) Nanotec’

PLUG & DRIVE

1.5.27 Masking and demasking inputs

Note:

This command is outdated.

Please use the ":port_in_..." and ":port_out_..." functions (see
commands 1.5.25 Setting the function of the digital inputs and 1.5.26 Setting the
function of the digital outputs).

Parameters
Symbol | Permissible Writable Data type Default value
values
LT 0 to 4294967295 Yes u32 (integer) | 0x107003F

Firmware response
Confirms the command through an echo.

Invalid values are ignored, i.e. the entire mask is discarded.

Description
This bit mask has 32 bits.

Sets a bit mask that allows the use of the inputs and outputs by the user. If the bit of
the corresponding I/Os is setto "1°7, the firmware uses these I/Os. Ifitis setto 0",
the I/Os are available to the user. Also see command 1.5.30 Setting the outputs "Y~.

The bit assignment is shown below: Bit on value "1*
BitO: Input 1 1
Bit1: Input 2 2
Bit2: Input 3 4
Bit3: Input 4 8
Bit4: Input 5 16
Bit5: Input 6 32
Bit7: Input 7 (SMCP33 only) 128
Bit8: Input 8 (SMCP33 only) 256
Bit16: Output 1 65536
Bitl17: Output 2 131072
Bit18: Output 3 262144
Bit19: Output 4 (SMCP33 only) 524288
Bit20: Output 5 (SMCP33 only) 1048579
Bit21: Output 6 (SMCP33 only) 2097152
Bit22: Output 7 (SMCP33 only) 4194304
Bit23: Output 8 (SMCP33 only) 8388608
Bit6: Encoder, read only.

"0", if the encoder is at the index line, otherwise 1"

Bit24: Ballast resistance, read only.
"0", if the ballast resistance is active, otherwise "1*

All other bits are "0*

\) Nanotec’

UG & DRIVE

Reading out

Examples

All set to value "1°":

SMCP33: OxFFO1BF
All other motor controllers: 0x7003F
Attention:

If a bit is not addressed when the mask is set, it is automatically setto "0"
independent of the status! All bits must be set at once.

If invalid bit masks are used, these are discarded, even if the firmware confirms them
correctly.

Command "#Lh*" is used to read out the current setting of the mask.

All bits should be setto "0":

Send: #1LO\r

Read: 1LO\r

Bit3 and Bit5 should be setto "1":
Send: #1L20\r

Read: 1L20\r

'20" because Bit3 is addressed with the value of 4 and Bit5 with the value of 16, i.e. 4
+ 16 = 20.

1.5.28 Reversing the polarity of the inputs and outputs

Parameters

Symbol | Permissible Writable Data type Default value
values
“h* 0 to 4294967295 Yes u32 (integer) | 0x107003F

Firmware response

Description

Confirms the command through an echo.

Invalid values are ignored, i.e. the entire mask is discarded.

Sets a bit mask with which the user can reverse the polarity of the inputs and outputs.
If the bit of the corresponding I/O is setto "1", there is no polarity reversal. If it is set
to "0", the polarity of the 1/O is inverted.

The bit assignment is shown below:
BitO: Input 1

Bitl: Input 2

Bit2: Input 3

Bit3: Input 4

Bit4: Input 5

Bit5: Input 6

Bit7: Input 7 (SMCP33 only)

Bit8: Input 8 (SMCP33 only)

Bit16: Output 1

\) Nanotec’

PLUG & DRIVE

Bit17: Output 2
Bit18: Output 3
Bit19: Output 4 (SMCP33 only)
Bit20: Output 5 (SMCP33 only)
Bit21: Output 6 (SMCP33 only)
Bit22: Output 7 (SMCP33 only)
Bit23: Output 8 (SMCP33 only)
Bit24: Ballast resistance
All other bits are *0~.
If invalid bit masks are used, these are discarded, even if the firmware confirms them
correctly.

Reading out

Command "Zh* is used to read out the current setting of the mask.

1.5.29 Setting the debounce time for the inputs

Parameters
Symbol | Permissible Writable Data type Default value
values
“K* 0 to 250 Yes u8 (integer) 20

Firmware response

Confirms the command through an echo.

Description
Sets the time in ms during which, after a first edge on an input, there is no response to
subsequent edges. There is only a reponse to new edges once this debounce time
has elapsed (interlocking logic). Any running debounce time of an input has no
influence on the detection of edges on the other inputs.

Reading out

Command "ZK* is used to read out the current setting of the value.

\) Nanotec’

PLUG & DRIVE

1.5.30 Setting the outputs

Parameters
Symbol | Permissible Writable Data type Default value
values
"Y* 0 to 4294967295 Yes u32 (integer) | O

Firmware response

Confirms the command through an echo.

Description
This bit mask has 32 bits.
Sets the outputs of the firmware, provided that these have been masked for free use
by means of the 1.5.27 Masking and demasking inputs "L* command.
Output 1 corresponds to bit 16, output 2 bit 17 and output 3 bit 18.
Reading out

Command "ZY" is used to read out the current setting of the value.

The status of the inputs is displayed as well.

BitO: Input 1

Bit1: Input 2

Bit2: Input 3

Bit3: Input 4

Bit4: Input 5

Bit5: Input 6

Bit6: "0" when the encoder is at the index line, otherwise *1*°

Bit7: Input 7 (SMCP33 only)

Bit8: Input 8 (SMCP33 only)

Bit 16: Output 1 (as set by the user, even if the firmware is currently using it)
Bit 17: Output 2 (as set by the user, even if the firmware is currently using it)
Bit18 : Output 3 (as set by the user, even if the firmware is currently using it)
Bit19: Output 4 (SMCP33 only)

Bit20: Output 5 (SMCP33 only)

Bit21: Output 6 (SMCP33 only)

Bit22: Output 7 (SMCP33 only)

Bit23: Output 8 (SMCP33 only)

All other bits are '0'.

Bits 7, 8, 19 to 23 are 0 if the SMCP33 is not used.

Y Nanotec’

PLUG & DRIVE

1.5.31 Reading out EEPROM byte (read EE byte)

Parameters
Symbol | Permissible Writable Data type Default value
values
“(ET 0to 16384 No uleé -

Firmware response

Returns the value of the byte in the EEPROM at the address passed in the parameter.

Description

Reads a byte out of the EEPROM and returns the value of this byte.

1.5.32 Carrying out an EEPROM reset

Parameters

Symbol | Permissible Writable Data type Default value
values

"~ - No - -

Firmware response

Confirms the command through an echo.

Description

Restores the factory defaults again. The controller requires a second until new
commands are accepted.

A motor should not be connected during a reset. After the reset, the controller should
be disconnected from the power supply for a few seconds.

The values of the parameters :aoa and :aaa are not reset.

1.5.33 Setting automatic sending of the status

Parameters
Symbol | Permissible Writable Data type Default value
values
"J" Oand 1 Yes u8 (integer) 0

Firmware response

Confirms the command through an echo.

Description
If this parameter is setto "1" the firmware independently sends the status after the
end of a run. See command 1.5.22 reading out the status "$", with the difference that
instead of the "$" a lower case " " is sent.

Reading out

Command "ZJ" is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

1.5.34 Starting the bootloader

Parameters

Symbol | Permissible Writable Data type Default value
values

"@s* - No - -

Firmware response

No response, bootloader responds with *@0K*"

Description

The command instructs the firmware to launch the bootloader. The firmware itself
does not respond to the command. The bootloader responds with *@0K*.

The bootloader itself also requires this command to prevent it from automatically
terminating itself after one half second. Therefore, this command needs to be sent
repeatedly until the bootloader responds with *@0K™". The bootloader uses the same
addressing scheme as the firmware itself.

1.5.35 Setting the reverse clearance

Parameters
Symbol | Permissible Writable Data type Default value
values
"z 0 to 9999 Yes ulé (integer) | O

Firmware response

Confirms the command through an echo.

Description
Specifies the reverse clearance in steps.
This setting is used to compensate for the clearance of downstream gears when there
is a change in direction.
When there is a change in direction, the motor takes the number of steps set in the
parameter before it begins incrementing the position.

Reading out

Command "Zz" is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.5.36 Setting the ramp type

Parameters

Symbol Permissible Writable Data type Default value
values
":ramp_mode® | 0,1and2 Yes s16 0
(integer)

Firmware response

Confirms the command through an echo.

This parameter applies for all modes except clock direction and torque mode (as these

Description
Sets the ramp in all modes:
e "0 =The trapezoidal ramp is selected
e "1" =The sinus ramp is selected
e "2" =The jerk-free ramp is selected
modes do not generally use a ramp).
Reading out

If the keyword is sent withouta "= + value"®, the current setting of the value can be

read out.

\) Nanotec’

LUG & DRIVE

1.5.37 Setting the waiting time for switching off the brake voltage

Parameters

Symbol Permissible Writable Data type Default value
values
":brake_ta" | 0to 65535 Yes ulé 0
(integer)
Unit
ms

Firmware response

Description

Reading out

Confirms the command through an echo.

The external brake can be set via the following parameters:

e Time ta:
Waiting time between switching on the motor current and switching off (triggering)
the brake in milliseconds.

e Timeth:
Waiting time between switching off (triggering) the brake and activation of
readiness in milliseconds. Travel commands will only be executed after this waiting
time.

o Time tc:
Waiting time between switching on the brake and switching off the motor current in
milliseconds. The brake is switched on by resetting the release input (see Section
1.5.25 ,Setting the function of the digital inputs®).

The parameters indicate times between 0 and 65,536 milliseconds.
Default values of the controller after a reset: 0 ms.

Start

Motor

Bremse

I
I:— geschlossen
]

---------------- geoffnet
> Zeit

When switching on the controller, the brake becomes active first and the motor is not
provided with power. First the motor current is switched on and a period of ta ms
waited. Then the brake is disengaged and a period of tb ms waited. Travel commands
will only be executed after expiration of ta and tb.

Note:
During current reduction, the brake is not actively connected.

If the keyword is sent without a "=
read out.

+ value”, the current setting of the value can be

\) Nanotec’

PLUG & DRIVE

1.5.38 Setting the waiting time for the motor movement

Parameters

Symbol Permissible Writable Data type Default value
values
":-brake_tb" | 0to 65535 Yes ulé 0
(integer)
Unit
ms

Firmware response

Description

Reading out

Confirms the command through an echo.

Sets the waiting time in milliseconds between switching off of the brake voltage and
enabling of a motor movement.

For more information, also see command 1.5.37 Setting the waiting time for switching
off the brake voltage "ta-".

If the keyword is sent without a "=
read out.

+ value~®, the current setting of the value can be

1.5.39 Setting the waiting time for switching off the motor current

Parameters

Symbol Permissible Writable Data type Default value
values
":brake_tc" | 0to 65535 Yes ulé 0
(integer)
Unit
ms

Firmware response

Description

Reading out

Confirms the command through an echo.

Sets the waiting time in milliseconds between switching on of the brake voltage and
switching off of the motor current.

For more information, also see command 1.5.37 Setting the waiting time for switching
off the brake voltage "ta”.

If the keyword is sent without a "=
read out.

+ value™®, the current setting of the value can be

\) Nanotec’

PLUG & DRIVE

1.5.40 Setting baud rate of the controller

Parameters
Symbol | Permissible Writable Data type Default value
values
":baud® | 1to 12 Yes u8 (integer) 12

Firmware response

Confirms the command through an echo.

Description
Sets the baud rate of the controller:
1 110
2 300
3 600
4 1200
5 2400
6 4800
7 9600
8 14400
9 19200
10 38400
11 57600
12 115200 (default value)
Note:
The new value is only activated (current off/on) after the motor controller is restarted.
Note:
At a baud rate of less than 1,200 (values for “:baud’ less than 4), the timeout must be
set higher to be able to communicate with the motor controller.
Example
Command "#1:baud=8" is used to set the baud rate of the 1st. controller to 14400
baud.
Reading out

Command " :baud*” is used to read out the current valid value.

\Y) Nanotec’

PLUG & DRIVE

1.5.41 Setting the CRC checksum

Parameters
Symbol Permissible Writable Data type Default value
values
"Icrc” Oand1 Yes u8 (integer) | 0

Firmware response

Confirms the command through an echo.

Description

Switches on or off the check of the serial communication using a CRC checksum
(cyclic redundancy check):

e Value 0: CRC check deactivated
e Value 1: CRC check activated
Attention:

For communication with the controller after the CRC check is activated, the correct
CRC checksum must be included with each command, separated from the command
by a tab. If not, the controller does not execute the command and sends the response
"<command>?crc<Tab><checksum>".

Reading out

With the * :crc® command the currently set value can be read out.

Calculating the CRC checksum

See appendix.

1.5.42 Reading out the Hall configuration

Parameters

Symbol Permissible values | Writable | Data type | Default value

"zhall_mode” | 0to 16777215 Yes u32 2371605

Firmware response

Confirms the command through an echo.

Description
The Hall mode specifies the Hall configuration of a connected brushless motor as an
integer value. For example, motor types DB42S03, DB22M and DB87S01 require the
value 2371605 (0x243015 hexadecimal) and motor types DB57 and DB22L require
value 5309250 (0x510342 hexadecimal).
The correct value can conveniently be set via NanoPro for all Nanotec motors.
Reading out

With the " -hall_mode® command the currently set value can be read out.

\) Nanotec’

UG & DRIVE

1.5.43 Reading out the temperature value

Parameters

Symbol Permissible values | Writable | Data type Default value

":temp_adc” | - No ulé (integer) | -

Firmware response

Description

Confirms the command through an echo.

Returns the current temperature of the motor controller

Returns the value x coming from ADC, between 0 and 1023.
The value is converted to °C using the following formula:

1,266,500
T [°C] = —273

X
4250 + logy, (0.33 * %) %298
1023

Further details on the conversion can be found in Section 1.11.10 Reading out the
controller temperature.

This command is available as of firmware version 21-10-2012.

1.5.44 Setting the quickstop ramp

Parameters

Symbol Permissible Writable Data type Default value
values
"H" 0 to 8000 Yes ulé (integer) | O

Firmware response

Description

Reading out

Confirms the command through an echo.

Specifies the quickstop ramp.
Travel is stopped abruptly at a value of 0.

To convert the parameter to acceleration in Hz/ms, the following formula is used:
Acceleration in Hz/ms = ((3000.0 / sqgrt((float)<parameter>)) - 11.7).

Quickstop: Used, for example, if the limit switch is overrun.

Command "ZH" is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

1.5.45 Setting the quick stop ramp (without conversion)

Parameters
Symbol Permissible Writable Data type | Default value
values
":decelquick” | 0to 3,000,000 Yes u32 3.000.000

Firmware response

Confirms the command through an echo.

Description

Specifies the quickstop ramp.

Travel is stopped abruptly at a value of 0.

Input directly in Hz/s.

No further conversion required.

Quickstop: Used, for example, if the limit switch is overrun.
Reading out

Command " :decelquick"® is used to read out the current valid value.

1.5.46 Setting the gear factor (numerator)

Parameters
Symbol Permissible Writable Data type | Default value
values
":gn* 1to 255 Yes u8 1

Firmware response

Confirms the command through an echo.

Description

Used to set a gear factor.
Numerator of an electrical step-up gear or reduction gear.

The set gear factor is active in all travel modes.

To operate the motor controller with the set gear factor in the closed loop mode, the
gear factor needs to be set first. It is only possible to change to the closed loop mode
afterwards.

Reading out

Command " -gn*® is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.5.47 Setting the gear factor (denominator)

Parameters
Symbol | Permissible Writable Data type Default value
values
":gd" | 1to 255 Yes u8 1

Firmware response

Confirms the command through an echo.

Description

Used to set a gear factor.

Denominator of an electrical step-up gear or reduction gear.

The set gear factor is active in all travel modes.

To operate the motor controller with the set gear factor in the closed loop mode, the
gear factor needs to be set first. It is only possible to change to the closed loop mode

afterwards.

Reading out

Command " -gd*® is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.6 Record commands

1.6.1 Starting a motor

Parameters

Symbol | Permissible Writable Data type Default value
values

AT - No - -

Firmware response

Confirms the command through an echo.

Description

Starts the run with the current parameter settings.

1.6.2 Stopping a motor

Parameters
Symbol | Permissible Writable Data type Default value
values
"ST Oand 1 Yes u8 (integer) 0

Firmware response

Confirms the command through an echo.

Description

Cancels the current travel. The following ramps are used:
e Quickstop ("H" / " :decelquick?®), if there is no argument or the argumentis "0~
e Brake ramp ("B / ":decel "), if the argument is "1*

1.6.3 Loading arecord from the EEPROM

Parameters
Symbol | Permissible Writable Data type Default value
values
“y* 1to 32 Yes u8 (integer) 1

Firmware response

Confirms the command through an echo.

Description
Loads the record data of the record passed in the parameter from the EEPROM.

See also command 1.6.5 Saving a record ">".

\) Nanotec’

PLUG & DRIVE

1.6.4 Reading out the current record

Parameters
Symbol | Permissible Writable Data type Default value
values
1T Oand 1 Yes u8 (integer) 1

(Pipe)

Firmware response

Confirms the command through an echo if the parameter is setto "1". This is the only

If the parameter is setto "0*, the firmware does not respond at all to commands,
although it continues to execute them as before. This can be used to quickly send
settings to the firmware without awaiting a response.

With command "Z|] * the firmware sends all settings of the loaded record together.

With "Z5] ", the data of record 5 in the EEPROM are sent.

The format corresponds to that of the respective commands.

It should be noted that the * | * character is not sent with the response. See the

response.
Description
Reading out

following examples.
Examples

“#Z|\r*

-—>*Zp+1s+400u+4000+1000n+1000b+2364B+0d+0t+0W+1P+ON+0:b+1:B+0O\r*

“#1Z5|\r*

—-—>*Z5p+1s+400u+4000+1000n+1000b+2364B+0d+0t+0W+1P+0ON+0: b+1:B+O\r*

\) Nanotec’

PLUG & DRIVE

1.6.5 Saving arecord

Parameters
Symbol | Permissible Writable Data type Default value
values
>r 1to 32 Yes u8 (integer) 1

Firmware response

Confirms the command through an echo.

Description

This command is used to save the currently set commands (in RAM) in a record in the
EEPROM. The parameter is the record number in which the data are saved.

This command should not be called up during a run because the current values
change during subsequent runs.

A record contains the following settings and commands:

Setting Para- | See Section Page
meter

Position mode "P" | 1.6.6 Setting the positioning mode 51

(new scheme)

Travel distance "s™ | 1.6.7 Setting the travel distance 53

Initial step frequency 'h 1.6.8 Setting the minimum frequency 53

Maximum step frequency 0" | 1.6.9 Setting the maximum frequency | 54

Second maximum step "n* | 1.6.10 Setting the maximum 54

frequency frequency 2

Acceleration ramp "b*" 1.6.11 Setting the acceleration ramp 55

Brake ramp "B" | 1.6.13 Setting the brake ramp 55

Direction of rotation "d" 1.6.15 Setting the direction of rotation | 57

Reversal of direction of "t" | 1.6.16 Setting the change of direction | 57

rotation for repeat records

Repetitions "WT | 1.6.17 Setting the repetitions 58

Pause between "P" | 1.6.18 Setting the record pause 58

repetitions and

continuation records

Record number of "N" | 1.6.19 Setting the continuation record | 58

continuation record

Maximum jerk for ":b" | 1.6.20 Setting the maximum jerk for 41

acceleration ramp the acceleration ramp

Maximum jerk for brake "IBT | 1.6.21 Setting the maximum jerk for 42

ramp the braking ramp

\) Nanotec’

PLUG & DRIVE

1.6.6 Setting the positioning mode (new scheme)

Parameters
Symbol | Permissible Writable Data type Default value
values
Pt 1to 19 Yes s8 (integer) 1

Firmware response

Confirms the command through an echo.

Description

The positioning modes "p*" are:

State

Operation

Relative positioning

Depending on the record parameters (see 1.4 Records), the set
path is traveled relative to the current position.

Absolute positioning

Depending on the record parameters (see 1.4 Records), the
specified position is moved to as an absolute position. The
direction of rotation is determined by the current and the specified
positions.

Internal reference run

Depending on the record parameters (see 1.4 Records), the motor
runs until the index line of the rotary encoder is reached. Then, the
motor runs a fixed number of steps in the opposite direction to
leave the index line again.

Note:

This mode is only suitable for motors with integrated and
connected encoders.

External reference run

Depending on the record parameters (see 1.4 Records), the motor
runs until the limit switch is reached. Then a free run is performed,
depending on the setting.

Also see command 1.5.9 Setting the limit switch behavior *1*.

Speed mode

When the motor is started, the motor increases in speed to the
maximum speed with the set ramp. Changes in the speed or
direction of rotation are performed immediately with the set ramp
without having to stop the motor first.

Flag positioning mode

After starting, the motor runs up to the maximum speed. After
arrival of the trigger event (command 1.7.12 Actuating the trigger
"T" or trigger input), the motor continues to travel the selected
travel distance (command 1.6.7 Setting the travel distance "s*)
and changes its speed to the maximum speed 2 (command 1.6.10
Setting the maximum frequency 2 "n*") for this purpose.

Clock direction mode
Manual left

Clock direction mode
Manual right

Depending on the set step mode, one step is taken each clock
signal at input 6.

If an input signal is configured as a direction, the direction is set
correspondingly. If the direction has not been set via input, then
p=7 or p=8 is run accordingly.

Clock direction mode
Internal reference run

When the mode is started, an internal reference run is performed
(see p=3).

Afterward, the clock signal can be correspondingly run
incrementally at input 6. The direction is specified by an input with
the setting "direction”.

\) Nanotec’

PLUG & DRIVE

p | State Operation
10 | Clock direction mode When the mode is started, an internal reference run is performed
External reference run (see p=4).
Afterward, the clock signal can be correspondingly run
incrementally at input 6. The direction is specified by an input with
the setting "direction”.

11 | Analog mode The rotational speed is set according to the level at the analog
input (-10V to +10V) and the record parameter.

12 | Joystick mode The rotational speed is set according to the level at the analog
input (-10V to +10V) and the record parameter. Furthermore,
running in two directions is possible depending on the level.

13 | Analog positioning mode The voltage level at the analog input is proportionate to the desired
position, thus enabling servo performance. The position is moved
to according to the record parameter.

14 | HW reference mode This mode serves to initialize the position in the closed loop mode
as defined (see also Internal reference run, p=3)

15 | Torque mode A fixed torque is set according to the level at the analog input.
This mode is only usable if the closed loop mode is activated.

16 | CL quick test mode With this mode the rotary encoder index offset is determined.

17 | CL test mode With this mode calibrated values for the closed loop mode are
determined. Prerequisite: a connected and correctly set rotary
encoder, as well as activated closed loop mode.

18 | CL Autotune mode With this mode the control parameters for the closed loop mode
are determined. Prerequisite: a connected and correctly set rotary
encoder, activated closed loop mode and a CL test mode
successfully completed in advance.

19 | CL quick test mode 2 With this mode the encoder index offset is also determined,
whereas a different method is used.

Reading out

Command "Zp* is used to read out the current valid value.

Further information

Further information on the operating modes can be found in the NanoPro User

Manual.

Y Nanotec’

UG & DRIVE

1.6.7

Parameters

Setting the travel distance

Symbol | Permissible Writable Data type Default value
values

"s* -100,000,000 to Yes s32 (integer) | 400
+100,000,000

Firmware response

Description

Reading out

Confirms the command through an echo.

This command specifies the travel distance in (micro-)steps. Only positive values are
allowed for the relative positioning. The direction is set with command 1.6.15 Setting
the direction of rotation "d*.

For absolute positioning, this command specifies the target position. Negative values
are allowed in this case. The direction of rotation set with the command 1.6.15 Setting
the direction of rotation "d*® is ignored, as this results from the current position and the
target position.

The value range is that of a 32-bit signed integer (range of values + 231).

In the adaptive mode, this parameter refers to full steps.

Command "Zs" is used to read out the current valid value.

1.6.8 Setting the minimum frequency

Parameters

Symbol | Permissible Writable Data type Default value
values
“u*" 1 to 160,000 Yes u32 (integer) | 400

Firmware response

Description

Reading out

Confirms the command through an echo.

Specifies the minimum speed in Hertz (steps per second).

When a record starts, the motor begins rotating with the minimum speed. It then
accelerates with the set ramp (command 1.6.11 Setting the acceleration ramp "b*" or
command 1.6.12 Setting the acceleration ramp (without conversion) " zaccel 7) to the
maximum speed (command 1.6.9 Setting the maximum frequency “0~).

Command "Zu*® is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

1.6.9 Setting the maximum frequency

Parameters
Symbol | Permissible Writable Data type Default value
values
"o" 1 to 1,000,000 Yes u32 (integer) | 1.000

Firmware response

Confirms the command through an echo.

Description
Specifies the maximum speed in Hertz (steps per second).
The maximum speed is reached after first passing through the acceleration ramp.

Supports higher frequencies in open loop operation:
o 1/2 step: 32,000 Hz

o 1/4 step: 64,000 Hz

e 1/8 step: 128,000 Hz

e 1/16 step: 256,000 Hz

e 1/32 step: 512,000 Hz

e 1/64 step: 1,000,000 Hz

Reading out

Command "Zo" is used to read out the current valid value.

1.6.10 Setting the maximum frequency 2

Parameters
Symbol | Permissible Writable Data type Default value
values
n- 1 to 1,000,000 Yes u32 (integer) | 1.000

Firmware response

Confirms the command through an echo.

Description
Specifies the maximum speed 2 in Hertz (steps per second).
The maximum speed 2 is reached after first passing through the acceleration ramp.
Supports higher frequencies in open loop operation:
o 1/2 step: 32,000 Hz
e 1/4 step: 64,000 Hz
e 1/8 step: 128,000 Hz
e 1/16 step: 256,000 Hz
e 1/32 step: 512,000 Hz
e 1/64 step: 1,000,000 Hz

This value is only applied in the flag positioning mode. See command 1.6.6 Setting the
positioning mode (new scheme).

\) Nanotec’

PLUG & DRIVE

Reading out

Command "Zn" is used to read out the current valid value.

1.6.11 Setting the acceleration ramp

Parameters
Symbol | Permissible Writable Data type Default value
values
“b* 1to 65,535 Yes ulé (integer) | 2.364

Firmware response

Confirms the command through an echo.

Description
Specifies the acceleration ramp.
To convert the parameter to acceleration in Hz/ms, the following formula is used:
Acceleration in Hz/ms = ((3000.0 / sqrt((float)<parameter>)) - 11.7).

Reading out

Command "Zb" is used to read out the current valid value.

1.6.12 Setting the acceleration ramp (without conversion)

Parameters
Symbol Permissible Writable Data type Default value
values
"-accel™ | 1to 3,000,000 Yes u32 50.000

Firmware response

Confirms the command through an echo.

Description
Specifies the acceleration ramp.
Input directly in Hz/s.
No further conversion required.
Reading out

Command " -accel " is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.6.13 Setting the brake ramp

Parameters
Symbol | Permissible Writable Data type Default value
values
"B* 0 to 65,535 Yes ulé (integer) | O

Firmware response

Confirms the command through an echo.

Description
Specifies the brake ramp. The value 0 means that the value set for the acceleration
ramp is used for the brake ramp.
To convert the parameter to acceleration in Hz/ms, the following formula is used:
Acceleration in Hz/ms = ((3000.0 / sgrt((float)<parameter>)) - 11.7).

Reading out

Command "ZB*" is used to read out the current valid value.

1.6.14 Setting the brake ramp (without conversion)

Parameters
Symbol Permissible Writable Data type Default value
values
":-decel” | 0to 3,000,000 Yes u32 0

Firmware response

Confirms the command through an echo.

Description
Specifies the brake ramp.
Input directly in Hz/s.
No further conversion required.
The value 0 means that the value set for the acceleration ramp is used for the brake
ramp.
Reading out

Command " :decel " is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.6.15 Setting the direction of rotation

Parameters
Symbol | Permissible Writable Data type Default value
values
"d- Oand 1 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description

Sets the direction of rotation:

0: Left
1: Right

Reading out

Command "Zd" is used to read out the current valid value.

1.6.16 Setting the change of direction

Parameters
Symbol | Permissible Writable Data type Default value
values
"t Oand 1 Yes u8 (integer) 0

Firmware response

Confirms the command through an echo.

Description

In the event that this parameter is setto "1*, for repeat records the rotational direction
of the motor reversed for each repetition. See command 1.6.17 Setting the repetitions

we.

Reading out

Command "Zt" is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.6.17 Setting the repetitions

Parameters
Symbol | Permissible Writable Data type Default value
values
wE 0 to 254 Yes u32 (integer) | 1

Firmware response

Confirms the command through an echo.

Description
Specifies the number of repetitions of the current record.
A value of 0 indicates an endless number of repetitions.
Normally, the value is set to 1 for one repetition.
Reading out

Command "ZW*" is used to read out the current valid value.

1.6.18 Setting the record pause

Parameters
Symbol | Permissible Writable Data type Default value
values
PT 0 to 65,535 Yes ulé (integer) | O

Firmware response

Confirms the command through an echo.

Description
Specifies the pause between record repetitions or between a record and a
continuation record in ms (milliseconds).
If a record does not have a continuation record or a repetition, the pause is not
executed and the motor is ready again immediately after the end of the run.
Reading out

Command "ZP*" is used to read out the current valid value.

\Y Nanotec’

PLUG & DRIVE

1.6.19 Setting the continuation record

Parameters
Symbol | Permissible Writable Data type Default value
values
“N* 0to 32 Yes u8 (integer) 0

Firmware response

Confirms the command through an echo.

Description

Specifies the number of the continuation record. If the parameter is setto "0, a
continuation record is not performed.

Reading out

Command "ZN" is used to read out the current valid value.

1.6.20 Setting the maximum jerk for the acceleration ramp

Parameters
Symbol | Permissible Writable Data type Default value
values
":b*" 1 to 100000000 Yes u32 (integer) | 1

Firmware response

Confirms the command through an echo.

Description

Sets the maximum jerk for the acceleration.
Reading out

Command "Z:b" is used to read out the current valid value.
Note

The actual ramp results from the values for *b*" and ":b".
e "b" = maximum acceleration
e ":b" = maximum change of the acceleration (max. jerk)

\Y Nanotec’

PLUG & DRIVE

1.6.21 Setting the maximum jerk for the braking ramp

Parameters
Symbol | Permissible Writable Data type Default value
values
":B* 1 to 100000000 Yes u32 (integer) | O

Firmware response

Confirms the command through an echo.

Description
Sets the maximum jerk for the braking ramp.
If the value is setto "0" the same value is used for braking as for accelerating
(":b").
Reading out
Command "Z:B" is used to read out the current valid value.
Note

The actual ramp results from the values for "B and " :B*".
e "B" = maximum acceleration
e ":B" = maximum change of the acceleration (max. jerk)

\) Nanotec’

PLUG & DRIVE

1.7 Mode-specific commands

1.7.1 Setting the dead range for the joystick mode

Parameters
Symbol | Permissible Writable Data type Default value
values
=" 0to 100 Yes u8 (integer) 0

Firmware response

Confirms the command through an echo.

Description
Sets the dead range in joystick mode.

In joystick mode, the motor can be moved forward and backward via a voltage on the
analog input.

The value range halfway between the maximum and minimum voltages in which the
motor does not rotate is the dead range. It is specified as a percentage of the range
width.

Reading out

Command "Z=" is used to read out the current setting of the dead range.

1.7.2 Setting the filter for the analog and joystick modes

Parameters
Symbol | Permissible Writable Data type Default value
values
" 0to 255 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description

In the analog and joystick modes, the analog input is used to set the speed. The
software filter can be configured with the *f* command. Two different filter functions
are available according to the value passed with the parameter:

e 0 - 16: simple average of the number of samples

Value for "f" command Average value of ... values (1 kHz sample rate)

OO WIN| L, |O
OO | WIN|FP|F

\Y Nanotec’

PLUG & DRIVE

Value for "f* command Average value of ... values (1 kHz sample rate)
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16

e 17 — 255: Recursive filter with separately specifiable time constants (time period

after which the filter output has approached the filter input to within 50%) and
hysteresis (maximum change of the value at the filter input toward which the filter

output is insensitive);

f = (bit 0-3: power of two of the time constant in ms; bit 4-7: magnitude of the

hysteresis) + 16

Hysteresis in bit (+-20 mV)

o |1 |2 |3 |4 |5 |6 |7 [8 |9 |10 [12 |12 |13 |14
Tinms | 0 32 |48 |64 |80 |96 | 112 | 128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 | O
To 17 |33 |49 |65 |81 |97 | 113 | 129 | 145 | 161 | 177 | 193 | 209 | 225 | 241
;%i/cok;f 18 |34 |50 |66 |82 |98 | 114 | 130 | 146 | 162 | 178 | 194 | 210 | 226 | 242
ofthe |4 19 |35 |51 |67 |83 |99 |115 | 131 | 147 | 163 | 179 | 195 | 211 | 227 | 243
Ugﬁ:e 8 20 |36 |52 |68 | 84 | 100 | 116 | 132 | 148 | 164 | 180 | 196 | 212 | 228 | 244
16 21 |37 |53 |69 |85 | 101 | 117 | 133 | 149 | 165 | 181 | 197 | 213 | 229 | 245
32 22 |38 |54 |70 | 86 | 102 | 118 | 134 | 150 | 166 | 182 | 198 | 214 | 230 | 246
64 23 |39 |55 |71 |87 | 103 | 119 | 135 | 151 | 167 | 183 | 199 | 215 | 231 | 247
128 |24 |40 |56 | 72 | 88 | 104 | 120 | 136 | 152 | 168 | 184 | 200 | 216 | 232 | 248
256 |25 |41 |57 |73 |89 | 105 | 121 | 137 | 153 | 169 | 185 | 201 | 217 | 233 | 249
512 |26 |42 |58 | 74 |90 | 106 | 122 | 138 | 154 | 170 | 186 | 202 | 218 | 234 | 250
1024 |27 |43 |59 | 75 |91 | 107 | 123 | 139 | 155 | 171 | 187 | 203 | 219 | 235 | 251
2048 |28 |44 |60 | 76 | 92 | 108 | 124 | 140 | 156 | 172 | 188 | 204 | 220 | 236 | 252
4096 |29 |45 |61 |77 |93 | 109 | 125 | 141 | 157 | 173 | 189 | 205 | 221 | 237 | 253
8192 |30 |46 |62 |78 |94 | 110 | 126 | 142 | 158 | 174 | 190 | 206 | 222 | 238 | 254
16384 | 31 | 47 |63 | 79 | 95 | 111 | 127 | 143 | 159 | 175 | 191 | 207 | 223 | 239 | 255
Reading out

Command "Zf" is used to read out the current setting of the value.

\Y Nanotec’

PLUG & DRIVE

1.7.3 Setting the minimum voltage for the analog mode

Parameters

Symbol | Permissible Writable Data type Default value
values
Q" -100 to +100 Yes s8 (integer) -100

Firmware response

Description

Reading out

Confirms the command through an echo.

Specifies the beginning of the range of the analog input in 0.1-V steps.

The passed value must be multiplied with 0.1 V. The value between -10.0 V and +10.0
V received in this way corresponds to the desired voltage.

e.g.
Q87 > 8.7V
Q-43 > 4.3V

Command "ZQ" is used to read out the current valid value.

1.7.4 Setting the maximum voltage for the analog mode

Parameters

Symbol | Permissible Writable Data type Default value
values
"R* -100 to +100 Yes s8 (integer) 100

Firmware response

Description

Reading out

Confirms the command through an echo.

Specifies the end of the range of the analog input in 0.1-V steps.

The passed value must be multiplied with 0.1 V. The value between -10.0 V and +10.0
V received in this way corresponds to the desired voltage.

e.g.
R87 > 8.7V
R-43 > -4.3V

Command "ZR" is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

1.7.5 Setting the offset of the analog input

Parameters

Symbol | Permissible Writable Data type Default value
values
"taoa” | -32768 to 32767 Yes s16 0

Firmware response

Description

Reading out

Confirms the command through an echo.

Sets the offset of the analog input. The effective value range is between

-100 and +100. The unit used is 1 increment of the ADC resolution (1024 values in the
range of -10 V to +10 V).

The offset is added to the raw value of the ADC.

Command " zaoa” is used to read out the current setting of the value.

1.7.6 Setting the gain of the analog input

Parameters

Symbol | Permissible Writable Data type Default value
values
"taaa” | 0to 65,534 Yes ul6 32768

Firmware response

Description

Reading out

Confirms the command through an echo.

Sets the gain of the analog input. The effective value range is between 32000 and
34000. A value of 32768 is equivalent to a gain of 1.0.

When the gain is set correctly, an analog input voltage of -10 V should be equivalent
to the setting Q-100 and an analog input voltage of +10 V should be equivalent to the
setting R+100.

The common fixed point of all possible straight gain lines is at -10 V on the analog
input. The ADC value that is equivalent to -10 V is not affected by a change in the gain
because the straight gain lines rotate at this point.

Command " zaaa” is used to read out the current setting of the value.

\Y Nanotec’

PLUG & DRIVE

1.7.7

Parameters

Resetting the switch-on counter

Symbol | Permissible Writable Data type Default value
values
"%* 0 — 4294967295 Yes u32 (integer) | O
Note:

Effective value for write access: "1"

Firmware response

Description

Reading out

Confirms the command through an echo.

The switch-on numerator is incremented by “1” each time the current is switched on
and specifies how often the controller has been switched on since the last reset.
If the value is setto "1%, the switch-on counter is reset to “0".

Command "Z%" is used to read out the current valid value.

1.7.8 Adjusting the time until the current reduction

Parameters

Symbol | Permissible Writable Data type Default value
values
"G* 0 to 10000 Yes ulé (integer) | 80
Unit
ms

Firmware response

Description

Reading out

Confirms the command through an echo.

The value defines the waiting time at standstill until the current is reduced.

Command "ZG*" is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

1.7.9 Increasing the rotational speed

Parameters

Symbol | Permissible Writable Data type Default value
values

"+ - No - -

Firmware response

Confirms the command through an echo.

Description

Increases the speed in the speed mode by 100 steps/s.

1.7.10 Reducing the speed

Parameters

Symbol | Permissible Writable Data type Default value
values

T-" - No - -

Firmware response

Confirms the command through an echo.

Description

Decreases the speed in the speed mode by 100 steps/s.

1.7.11 Reading out the speed

Parameters
Symbol | Permissible Writable Data type Default value
values
"ov© -2147483648 to No s32 0
2147483647

Firmware response

Confirms the command through an echo.

Description

States the current motor speed (only in speed mode).

Reading out

Command " :v" is used to read out the current value when closed loop mode is
active.

This is only possible if the motor has an encoder and the encoder is connected to the
motor controller.

\Y Nanotec’

PLUG & DRIVE

1.7.12 Actuating the trigger

Parameters

Symbol

Permissible
values

Writable

Data type

Default value

ITI

No

Firmware response

Confirms the command through an echo.

Description

Trigger for the flag positioning mode.

Before triggering, the motor travels at a constant speed.

After triggering, the motor finishes traveling the set distance from the position where
triggering occurred, and then stops.

1.7.13 Setting the interpolation time period for the clock direction mode

Parameters

Symbol Permissible Writable | Data type Default value
values
":clock_interp” | 0to 16383 Yes ul6 (integer) | 320

Firmware response

Confirms the command through an echo.

Sets the interpolation time period for the clock direction mode in 33 microsecond-

Set value: 320 — one clock signal at the clock input is processed within 320 * 33 ps =~

Description

steps.
Example

10 ms.
Reading out

Command " :clock_interp” is used to read out the current setting of the value.

\) Nanotec’

PLUG & DRIVE

1.8 Commands for JAVA program

1.8.1 Transferring a Java program to the controller

Parameters
Symbol | Permissible Writable Data type Default value
values
NGk 0 to 268500991 Yes s32 (integer) | O

Firmware response

Confirms the command through an echo.

Description

Carried out independently by NanoPro or NanoJEasy.

1.8.2 Starting the loaded Java program

Parameters
Symbol | Permissible Writable Data type Default value
values
"(JAT |0 No u8 (integer) 0

Firmware response

Confirms the command with * (JA+*, if the program was successfully started or with
" (JA-", if the program could not be started (no valid program or no program at all
loaded in the controller).

Description

The command starts the Java program loaded in the controller.

1.8.3 Stopping the running Java program

Parameters
Symbol | Permissible Writable Data type Default value
values
(st |0 No u8 (integer) 0

Firmware response
Confirms the command with * (JS+*, if the program was successfully stopped or with
" (JS-"7, if the program had already terminated.

Description

The command stops the Java program that is currently running.

\) Nanotec’

PLUG & DRIVE

1.8.4 Automatically starting the Java program when switching on the

controller
Parameters
Symbol | Permissible Writable Data type Default value
values
"(JB" |0to1l Yes u8 (integer) | O

Firmware response
Confirms the command with * (IJB=1", if the program is started automatically, or with
'"(JIB=0", if the program is not started automatically.
Description
This command is used to specify whether the program is to be started automatically:
e "0" = Do not start the program automatically
e "1" = Automatically start the program
The function should only be selected if
e a Java program is present on the controller
e the program has already been tested and is OK
¢ no infinite loops with send commands occur in the program

Otherwise, this command causes an overflow at the interface when the controller
restarts and the program can no longer be stopped.

1.8.5 Reading out the Java program error

Parameters
Symbol | Permissible Writable Data type Default value
values
"(JE" | 0to 255 No u8 (integer) | O

Firmware response
Returns the index of the error memory with the last error that occurred. See Section
2.8 Possible Java error messages.

Description

This command reads out the last error.

\Y Nanotec’

PLUG & DRIVE

1.8.6 Reading out the warning of the Java program

Parameters
Symbol | Permissible Writable Data type Default value
values
"(IW* | 0to 255 No u8 (integer) | O

Firmware response
Returns the last warning that occurred. Currently only:
e "0" = No warning
e "WARNING_FUNCTION_NOT_SUPPORTED"

Description

This command reads out the last warning.

Y Nanotec’

PLUG

& DRIVE

1.9 Closed loop settings

1.9.1 Activating closed loop mode

Parameters

Symbol Permissible Writable Data type Default value
values
":CL_enable® | 0to3 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description

If the value is set to '1', '2' or '3', the firmware is instructed to activate the control loop.

However, this is only activated when certain prerequisites are fulfilled:

Value

Description

0

The control loop is immediately deactivated.

1 Closed loop is activated as soon as the index has been recognized and
the controller is back in "Ready" status ("Auto-Enable after the travel").

2 Closed Loop is activated as soon as the index has been recognized
("Auto-Enable during the travel").

3 Closed loop is activated as soon as a short CL test run has been carried

out (mode 19: "p19-).

This mode is available as of firmware version 24-10-2011.

Important conditions

The following conditions must be met when activating the closed loop:

its maximum mechanical and thermal load capacity!

The " :CL_motor_pp"~, ":CL_rotenc_inc" and ":CL_rotenc_rev" settings

must agree with the technical data of the connected stepper motor.

For more information, see commands 1.9.10 Setting the pole pairs of the motor,
1.9.12 Setting the number of increments and 1.9.13 Setting the number of
revolutions.

Every time a new motor is connected (even if it is the same type), a calibration run
must be performed (mode 17: "pl7").

ATTENTION:
If one of these conditions is not met, the motor may accelerate to a level that exceeds

The closed loop mode is also dependent on the command 1.9.11 Setting the

encoder type with the corresponding encoder type

(no encoder, encoder with or without index, single turn absolute encoder).
To be able to operate a motor controller in the closed loop, the following points
must be adhered to:

Y Nanotec’

PLUG & DRIVE

Note:

Before beginning with the steps, an EEPROM reset is recommended.

":CL_rotenc_type'

Steps

0

No CL operation possible

Reference run ("p3" or "p4~)

Execute the long closed loop test run once
("p17") to determine the load angle values.

Enable closed loop.

After the encoder index is detected, enabled beginning with
the next run (" :CL_enablel") or already during the current
run (" :CL_enable2").

Reference run ("p3* or "p4~)

Execute the long closed loop test run once
("p17") to determine the load angle values.

Enable closed loop (" :CL_enable3").
Execute a short closed loop test run (*p19°7).

After determination of the Poscnt offset, the motor controller
changes to the "Closed loop enabled" state
(":CL_is_enabled+1").

The short closed loop test run generally can only be
executed once. The motor controller determines the Poscnt
offset only if the offset (* :CL_poscnt_offset”) is zero
before the test run.

Reference run not possible.

Execute the long closed loop test run once
("p17") to determine the load angle values.

Enable closed loop (" :CL_enable3").
Execute a short closed loop test run ("p19*).

After determination of the Poscnt offset, the motor controller
changes to the "Closed loop enabled" state
(":CL_is_enabled+1").

The short closed loop test run generally can only be
executed once. The motor controller determines the Poscnt
offset only if the offset (" :CL_poscnt_offset”) is zero
before the test run.

Reference run not necessary (immediately referenced by
absolute encoder).

Execute the long closed loop test run once
("p17*) to determine the load angle values.

Enable closed loop.
Enabled after the next run (" :CL_enablel") or already
during the next run (" :CL_enable2").

Reading out

If the keyword is sent without a "= + value”, the current setting of the value can be

read out.

\Y Nanotec’

PLUG & DRIVE

1.9.2 Reading out the closed loop mode status

Parameters
Symbol Permissible | Writable Data type Default
values value
":CL_is_enabled® |0and1 No u8 (integer) 0
Firmware response
Returns the status:
e "0F =disabled
e "1" =enabled
Description
Reads out the status of the closed loop mode.
1.9.3 Setting the controller type for the speed mode
Parameters
Symbol Permissi | Writable Data type Default
ble value
values
" :speedmode_control® | 0and 1 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description
Specifies the controller type for the speed mode:
e "0" =Velocity loop
e "17 =Position loop
This parameter defines the type of control loop that is used for controlling in speed
mode if the closed loop is activated.
Reading out

Command " :speedmode_control " is used to read out the current setting of the

value.

\) Nanotec’

PLUG & DRIVE

1.9.4 Setting the tolerance window for the limit position

Parameters

Symbol Permissible | Writable Data Default
values type value
":CL_position_window" | 0to Yes u32 0
2147483647 (integer)
Unit
Increments

Firmware response

Description

Reading out

Confirms the command through an echo.

If the closed loop is active, this is a criterion for when the firmware considers the limit
position to have been reached. The parameter defines a tolerance window in
increments of the encoder.

If the position actually measured is within the desired limit position + — the tolerance
that is set in this parameter and if this condition is met over a certain period, the limit
position is considered to have been reached.

The time for this time window is set in the 'CL_position_window_time' parameter. See
the command 1.9.5 Setting the time for the tolerance window of the limit position.

If the keyword is sent without a "= + value?®, the current setting of the value can be
read out.

1.9.5 Setting the time for the tolerance window of the limit position

Parameters

Symbol Permissible | Writable | Data Default
values type value
":CL_position_window_time" | 0to 65535 Yes ulé 0
(integer)
Unit
ms

Firmware response

Description

Reading out

Confirms the command through an echo.

Specifies the time in milliseconds for the 'CL_position_window' parameter.
See command 1.9.4. Setting the tolerance window for the limit position.

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

1.9.6 Setting the maximum permissible following error

Parameters
Symbol Permissible | Writable | Data Default
values type value
":CL_following_error_window® | O to Yes u32 100
2147483647 (integer)
Unit
Increments

Firmware response

Confirms the command through an echo.

Description

If the closed loop is active, this parameter defines the maximum permissible following
error in increments of the encoder.

If, at a certain point in time, the actual position differs from the setpoint position by
more than this parameter, a position error is output and the closed loop is switched off.

In addition, the 'CL_following_error_timeout' parameter can be used to specify for how

long the following error may be larger than the tolerance without triggering a position

error. See the command 1.9.7 Setting the time for the maximum following error.
Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.9.7 Setting the time for the maximum following error

Parameters
Symbol Permissible | Writable | Data Default
values type value
":CL_following_error_timeout” | 0 to 65535 Yes ulé 100
(integer)
Unit
ms

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to specify in milliseconds for how long the following error
may be greater than the tolerance without triggering a position error. See the
command 1.9.6 Setting the maximum permissible following error.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

1.9.8 Maximum permissible speed deviation

Parameters

Symbol Permissible | Writable | Data Default
values type value
":CL_speed_error_window" | Oto Yes u32 150
2147483647 (integer)
Unit
Increments

Firmware response

Description

Reading out

Confirms the command through an echo.

If the closed loop is active, this parameter defines the maximum allowed speed
deviation.

In addition, the " :CL_speed_error_timeout® can be used to specify for how long
the speed deviation may be greater than the tolerance. See command 1.9.9Time for
the maximum permissible speed deviation.

If the keyword is sent without a "= + value”, the current setting of the value can be
read out..

1.9.9 Time for the maximum permissible speed deviation

Parameters

Symbol Permissible | Writable | Data Default
values type value
":CL_speed_error_timeout” | 0to 65535 Yes ulé 250
(integer)
Unit
ms

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter can be used to specify in milliseconds for how long the speed
deviation may be greater than the tolerance. See command 1.9.8Maximum
permissible speed deviation.

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

\) Nanotec’

UG & DRIVE

1.9.10 Setting the pole pairs of the motor

Parameters

Symbol Permissible | Writable Data type Default value
values
":CL_motor_pp" | 1to 65535 Yes ulé (integer) | 50

Unit

Number of pole pairs

Firmware response

Description

Reading out

Confirms the command through an echo.

The parameter sets the number of pole pairs of the connected motor.

Note:
After this parameter is changed, the firmware must be restarted (disconnect power).

The number of pole pairs equals % of the number of full steps per rotation for stepper
motors and 1/6 of the number of full steps per rotation for BLDC motors. The usual
values are currently 50 and 100 for stepper motors and 2 and 4 for BLDC motors.
Incorrect values will result in the closed loop not functioning properly.

If the keyword is sent without a "=
read out.

+ value”®, the current setting of the value can be

1.9.11 Setting the encoder type

Parameters

Symbol Permissible | Writable Data type Default
values value
":CL_rotenc_type” | 0to 3 Yes u8 (integer) | 1

Firmware response

Description

Confirms the command through an echo.

Sets the type of encoder which is connected. Each type is represented by a unique
value:

Value | Encoder type

0 No encoder

Incremental encoder with index

1
2 Incremental encoder without index
3 Absolute encoder, single-turn

This command is available as of firmware version 24-10-2011.

Y Nanotec’

PLUG & DRIVE

1.9.12 Setting the number of increments

Parameters

Symbol Permissible | Writable Data type Default
values value
":CL_rotenc_inc" | 1to 65535 Yes ulé (integer) | 2000

Unit

Increments

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the number of increments of the encoder for a specific
number of revolutions. The number of revolutions can be set using the
":CL_rotenc_rev" parameter. See the command 1.9.13 Setting the number of

revolutions.

Note:

After this parameter is changed, the firmware must be restarted (disconnect power).

If the keyword is sent without a "= + value”, the current setting of the value can be

read out.

1.9.13 Setting the number of revolutions

Parameters

Symbol Permissible | Writable Data type Default
values value
":CL_rotenc_rev" |1 Yes ulé (integer) | 1

Unit

Revolutions

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the number of revolutions for the " :CL_rotenc_inc*
parameter. See command 1.9.11 Setting the encoder type.

This setting is available for compatibility reasons. It should always be set to "1". If
other values are set, this will result in the closed loop not functioning properly.
However, even in this case, a conversion for the error correction without the closed

loop will still function.
Note:

After this parameter is changed, the firmware must be restarted (disconnect power).

If the keyword is sent without a "= + value®, the current setting of the value can be

read out.

\) Nanotec’

PLUG & DRIVE

1.9.14 Setting the numerator of the P component of the speed controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KP_v_Z" | 0to 65535 Yes ulé (integer) | 1
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the proportional component of the speed
controller.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.9.15 Setting the denominator of the P component of the speed controller

Parameters
Symbol Permissible | Writable Data type Default value
values
":CL_KP_v_N" | 0to 15 Yes u8 (integer) | 3
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the denominator of the proportional component of the speed
controller as a power of 2.

0=1
1=2
4
8

2
3
etc.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

1.9.16 Setting the numerator of the | component of the speed controller

Parameters
Symbol Permissible | Writable Data type Default value
values
":CL_KI_v_Z" | 0to 65535 Yes ulé (integer) | 1
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the numerator of the integral component of the speed
controller.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.9.17 Setting the denominator of the | component of the speed controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KI_v_N" | 0to 15 Yes u8 (integer) | 4
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the denominator of the integral component of the speed
controller as a power of 2.

0=1
1=2
4
8

2
3

etc.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

1.9.18 Setting the numerator of the D component of the speed controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KD_v_Z" | 0to 65535 Yes ulé (integer) | O
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the differential component of the speed
controller.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.9.19 Setting the denominator of the D component of the speed controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KD_v_N" | 0to 15 Yes u8 (integer) | O
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the denominator of the differential component of the speed
controller as a power of 2.

0=1
1=2
4
8

2
3
etc.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

Y Nanotec’

PLUG & DRIVE

1.9.20 Setting the numerator of the P component of the cascading speed

controller
Parameters
Symbol Permissible | Writable Data type Default value
values
":CL_KP_csv_Z" | 0to 65535 Yes ulé (integer) | O
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the numerator of the proportional component of the
cascading speed controller.

Reading out

If the keyword is sent withouta "= + value”, the current setting of the value can be
read out.

1.9.21 Setting the denominator of the P component of the cascading speed

controller
Parameters
Symbol Permissible Writable Datatype | Default value
values
":CL_KP_csv_N" | 0to 15 Yes ud 0
(integer)
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the denominator of the proportional component of the
cascading speed controller as a power of 2.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

Y Nanotec’

PLUG & DRIVE

1.9.22 Setting the numerator of the | component of the cascading speed

controller
Parameters
Symbol Permissible | Writable Data type Default value
values
":CL_KI_csv_Z" | 0to 65535 Yes ulé (integer) | O
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the integral component of the cascading
speed controller.

Reading out

If the keyword is sent withouta "= + value”, the current setting of the value can be
read out.

1.9.23 Setting the denominator of the | component of the cascading speed

controller
Parameters
Symbol Permissible Writable Datatype | Default value
values
":CL_KI_csv_N" | 0to 15 Yes ud 0
(integer)
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the denominator of the integral component of the cascading
speed controller as a power of 2.
0=1
1=2
2=4
3=8
etc.
Reading out

If the keyword is sent without a .*= + value®, the current setting of the value can be
read out.

Y Nanotec’

PLUG & DRIVE

1.9.24 Setting the numerator of the D component of the cascading speed

controller
Parameters
Symbol Permissible | Writable Data type Default value
values
":CL_KD_csv_Z" | 0to 65535 Yes ulé (integer) | O
Unit
Numerator

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the numerator of the differential component of the cascading
speed controller.

If the keyword is sent withouta "= + value”, the current setting of the value can be
read out.

1.9.25 Setting the denominator of the D component of the cascading speed

controller
Parameters
Symbol Permissible Writable Datatype | Default value
values
":CL_KD_csv_N" | 0to 15 Yes ud 0
(integer)

Unit

Denominator as a power of 2

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the denominator of the differential component of the
cascading speed controller as a power of 2.

0=1
1=2
2=4
3=38
etc.

If the keyword is sent without a "=
read out.

+ value™®, the current setting of the value can be

\) Nanotec’

PLUG & DRIVE

1.9.26 Setting the numerator of the P component of the position controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KP_s Z" | 0to 65535 Yes ulé (integer) | 100
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the proportional component of the position
controller.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.9.27 Setting the denominator of the P component of the position controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KP_s N | 0to 15 Yes u8 (integer) | O
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the denominator of the proportional component of the
position controller as a power of 2.

0=1
1=2
4
8

2
3
etc.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

1.9.28 Setting the numerator of the | component of the position controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KI_s Z" | 0to 65535 Yes ulé (integer) | 1
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the numerator of the integral component of the position
controller.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.9.29 Setting the denominator of the | component of the position controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KI_s N" |0to 15 Yes u8 (integer) | O
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the denominator of the integral component of the position
controller as a power of 2.

0=1
1=2
4
8

2
3

etc.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

1.9.30 Setting the numerator of the D component of the position controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KD_s Z" | 0to 65535 Yes ulé (integer) | 200
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the differential component of the position
controller.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.9.31 Setting the denominator of the D component of the position controller

Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KD_s N" | 0to 15 Yes u8 (integer) | O
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the denominator of the differential component of the position
controller as a power of 2.

0=1
1=2
4
8

2
3
etc.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

Y Nanotec’

PLUG & DRIVE

1.9.32 Setting the numerator of the P component of the cascading position

controller
Parameters
Symbol Permissible | Writable Data type Default value
values
":CL_KP_css_Z" | 0to 65535 Yes ul6 (integer) | O
Unit
Numerator

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the numerator of the proportional component of the
cascading position controller.

If the keyword is sent withouta "= + value”, the current setting of the value can be
read out.

1.9.33 Setting the denominator of the P component of the cascading position

controller
Parameters
Symbol Permissible Writable Datatype | Default value
values
":CL_KP_css_N" | 0to 15 Yes ud 0
(integer)

Unit

Denominator as a power of 2

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the denominator of the proportional component of the
cascading position controller as a power of 2.

0=1
1=2
2=4
3=38
etc.

If the keyword is sent without a "=
read out.

+ value™®, the current setting of the value can be

Y Nanotec’

PLUG & DRIVE

1.9.34 Setting the numerator of the | component of the cascading position

controller
Parameters
Symbol Permissible Writable Data type Default value
values
":CL_KI_css_Z" | 0to 65535 Yes ul6 (integer) | O
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the integral component of the cascading
position controller.

Reading out

If the keyword is sent withouta "= + value”, the current setting of the value can be
read out.

1.9.35 Setting the denominator of the | component of the cascading position

controller
Parameters
Symbol Permissible Writable Datatype | Default value
values
":CL_KI_css_N" | 0to 15 Yes ud 0
(integer)
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the denominator of the integral component of the cascading
position controller as a power of 2.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

Y Nanotec’

PLUG & DRIVE

1.9.36 Setting the numerator of the D component of the cascading position

controller
Parameters
Symbol Permissible | Writable Data type Default value
values
":CL_KD_css_Z" | 0to 65535 Yes ulé (integer) | O
Unit
Numerator

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the numerator of the differential component of the cascading
position controller.

If the keyword is sent withouta ."=
read out.

+ value”®, the current setting of the value can be

1.9.37 Setting the denominator of the D component of the cascading position

controller
Parameters
Symbol Permissible Writable Datatype | Default value
values
":CL_KD_css_N" | 0to 15 Yes ud 0
(integer)

Unit

Denominator as a power of 2

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the denominator of the differential component of the
cascading position controller as a power of 2.

0=1
1=2
2=4
3=38
etc.

If the keyword is sent without a "=
read out.

+ value™®, the current setting of the value can be

\Y Nanotec’

PLUG & DRIVE

1.9.38 Setting the sampling point spacing of the load angle curve

Parameters
Symbol Permissi | Writable Data type | Default
ble value
values
":CL_la_node_distance” | 1to Yes ulé 4096
65535 (integer)

Firmware response

Confirms the command through an echo.

Description

Sets the sampling point spacing for the load angle curve.

Reading out

Command " :CL_la_node_distance” is used to read out the current setting of the
value.

1.9.39 Setting the lower limit for the cascade controller

Parameters
Symbol Permissible | Writable Datatype | Default
values value
“icat Oto Yes u32 327680
2147483647

Firmware response

Confirms the command through an echo.

Description
This command is used to set the speed in Hz as the lower limit, above which the
cascade controller should be connected. Thus, a hysteresis can be set together with
the ®:cs® command.

Reading out

Command " zca"” is used to read out the current setting of the value.

\) Nanotec’

PLUG & DRIVE

1.9.40 Setting the upper limit for the cascade controller

Parameters
Symbol Permissible | Writable Datatype | Default
values value
Tics”t 0to Yes u32 512
2147483647

Firmware response

Confirms the command through an echo.

Description
This command is used to set the speed in Hz as the upper limit, up to which the
cascade controller is connected. Thus, a hysteresis can be set together with the
":ca" command.

Reading out

Command " :cs*” is used to read out the current setting of the value.

1.9.41 Reading out the status of the cascade controller

Parameters
Symbol Permissible | Writable Datatype | Default
values value
":ce" Oand 1 No u8 0

Firmware response

Confirms the command through an echo.

Description

Specifies whether the cascade controller is currently active.

Reading out

Command " zce"” is used to read out the current setting of the value.

\) Nanotec’

PLUG & DRIVE

1.10 Motor-dependent load angle values determined by
test runs for the closed loop mode

General information

The first time a controller with the associated motor is used, a test run must be started.
Here, motor-dependent load angle values are determined by the controller and stored.

These load angle values can be read and stored with NanoPro in order to be able to
write them back again if the controller is changed.

1.10.1 Reading out the encoder/motor offset

Parameters
Symbol Permissible Writable Data type | Default
values value
":CL_poscnt_offset”™ | 0to 65535 Yes ulé 0
(integer)

Firmware response

Confirms the command through an echo.

Description
The offset between the encoder and motor determined during the test run is read out.

The value can only be determined during the test run if it is O before the test run.

1.10.2 Setting/reading out load angle measurement values of the motor

Parameters
Symbol Permissible | Writable Data Default value
values type
":CL_la_a"to -32768 to Yes uleé :CL_la_a: +16384
"CL_la_j” +32767 (integer) | :CL_la_b: +17000

:CL_la_c: +17500
:CL_la_d: +17750
:CL_la_e: +18000
:CL_la_f: +18000
:CL_la_g: +18000
:CL_la_h: +18000
:CL_la_i: +18000
:CL_la_j: +18000

Firmware response

Confirms the command through an echo.

\Y) Nanotec’

PLUG & DRIVE

Description

Reading out

The velocity-dependent load angle measurement values (closed loop load angle) of
the motor determined during the test run are read out with the following commands
and can be set again with these commands:

e ":CL la a-
e ":CL_la_b*
":CL_la c-
e ":CL_la_d*
":CL _la e"
":CL_la_f~
":CL_la g~
":CL_la_h-
":CL_la_i-"
":CL_la_j°"

With the *:CL_la_a“" to ":CL_la_j " command the currently set value can be read
out.

1.10.3 Reading out the velocity measurement values of the test run

Parameters

Symbol Permissible | Writable Datatype | Default value
values

":CL_ola_v_a"to -32768 to Yes s16 0

":CL_ola_v g" +32767 (integer)

Firmware response

Description

Confirms the command through an echo.

The speed measurement values (closed loop load angle velocity) determined during
the test run are read out:

e ":CL_ola_v_ ar
e ":CL_ola v b"
e ":CL olav.ce
e ":CL ola v d©
e ":CL ola v e-
e ":CL ola v f*
e ":CL ola v g

These values can only be read out after the test run. They indicate the velocities at
which the corresponding load angle was measured. They are not stored in the
EEPROM and therefore disappear after the controller is restarted.

\) Nanotec’

LUG & DRIVE

1.10.4 Reading out current measurement values of the test run

Parameters

Symbol Permissible | Writable Datatype | Default value
values

":CL_ola_i_a"to -32768 to Yes s16 0

":CL_ola_i_g" +32767 (integer)

Firmware response

Description

1.10.5 Reading out load angle measurement values of the test run

Parameters

Confirms the command through an echo.

The current measurement values (closed loop load angle current) determined during
the test run are read out:

e ":CL_ola
e ":CL_ola
e ":CL_ola
e ":CL_ola
e ":CL ola i_
e ":CL_ola_i_

e ":CL ola_i_g-

These values can only be read out after the test run. They specify the currents at
which the load angle was measured. They are not stored in the EEPROM and

therefore disappear after the controller is restarted.

Symbol Permissible | Writable Datatype | Default value
values
":CL ola_l a"to |-2147483648 Yes s32 0
":CL_ola_l_g" to (integer)
+2147483647

Firmware response

Confirms the command through an echo.

\Y Nanotec’

PLUG & DRIVE

Description

The load angle measurement values (closed loop load angle position) determined
during the test run are read out:

e ":CL ola Il a-
e ":CL ola 1l b"
e ":CL_ola_l_c-
e ":CL ola_ l d-
e ":CL ola l e"
e ":CL_ola_IL_f¥Fr-
e ":CL ola_ Il _g-

These values can only be read out after the test run. They specify the measured load
angles and are a copy of the CL_06a_* values. They are not stored in the EEPROM
and therefore disappear after the controller is restarted.

Y Nanotec’

PLUG & DRIVE

1.11 Scope mode

1.11.1 Integration of a scope

Description

Examples

In the scope mode, the values to be measured are selected and transferred to the
motor. The motor then carries out a measurement and returns the result in real time to
the NanoPro control software.

e The transferred data are binary.
e The data are transferred in the order of priority.
e The last data byte of each data packet contains a CRC8 checksum.

Each data source can be selected separately:

":Capt_Time=10" - Sends the selected data every 10 ms
":Capt_Time=0" - Ends the Scope Mode
":Capt_sPos=1" - The setpoint position is selected

" :Capt_sPos=0" - The setpoint position is deselected

By default no data source is selected.

Data word if* zCapt_sCurr=1" and " :Capt_iln=1"
":Capt_sCurr_BYTE"

":Capt_iln_BYTE_HI"

":Capt_iln_BYTE_LO CRC*

1.11.2 Setting the sample rate

Parameters

Description

Symbol Permissible Writable Data type Default value
values
":Capt_Time" | 0to 65535 Yes ulé 0
(integer)
Priority
Unit

ms (milliseconds)

The parameter defines the time interval in ms in which the selected data are sent.

"0" deactivates the scope function.

\Y Nanotec’

PLUG & DRIVE

Reading out

Example

":Capt_Time=10" - Sends the selected data every 10 ms

":Capt_Time=0" - Ends the Scope Mode

If the keyword is sent without a *

read out.

1.11.3 Reading out the setpoint position of the ramp generator

Parameters

Description

1.11.4 Reading out the actual position of the encoder

Parameters

Description

+ value™®, the current setting of the value can be

Symbol Permissible Writable Data type Default value
values
":Capt_sPos” | 0and 1 Yes u8 (integer) | 0

Priority
1

Unit
Steps

Delivers the setpoint position generated by the ramp generator.

Example

"1" = The setpoint position is selected

"0" = The setpoint position is deselected

Symbol Permissible Writable Data type Default value
values
":Capt_iPos™ |0and 1 Yes u8 (integer) | 0

Priority
2

Unit
Steps

Returns the current encoder position.

Example

"1" = The actual position is selected

"0" = The actual position is deselected

\) Nanotec’

PLUG & DRIVE

1.11.5 Reading out the setpoint current of the motor controller

Parameters
Symbol Permissible Writable Data type Default value
values
":Capt_sCurr® | 0and 1 Yes u8 (integer) | O
Priority
3
Unit
None
32767 corresponds to 150% of the maximum current (the value can also be negative).
Description

Delivers the setpoint current used for driving the motor.

Example

":Capt_sCurr=1" - The setpoint current is selected

":Capt_sCurr=0" - The setpoint current is deselected

1.11.6 Reading out the actual voltage of the controller

Parameters

Symbol Permissible Writable Data type Default value
values

":Capt_iVolt® | Oand 1 Yes u8 (integer) | O

Priority

4

Unit

Value range 0 — 1023 (10-hit)
1023 is equivalent to 66.33 V
0 is equivalentto O V

Description
Delivers the voltage applied at the controller.

Example

":Capt_iVolt=1" - The applied voltage is selected

":Capt_iVolt=0" - The applied voltage is deselected

\Y Nanotec’

PLUG & DRIVE

1.11.7 Reading out the digital inputs

Parameters
Symbol Permissible | Writable Data type Default value
values
":Capt_iln*® Oand 1 Yes u8 (integer) | O
Priority
5
Unit
None
Description

Delivers the bit mask of the inputs.

Example

":Capt_ilIn=1" - The bit mask of the inputs is selected

":Capt_iIn=0" - The bit mask of the inputs is deselected

1.11.8 Reading out the voltage at the analog input

Parameters
Symbol Permissible Writable Data type | Default value
values
":Capt_iAnalog” |0and 1 Yes u8 0
(integer)
Priority
6
Unit
0 is equivalent to —10 V
1023 is equivalent to +10 V
Description

Delivers the voltage of the analog input.

Example

":Capt_iAnalog=1" - The voltage of the analog input is selected

":Capt_iAnalog=0" - The voltage of the analog input is deselected

\) Nanotec’

LUG & DRIVE

1.11.9 Reading out the CAN bus load

Parameters

Description

Symbol Permissible Writable Data type Default value
values
":Capt_iBus" |0and 1 Yes u8 (integer) | 0

Priority
7

Unit

%

Invalid values are ignored.

Delivers the approximate load of the CAN bus in %.

Example

":Capt_iBus=1" - The load of the CAN bus is selected

":Capt_iBus=0" - The load of the CAN bus is deselected

1.11.10 Reading out the controller temperature

Parameters

Description

Symbol Permissible Writable Data type Default value
values
":Capt_ITemp® | Oand 1 Yes u8 (integer) | O

Priority
8
Unit

Delivers the temperature measured in the controller.

Example

Value range 0 — 1023

":Capt_ITemp=1" - The temperature of the motor controller is selected

":Capt_ITemp=0" - The temperature of the motor controller is deselected

\Y Nanotec’

PLUG & DRIVE

Temperature curve

The controllers output the raw measurement value of the A/D converter. To calculate
the temperature of the controller from this value, the temperature curve of the
measurement sensor must be included in the calculation.

Temperaturkurve

120

100

|

TN

40

Temperatur in °C

20 S

-20

-40

0 200 400 600 800 1000 1200

Analogwerte

Conversion

The conversion of the raw material value x in the temperature T (°C) uses the
following formula:

T = [1266500 / (4250 + log((x/1023) * 0,33 / (1-(x/1023))) * 298)] — 273

Value table

Measured Temperature T (°C) Measured Temperature T (°C)
value x value x

5 97.48 520 35.09

20 78.82 540 34.33

40 70.03 560 33.57

60 64.98 580 32.82

80 61.41 600 32.05

100 58.64 620 31.28

)] Nanotec

LUG & DRIVE

Measured Temperature T (°C) Measured Temperature T (°C)
value x value x
120 56.36 640 30.5
140 54.42 660 29.71
160 52.71 680 28.9
180 51.19 700 28.07
200 49.8 720 27.22
220 48.53 740 26.34
240 47.35 760 25.43
260 46.24 780 24.48
280 45.2 800 23.48
300 44.21 820 22.41
320 43.26 840 21.28
340 42.34 860 20.05
360 41.46 880 18.71
380 40.61 900 17.21
400 39.78 920 155
420 38.97 940 135
440 38.17 960 11.03
460 37.39 980 7.75
480 36.62 1000 2.64
500 35.85 1020 -12.45
1022 -19.87

Programming example (C#)

double computeTemperature(UIntl6é value) {

double
double
double
double
double
double
double
double
double

adc_max = 1023;

RO = 33000;

TnK = 298;

BK = 4250;

Rn = 100000;

bruch = value / adc_max;

Rt = bruch * RO / (1 - bruch);
log = Math.Log(Rt / Rn);
T = 0;

if ((value > 1) && (value < 1023)) {

T

}

return

= (BK * TnK) /7 (BK + log * TnK)- 273;

T;

\Y Nanotec’

PLUG & DRIVE

1.11.11 Reading out the following error

Parameters
Symbol Permissible Writable Data type | Default value
values
":Capt_IFollow™ |0and 1 Yes u8 0
(integer)
Priority
9
Unit
Steps
Description

Delivers the difference between the setpoint and actual position.

Example

":Capt_IFollow=1" - The difference between the setpoint and actual position is
selected

":Capt_IFollow=0" - The difference between the setpoint and the actual position
is deselected

\Y) Nanotec’

PLUG & DRIVE

1.12 Configuration of the current controller for controllers
with dspDrive

1.12.1 Setting the P component of the current controller at standstill

Parameters
Symbol Permissible Writable Data type | Default
values value
":dspdrive_KP_low" | 0to 1000 Yes ulé 1
(integer)

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to set the P component of the current controller for
controllers with dsp drive when idling.
Normally, no change necessary.

Reading out

If the keyword is sent withouta "= + value®, the current setting of the value can be
read out.

1.12.2 Setting the P component of the current controller during the run

Parameters
Symbol Permissible Writable Data type | Default
values value
":dspdrive_KP_hig" | 0to 1000 Yes ulé 10
(integer)

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to set the P component of the current controller for
controllers with dspDrive during the run.
Normally, no change necessary.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

1.12.3 Setting the scaling factor for speed-dependent adjustment of the P
component of the controller during the run

Parameters
Symbol Permissible | Writable Data type | Default
values value
":dspdrive_KP_scale® | 0to 1000 Yes ulé 58
(integer)

Firmware response

Confirms the command through an echo.

Description

This parameter can be used to set the scaling factor for the speed-dependent
adjustment of the P component of the current controller for controllers with dspDrive
during the run.

Normally, no change necessary.

The P component is calculated according to the following formula:

P component = P component (run) + speed * P scaling factor
Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.12.4 Setting the | component of the current controller at standstill

Parameters
Symbol Permissible Writable Data type | Default
values value
":dspdrive_KI_low" | 0to 1000 Yes ulé 1
(integer)

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to set the | component of the current controller for
controllers with dspDrive when idling.
Normally, no change necessary.

Reading out

If the keyword is sent withouta "= + value®, the current setting of the value can be
read out.

Y Nanotec’

PLUG & DRIVE

1.12.5 Setting the | component of the current controller during the run

Parameters
Symbol Permissible Writable Data type | Default
values value
":dspdrive_KI_hig" | 0to 1000 Yes ulé 10
(integer)

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to set the | component of the current controller for
controllers with dspDrive during the run.
Normally, no change necessary.

Reading out

If the keyword is sent without a "= + value®, the current setting of the value can be
read out.

1.12.6 Setting the scaling factor for speed-dependent adjustment of the |
component of the controller during the run

Parameters
Symbol Permissible | Writable Data type | Default
values value
":dspdrive_KIl_scale” | 0to 1000 Yes ulé 200
(integer)

Firmware response

Confirms the command through an echo.

Description

This parameter can be used to set the scaling factor for the speed-dependent
adjustment of the | component of the current controller for controllers with dspDrive
during the run.

Normally, no change necessary.

The | component is calculated according to the following formula:
I component = 1 component (run) + speed * I scaling factor

Reading out

If the keyword is sent withouta "= + value®, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2 Programming with Java (NanoJEasy)

2.1 Overview

About this chapter

This chapter contains a brief overview of the programming language of the Nanotec
stepper motor controllers. The drivers contain a Java Virtual Machine (VM) that has
been extended by some manufacturer-specific functions.

restrictions

Due to the hardware that is used, the current VM is subject to the following
restrictions:

e The available programming memory in the controller depends on the firmware
version.

e The stack and the heap are limited to 50 entries — recursive function calls are
possible only to a limited extent.

¢ No threads are supported.

Abbreviations used

VM Virtual Machine

Java SE Java Standard Edition

JDK Java Development Kit

JRE Java Runtime Environment

Prerequisites

In order to develop a program for the controller, the following prerequisites must be
fulfilled:

¢ NanoJEasy programming environment installed
e SMCI47-S

e SMCP33

e SMCI33

e SMCI35

e SMCI36

e SMCI12

e PD6-N

e PD4-N

e PD2-N

Simultaneous communication over the serial interface

NanoJ runs as a virtual machine irrespective of the actual firmware, and
communicates with this firmware via the same functions that are also called up from
the serial interface.

A Java program can, therefore, run at the same time as the controller is receiving and
processing serial commands.

Note:
In general, serial commands should only be used if the Java program is not actively
acting on the controller at the time.

\Y) Nanotec’

PLUG & DRIVE

2.2 Command overview

A list of commands for programming with Java (NanoJEasy) can be found below:

capture commands

capture.GetCaptiAnalog 119 capture.SetCaptiAnalog 119
capture.GetCaptiBus 120 capture.SetCaptiBus 120
capture.GetCaptiln 119 capture.SetCaptiln 119
capture.GetCaptiPos 118 capture.SetCaptiPos 118
capture.GetCaptiVolt 119 capture.SetCaptiVolt 118
capture.GetCaptlFollow 121 capture.SetCaptlFollow 120
capture.GetCaptlTemp 120 capture.SetCaptlTemp 120
capture.GetCaptsCurr 118 capture.SetCaptsCurr 118
capture.GetCaptsPos 117 capture.SetCaptsPos 117
capture.GetCaptTime 117 capture.SetCaptTime 117

cl commands

cl.GetCLLoadAnglel 134 cl.GetKIsN 125
cl.GetCLLoadAngle2 134 cl.GetKlsz 125
cl.GetCLLoadAngle3 135 cl.GetKIvZ 123
cl.GetCLLoadAngle4 135 cl.GetKPcssN 129
cl.GetCLLoadAngle5 135 cl.GetKPcsszZ 129
cl.GetCLLoadAngle6 136 cl.GetKPcsvN 127
cl.GetCLLoadAngle7 136 cl.GetKPcsvzZ 127
cl.GetCLNodeDistance 137 cl.GetKPsN 125
cl.GetClosedLoop 121 cl.GetKPsz 124
cl.GetCLPoscntOffset 137 cl.GetKPvN 122
cl.GetFollowingErrorTimeout 133 cl.GetkPvZ 122
cl.GetFollowingErrorwindow 132 cl.GetPositionWindow 131
cl.GetkKDcssN 131 cl.GetPositionWindowTime 132
cl.GetKDcssZ 131 cl.GetSpeedErrorTimeout 133
cl.GetkKDcsvN 129 cl.GetSpeedErrorwWindow 133
cl.GetKDcsvZ 128 cl.GetVelocityActualValue 137
cl.GetKDsN 126 cl.IsClosedLoopEnabled 121
cl.GetkKDsZ 126 cl.SetCLLoadAnglel 134
cl.GetKDvN 124 cl.SetCLLoadAngle2 134
cl.GetkDvZ 123 cl.SetCLLoadAngle3 134
cl.GetKlcssN 130 cl.SetCLLoadAngle4 135
cl.GetKlcsszZ 130 cl.SetCLLoadAngle5 135
cl.GetKlcsvN 128 cl.SetCLLoadAngle6 136

cl.GetKlcsvZ 127 cl.SetCLLoadAngle7 136

\Y) Nanotec’

PLUG & DRIVE
cl.SetCLNodeDistance 136 cl.SetKIsN 125
cl.SetClosedLoop 121 cl.SetKlIsZ 125
cl.SetCLPoscntOffset 137 cl.SetKIvN 123
cl.SetFollowingErrorTimeout 132 cl.SetKlIvZ 122
cl.SetFollowingErrorwWindow 132 cl.SetKPcssN 129
cl.SetKDcssN 131 cl.SetKPcsszZ 129
cl.SetKDcssZ 130 cl.SetkKPcsvN 127
cl.SetkKDcsvN 128 cl.SetKPcsvz 126
cl.SetKDcsvZ 128 cl.SetKPsN 124
cl.SetKDsN 126 cl.SetKPsZ 124
cl.SetkKDsZ 126 cl.SetkKPvN 122
cl.SetkKDvN 124 cl.SetkKPvZ 122
cl.SetKDvz 123 cl.SetPositionWindow 131
cl.SetKlcssN 130 cl.SetPositionWindowTime 132
cl.SetKlcsszZ 130 cl.SetSpeedErrorTimeout 133
cl.SetKlcsvN 128 cl.SetSpeedErrorwWindow 133
cl.SetKlcsvzZz 127

comm commands

comm.GetBaudrate 138 comm.SetBaudrate 138
comm.GetCRC 139 comm.SetCRC 138
comm.SendInt 138 comm.SetSupressResponse 139
comm.SendLong 138

config commands

config.GetAngleDeviationMax 141 config.GetReverseClearance 142
config.GetBrakeTA 143 config.GetRotenclnc 143
config.GetBrakeTB 144 config.GetSendStatusWhenCompleted 139
config.GetBrakeTC 144 config.GetSpeedmodeControl 145
config.GetCLMotorType 145 config.GetStartCount 147
config.GetCurrentPeak 147 config.GetSwingOutTime 141
config.GetCurrentReductionTime 141 config.ResetEEProm 142
config.GetCurrentTime 146 config.ResetStartCount 147
config.GetEncoderDirection 140 config.SetAngleDeviationMax 141
config.GetErrorCorrection 144 config.SetBrakeTA 143
config.GetFeedConstDenum 146 config.SetBrakeTB 143
config.GetFeedConstNum 146 config.SetBrakeTC 144
config.GetLimitSwitchBehavior 148 config.SetCLMotorType 145
config.GetMotorAddress 148 config.SetCurrentPeak 147
config.GetMotorPP 142 config.SetCurrentReductionTime 141
config.GetRecordForAutoCorrect 140 config.SetCurrentTime 146

\Y) Nanotec’

PLUG & DRIVE

config.SetEncoderDirection
config.SetErrorCorrection
config.SetFeedConstDenum
config.SetFeedConstNum
config.SetLimitSwitchBehavior
config.SetMotorAddress
config.SetMotorPP

drive commands
drive.DecreaseFrequency
drive.GetAcceleration
drive.GetBrakeJerk
drive.GetCurrent
drive.GetCurrentReduction
drive.GetDeceleration
drive.GetDecelerationHalt
drive.GetDemandPosition
drive.GetDirection
drive.GetDirectionReversing
drive.GetEncoderPosition
drive.GetJerk
drive.GetMaxSpeed
drive.GetMaxSpeed?2
drive.GetMinSpeed
drive.GetMode
drive.GetNextRecord
drive.GetPause
drive.GetRampType
drive.GetRepeat
drive.GetStatus
drive.GetTargetPos
drive.IncreaseFrequency

drive.IsReferenced

dspdrive commands
dspdrive.GetDSPDrivelHigh
dspdrive.GetDSPDrivelLow
dspdrive.GetDSPDrivelScale
dspdrive.GetDSPDrivePHigh
dspdrive.GetDSPDrivePLow
dspdrive.GetDSPDrivePScale

140
144
146
145
147
148
142

153
150
152
156
156
151
151
158
157
157
158
152
149
150
150
156
158
158
152
157
156
154
153
153

162
161
162
160
160
161

config.SetRecordForAutoCorrect

config.SetReverseClearance

config.SetRotencinc

config.SetSendStatuswhenCompleted

config.SetSpeedmodeControl

config.SetSwingOutTime

drive.LoadDataSet
drive.SaveDataSet
drive.SetAcceleration
drive.SetBrakeJerk
drive.SetCurrent
drive.SetCurrentReduction
drive.SetDeceleration
drive.SetDecelerationHalt
drive.SetDirection
drive.SetDirectionReversing
drive.SetJerk
drive.SetMaxSpeed
drive.SetMaxSpeed?2
drive.SetMinSpeed
drive.SetMode
drive.SetNextRecord
drive.SetPause
drive.SetPosition
drive.SetRampType
drive.SetRepeat
drive.SetTargetPos
drive.StartDrive
drive.StopDrive

drive.TriggerOn

dspdrive.SetDSPDrivelHigh
dspdrive.SetDSPDrivelLow
dspdrive.SetDSPDrivelScale
dspdrive.SetDSPDrivePHigh
dspdrive.SetDSPDrivePLow
dspdrive.SetDSPDrivePScale

140
142
143
139
145
140

159
159
150
152
156
156
151
151
157
157
152
149
150
150
154
158
158
159
151
157
153
149
149
153

161
161
162
160
160
161

)] Nanotec

LUG & DRIVE

io commands
io.GetAnalogDead
io.GetAnalogFilter
io.GetAnaloginput
io.GetAnalogMax
io.GetAnalogMin
io.GetDebounceTime
io.GetDigitallnput
i0.GetDigitalOutput
i0.GetlnputlSelection
i0.Getlnput2Selection
i0.Getlnput3Selection
i0.Getlnput4Selection
i0.Getlnput5Selection
i0.Getlnput6Selection
i0.Getlnput7Selection
i0.Getlnput8Selection
i0.GetlnputMaskEdge
i0.GetOutputlSelection
i0.GetOutput2Selection
i0.GetOutput3Selection
i0.GetOutput4Selection
i0.GetOutput5Selection
i0.GetOutput6Selection
i0.GetOutput7Selection
i0.GetOutput8Selection

util commands
util.ClearBit
util.GetMillis
util.GetStepMode
util. SetBit

164
164
163
172
172
165
163
163
165
166
166
166
167
167
168
168
164
168
169
169
170
170
170
171
171

173
173
174
173

io.SetAnalogDead
io.SetAnalogFilter
io.SetAnalogMax
i0.SetAnalogMin
i0.SetDebounceTime
i0.SetDigitalOutput
i0.SetlnputlSelection
i0.Setlnput2Selection
i0.Setlnput3Selection
i0.Setlnput4Selection
i0.Setlnput5Selection
i0.Setlnput6Selection
i0.Setlnput7Selection
i0.Setlnput8Selection
io.SetlnputMaskEdge
i0.SetLED
i0.SetOutputlSelection
i0.SetOutput2Selection
i0.SetOutput3Selection
i0.SetOutput4Selection
i0.SetOutput5Selection
i0.SetOutput6Selection
i0.SetOutput7Selection
i0.SetOutput8Selection

util.SetStepMode
util.Sleep
util. TestBit

163
164
172
171
165
163
165
165
166
166
167
167
167
168
164
163
168
169
169
169
170
170
171
171

173
173
173

\Y Nanotec’

PLUG & DRIVE

2.3 Installing NanoJEasy

General information

NanoJ easy is a programming environment for the development of Java programs
which can run on Nanotec stepper motor controllers and enable advanced
programming of the drivers.

NanoJEasy includes the freely available Gnu-Java compiler (gcj) for the translation of
Java programs.

Procedure
Carry out the installation as follows:

Step Implementation

Double-click on the setup.exe file.

Select the desired language.

Confirm that you accept the license conditions.

Select the folder in which NanoJEasy should be installed.

Confirm or change the recommended start menu entry for NanoJEasy.

O | |W[IN|F

Start the installation.

Programming manual

\Y Nanotec’

Valid as of firmware 25.01.2013 PLUG & DRIVE
Programming with Java (NanoJEasy)

2.4 Working with NanoJEasy

2.4.1 Main window of NanoJEasy

Screenshot

All important elements of the NanoJEasy main window are indicated in the following
screenshot:

a_.-!c:\Dokumente und Einstellungen\ok\Desktop\Beispiele\AnalogExample.java - Na -0l =l
File Edit Search View Tools Buffers
IDSER|&| s 2. x| = [Qat|[comr ~[115200][<& =& > of

1 AnalogExample.java |

BT PO T S Ta T VOt M e]
62

63 sleep(288);

64

65 /fMotor konfigurieren

66 SetTargetPos(@);

67 SetMaxSpeed(2068);

68

69 //Hauptschleife

70 - while(true){

71

72 SetLED(1);

73 sleep(188);

74

75 SetLED(2);

76 sleep(l868);

77

78 StopDrive(};

79 SetTargetPos(CalculateTargetPos ());

88 StartDrive(};

a1 1 -
al | _>|_I
Shrinme f191 =~
itring: (13} J
itring: (14}

itring: (15) Code

itring: (18} LineNumberTable

itring: (19}

itring: (22}

itring: (37}

itring: (48} SourceFile

itring: (41} tmp.java

uriting ocutput to file: C:\ te und Einstellungen‘\ck\Desktop\Beispiele\AnalegExample.prg
Ei5 Bytes written
» ixit code: @

-

| | »

i=1 co=11NS (CR+LF) 4

Explanation of the areas

¢ The following communication parameters can be set with the operating elements
marked in green:
- Selection of one of the existing COM ports
- Selection of a baud rate
- Selection of a motor number
e The following actions can be carried with the buttons marked in red:
- Translation and linking of the current program
- Simulation of the current program
- Transfer of the current program into the controller
- Execution of the program in the controller
- Stoppage of the program running in the controller
e The program source text is edited in the text area marked in blue.

o Messages for the translation, simulation, transfer and execution of the developed
program appear in the output area marked in yellow.

114 of 250

Issue: V2.7

\) Nanotec’

PLUG & DRIVE

2.4.2 Development process with NanoJEasy

Development process
The development process with NanoJEasy normally follows the scheme shown below:

Level Description

1 Create the program in the text area.

Translate and link the program.

Optional: Simulate the program.

Check the settings of the communication parameters.

Transfer the program to the controller.

OO | |W|DN

Execute the program on the controller.

Important instructions for programming
The following instructions should always be observed during programming:

e Source text files must be created with the UTF-8 character encoding. NanoJEasy
uses this character encoding as the default.

e The class name in the source text file must agree with the name of the source text
file. Example: The “Testprogramm.java” file must contain the class “Test program
class”.

e The Java commands for communication with the controller only initiate the
respective action of the controller, but do not wait until the controller has carried out
the action. If the Java program should wait until the action is carried out, a waiting
period must be inserted after the command for execution, e.g. "Sleep(2000); ".
For more details, see also the example programs.

Completing the command on entry

Enter a command as follows:

Step Implementation
1 Enter the first letters of a command, e.g. "Set" of "SetCurrent”.
2 Press the <Ctrl> + <space> keys. A selection list of commands that begin
with "Set”.
3 Mark a command in the selection list using the “Up” and “Down” arrow
keys.
4 Press the “Enter” key to select the command.

Starting and ending the simulation

Proceed as follows to start and end the simulation:

Step Implementation

1 Click on the “Start simulation” button (see above). The outputs of the
emulator appear consecutively in the output area.

2 Press the <Ctrl> + <Pause> keys to end the simulation.

\Y Nanotec’

PLUG & DRIVE

2.4.3 Integrated commands

Classes and functions

The VM contains integrated functions that can be used in the program. The functions
are grouped into a total of six different classes which can be integrated in the source
code.

The following Sections provide information on the individual classes and the functions
they include.
Integrating a class

The six different classes are included in the nanotec package and must be imported
by the following entry at the start of the program:

import nanotec.*;

In addition, the classes which are really included on transfer to the controller must be
selected in NanoJEasy.

“Manage Includes” button in the upper right area of the application

=) = 3> O

Manage Includes

The “Manage Includes” opens.

The required classes can then be included simply by activating the checkbox:

Manage Includes |

Include comm.class:
Include general.class:
Include drive.class:
Include in.class:
Include cl.class:

Include wkil.class:

R E e (e E

(0] 4 Cancel |

Calling up functions

The individual functions of a class are called up in the source text as follows:
[Name of the class].[Name of the function]();

Example:
drive.StartDrive();

\Y) Nanotec’

PLUG & DRIVE

2.5 Classes and functions

2.5.1 “capture” class

Application
The capture class is used to configure the scope mode. The following functions can be
used to configure the controller in such a way that it determines control variables and
sends these via the serial interface. See also Section 1.11.
capture.SetCaptTime
Declaration:
static native void SetCaptTime(int time);
This function sets the sample rate.

The function corresponds to the serial command " :Capt_Time<time>", see
command 1.11.2 Setting the sample rate.

Contained in firmware versions later than 15.03.2010.

capture.GetCaptTime
Declaration:
static native void GetCaptTime(int time);
This function reads the sample rate.

The function corresponds to the serial command " :Capt_Time", see command
1.11.2 Setting the sample rate.

Contained in firmware versions later than 15.03.2010.

capture.SetCaptsPos
Declaration:
static native void SetCaptsPos(int value);
This function selects/deselects the setpoint position.

The function corresponds to the serial command " :Capt_sPos<value>", see
command 1.11.3 Reading out the setpoint position of the ramp generator.

Contained in firmware versions later than 15.03.2010.

capture.GetCaptsPos
Declaration:
static native int GetCaptsPos();
This function reads out whether the setpoint position is selected or not.

The function corresponds to the serial command " :Capt_sPos*®, see command
1.11.3 Reading out the setpoint position of the ramp generator.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

capture.SetCaptiPos
Declaration:
static native void SetCaptiPos(int value);
This function selects/deselects the actual position.

The function corresponds to the serial command " :Capt_iPos<value>", see
command 1.11.4 Reading out the actual position of the encoder.

Contained in firmware versions later than 15.03.2010.

capture.GetCaptiPos
Declaration:
static native int GetCaptiPos();
This function reads out whether the actual position is selected or not.

The function corresponds to the serial command " :Capt_iPos", see command
1.11.4 Reading out the actual position of the encoder.

Contained in firmware versions later than 15.03.2010.

capture.SetCaptsCurr
Declaration:
static native void SetCaptsCurr(int value);
This function selects/deselects the set current.

The function corresponds to the serial command " :Capt_sCurr<value>", see
command 1.11.5 Reading out the setpoint current of the motor controller.

Contained in firmware versions later than 15.03.2010.

capture.GetCaptsCurr
Declaration:
static native int GetCaptsCurr();
This function reads out whether the set current is selected or not.

The function corresponds to the serial command " :Capt_sCurr®, see command
1.11.5 Reading out the setpoint current of the motor controller.

Contained in firmware versions later than 15.03.2010.

capture.SetCaptiVolt
Declaration:
static native void SetCaptivVolt(int value);
This function selects/deselects the actual voltage.

The function corresponds to the serial command " :Capt_iVolt<value>", see
command 1.11.6 Reading out the actual voltage of the controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

capture.GetCaptiVolt
Declaration:
static native int GetCaptivolt();
This function reads out whether the actual voltage is selected or not.

The function corresponds to the serial command " :Capt_iVolt", see command
1.11.6 Reading out the actual voltage of the controller.

Contained in firmware versions later than 15.03.2010.

capture.SetCaptiln
Declaration:
static native void SetCaptiln(int value);
This function selects/deselects the bit mask of the inputs.

The function corresponds to the serial command " :Capt_iln<value>"=, see
command 1.11.7 Reading out the digital inputs.

Contained in firmware versions later than 15.03.2010.

capture.GetCaptiln
Declaration:
static native int GetCaptiln();
This function reads out whether the bit mask of the inputs is selected or not.

The function corresponds to the serial command " :Capt_iln*, see command 1.11.7
Reading out the digital inputs.

Contained in firmware versions later than 15.03.2010.

capture.SetCaptiAnalog
Declaration:
static native void SetCaptiAnalog(int value);
This function selects/deselects the voltage at the analog input.

The function corresponds to the serial command * :Capt_iAnalog<value>", see
command 1.11.8 Reading out the voltage at the analog input.

Contained in firmware versions later than 15.03.2010.

capture.GetCaptiAnalog
Declaration:
static native int GetCaptiAnalog(Q);
This function reads out whether the voltage at the analog input is selected or not.

The function corresponds to the serial command " :Capt_iAnalog®, see command
1.11.8 Reading out the voltage at the analog input.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

capture.SetCaptiBus
Declaration:
static native void SetCaptiBus(int value);
This function selects/deselects the load of the CAN bus.

The function corresponds to the serial command " :Capt_iBus<value>", see
command 1.11.9 Reading out the CAN bus load.

Contained in firmware versions later than 15.03.2010.

capture.GetCaptiBus
Declaration:
static native int GetCaptiBus();
This function reads out whether the load of the CAN bus is selected or not.

The function corresponds to the serial command " :Capt_iBus®, see command
1.11.9 Reading out the CAN bus load.

Contained in firmware versions later than 15.03.2010.

capture.SetCaptlTemp
Declaration:
static native void SetCaptlTemp(int value);
This function selects/deselects the temperature of the controller.

The function corresponds to the serial command * :Capt_1Temp<value>~, see
command 1.11.10 Reading out the controller temperature.

Contained in firmware versions later than 15.03.2010.

capture.GetCaptlTemp
Declaration:
static native int GetCaptlTemp();
This function reads out whether the temperature of the controller is selected or not.

The function corresponds to the serial command " :Capt_I1Temp*, see command
1.11.10 Reading out the controller temperature.

Contained in firmware versions later than 15.03.2010.

capture.SetCaptlFollow
Declaration:
static native void SetCaptlFollow(int value);
This function selects/deselects the following error.

The function corresponds to the serial command " :Capt_I1Fol low<offset>", see
command 1.11.11 Reading out the following error.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

capture.GetCaptlFollow
Declaration:
static native int GetCaptliFollow();
This function reads out whether the following error of the controller is selected or not.

The function corresponds to the serial command " :Capt_I1Follow", see command
1.11.11 Reading out the following error.

Contained in firmware versions later than 15.03.2010.

2.5.2 "cl" class

Application
The cl class is used to configure the closed loop. The PID parameters can be set and
the closed loop status can be manipulated.
cl.SetClosedLoop
Declaration:
static native void SetClosedLoop(int value);

This function activates/deactivates the control loop. The mode is not activated until an
internal reference run has been performed or until more than one rotation has been
traveled with auto enable activated.

The function corresponds to the serial command " :CL_enable<value>~, see
command 1.9.1 Activating closed loop mode.

Contained in firmware versions later than 15.03.2010.

cl.GetClosedLoop
Declaration:
static native int GetClosedLoop();
This function reads out whether the control loop is activated/deactivated.

The function corresponds to the serial command " :CL_enable*, see command 1.9.1
Activating closed loop mode.

Contained in firmware versions later than 15.03.2010.

cl.IsClosedLoopEnabled
Declaration:
static native int IsClosedLoopEnabled();
This function reads out whether the control loop is activated/deactivated.
e Value 0: control loop is not active
¢ Value 1: control loop is active (only if the special reference run was performed)

The function corresponds to the serial command " :CL_is_enabled”, see command
1.9.2 Reading out the closed loop mode status.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

cl.SetKPvZ

cl.GetKPvZ

cl.SetKPvN

cl.GetKPvN

cl.SetKlvzZ

Declaration:
static native void SetKPvZ(int value);
This function sets the numerator of the P component of the speed controller.

The function corresponds to the serial command " :CL_KP_v_Z<value>", see
command 1.9.14 Setting the numerator of the P component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKPvZ();
This function reads out the numerator of the P component of the speed controller.

The function corresponds to the serial command " :CL_KP_v_Z", see command
1.9.14 Setting the numerator of the P component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKPvN(int value);
This function sets the denominator of the P component of the speed controller.

The function corresponds to the serial command " :CL_KP_v_N<value>", see
command 1.9.15 Setting the denominator of the P component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetkKPvNQ);
This function reads out the denominator of the P component of the speed controller.

The function corresponds to the serial command " :CL_KP_v_N*, see command
1.9.15 Setting the denominator of the P component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKlvz(int value);
This function sets the numerator of the | component of the speed controller.

The function corresponds to the serial command " :CL_KI_v_Z<value>", see
command 1.9.16 Setting the numerator of the | component of the speed controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

cl.GetKlvZ

cl.SetKIvN

cl.GetKIvN

cl.SetkKDvzZ

cl.GetkKDvZ

Declaration:
static native int GetkIvz();
This function reads out the numerator of the | component of the speed controller.

The function corresponds to the serial command " :CL_KI_v_Z", see command
1.9.16 Setting the numerator of the | component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKIvN(int value);
This function sets the denominator of the | component of the speed controller.

The function corresponds to the serial command " :CL_KI_v_N<value>~, see
command 1.9.17 Setting the denominator of the | component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKIvNQ);
This function reads out the denominator of the | component of the speed controller.

The function corresponds to the serial command " :CL_KI_v_N", see command
1.9.17 Setting the denominator of the | component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKDvzZ(int value);
This function sets the numerator of the D component of the speed controller.

The function corresponds to the serial command " :CL_KD_v_Z<value>", see
command 1.9.18 Setting the numerator of the D component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetkDvZ();
This function reads out the numerator of the D component of the speed controller.

The function corresponds to the serial command " :CL_KD _v_Z", see command
1.9.18 Setting the numerator of the D component of the speed controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

cl.SetKDvN

cl.GetKDvN

cl.SetKPsZzZ

cl.GetKPsZ

cl.SetKPsN

Declaration:
static native void SetKDvN(int value);
This function sets the denominator of the D component of the speed controller.

The function corresponds to the serial command " :CL_KD_v_N<value>", see
command 1.9.19 Setting the denominator of the D component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetkKDvVN(Q);
This function reads out the denominator of the D component of the speed controller.

The function corresponds to the serial command " :CL_KD_v_N", see command
1.9.19 Setting the denominator of the D component of the speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKPsz(int value);
This function sets the numerator of the P component of the position controller.

The function corresponds to the serial command " :CL_KP_s Z<value>", see
command 1.9.26 Setting the numerator of the P component of the position controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetkPsz();
This function reads out the numerator of the P component of the position controller.

The function corresponds to the serial command " :CL_KP_s_Z*, see command
1.9.26 Setting the numerator of the P component of the position controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKPsN(int value);
This function sets the denominator of the P component of the position controller.

The function corresponds to the serial command " :CL_KP_s N<value>", see
command 1.9.27 Setting the denominator of the P component of the position
controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

cl.GetKPsN
Declaration:
static native int GetkPsN(Q);
This function reads out the denominator of the P component of the position controller.

The function corresponds to the serial command " :CL_KP_s_N®, see command
1.9.27 Setting the denominator of the P component of the position controller.

Contained in firmware versions later than 15.03.2010.

cl.SetKlIsz
Declaration:
static native void SetKIlsz(int value);
This function sets the numerator of the | component of the position controller.

The function corresponds to the serial command " :CL_KI_s Z<value>~, see
command 1.9.28 Setting the numerator of the | component of the position controller.

Contained in firmware versions later than 15.03.2010.

cl.GetKlIsz
Declaration:
static native int GetKIsz();
This function reads out the numerator of the | component of the position controller.

The function corresponds to the serial command " :CL_KI_s_Z", see command
1.9.28 Setting the numerator of the | component of the position controller.

Contained in firmware versions later than 15.03.2010.

cl.SetKlIsN
Declaration:
static native void SetKIsN(int value);
This function sets the denominator of the | component of the position controller.

The function corresponds to the serial command " :CL_KI_s N<value>", see
command 1.9.29 Setting the denominator of the | component of the position controller.

Contained in firmware versions later than 15.03.2010.

cl.GetKIsN
Declaration:
static native int GetKIsNQ);
This function reads out the denominator of the | component of the position controller.

The function corresponds to the serial command " :CL_KI_s_N", see command
1.9.29 Setting the denominator of the | component of the position controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

cl.SetkKDsz
Declaration:
static native void SetKDszZ(int value);
This function sets the numerator of the D component of the position controller.
The function corresponds to the serial command " :CL_KD_s_Z<value>", see
command 1.9.30 Setting the numerator of the D component of the position controller.
Contained in firmware versions later than 15.03.2010.
cl.GetkKDsz
Declaration:
static native int GetKDszZ();
This function reads out the numerator of the D component of the position controller.
The function corresponds to the serial command " :CL_KD_s_Z", see command
1.9.30 Setting the numerator of the D component of the position controller.
Contained in firmware versions later than 15.03.2010.
cl.SetKDsN
Declaration:
static native void SetKDsN(int value);
This function sets the denominator of the D component of the position controller.
The function corresponds to the serial command " :CL_KD_s N<value>", see
command 1.9.31 Setting the denominator of the D component of the position
controller.
Contained in firmware versions later than 15.03.2010.
cl.GetKDsN

Declaration:
static native int GetkDsNQ);
This function reads out the denominator of the D component of the position controller.

The function corresponds to the serial command " :CL_KD_s_N", see command
1.9.31 Setting the denominator of the D component of the position controller.

Contained in firmware versions later than 15.03.2010.

cl.SetKPcsvZ
Declaration:
static native void SetKPcsvzZ(int value);

This function sets the numerator of the P component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KP_csv_Z<value>", see
command 1.9.20 Setting the numerator of the P component of the cascading speed
controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLL

JG & DRIVE

cl.GetKPcsvZ

cl.SetKPcsvN

cl.GetKPcsvN

cl.SetKlcsvZ

cl.GetKlcsvZ

Declaration:
static native int GetkKPcsvZ();

This function reads out the numerator of the P component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KP_csv_Z", see command
1.9.20 Setting the numerator of the P component of the cascading speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKPcsvN(int value);

This function sets the denominator of the P component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KP_csv_N<value>", see
command 1.9.21 Setting the denominator of the P component of the cascading speed
controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKPcsvN();

This function reads out the denominator of the P component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KP_csv_N*", see command
1.9.21 Setting the denominator of the P component of the cascading speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKlcsvzZ(int value);
This function sets the numerator of the | component of the cascading speed controller.

The function corresponds to the serial command " :CL_KI_csv_Z<value>", see
command 1.9.22 Setting the numerator of the | component of the cascading speed
controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKlcsvz();

This function reads out the numerator of the | component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KI_csv_Z", see command
1.9.22 Setting the numerator of the | component of the cascading speed controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

cl.SetKlcsvN

cl.GetKlcsvN

cl.SetKDcsvZ

cl.GetKDcsvZ

cl.SetKDcsvN

Declaration:
static native void SetKlcsvN(int value);

This function sets the denominator of the | component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KI_csv_N<value>", see
command 1.9.23 Setting the denominator of the | component of the cascading speed
controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKlcsvNQ);

This function reads out the denominator of the | component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KI_csv_N*", see command
1.9.23 Setting the denominator of the | component of the cascading speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKDcsvZ(int value);

This function sets the numerator of the D component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KD_csv_Z<value>", see
command 1.9.24 Setting the numerator of the D component of the cascading speed
controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKDcsvZ();

This function reads out the numerator of the D component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KD_csv_Z", see command
1.9.24 Setting the numerator of the D component of the cascading speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKDcsvN(int value);

This function sets the denominator of the D component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KD_csv_N<value>", see
command 1.9.25 Setting the denominator of the D component of the cascading speed
controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

IG & DRIVE

LU

cl.GetKDcsvN

cl.SetKPcsszZ

cl.GetKPcssZ

cl.SetKPcssN

cl.GetKPcssN

Declaration:
static native int GetkKDcsvNQ);

This function reads out the denominator of the D component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KD_csv_N*", see command
1.9.25 Setting the denominator of the D component of the cascading speed controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKPcsszZ(int value);

This function sets the numerator of the P component of the cascading position
controller.

The function corresponds to the serial command " :CL_KP_css Z<value>", see
command 1.9.32 Setting the numerator of the P component of the cascading position
controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetkKPcsszZ();

This function reads out the numerator of the P component of the cascading position
controller.

The function corresponds to the serial command " :CL_KP_css_Z", see command
1.9.32 Setting the numerator of the P component of the cascading position controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKPcssN(int value);

This function sets the denominator of the P component of the cascading position
controller.

The function corresponds to the serial command " :CL_KP_css_N<value>", see
command 1.9.33 Setting the denominator of the P component of the cascading
position controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetkKPcssN(Q);

This function reads out the denominator of the P component of the cascading position
controller.

The function corresponds to the serial command " :CL_KP_css_N*", see command
1.9.33 Setting the denominator of the P component of the cascading position
controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

cl.SetKlcssZ

cl.GetKlcssZ

cl.SetKlcssN

cl.GetKlcssN

cl.SetKDcssZ

Declaration:
static native void SetKlcsszZ(int value);

This function sets the numerator of the | component of the cascading position
controller.

The function corresponds to the serial command " :CL_KI_css_Z<value>", see
command 1.9.34 Setting the numerator of the | component of the cascading position
controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKlcssZ();

This function reads out the numerator of the | component of the cascading position
controller.

The function corresponds to the serial command " :CL_KI_css_Z", see command
1.9.34 Setting the numerator of the | component of the cascading position controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKlcssN(int value);

This function sets the denominator of the | component of the cascading position
controller.

The function corresponds to the serial command " :CL_KI_css_N<value>", see
command 1.9.35 Setting the denominator of the | component of the cascading position
controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKlcssN(Q);

This function reads out the denominator of the | component of the cascading position
controller.

The function corresponds to the serial command " :CL_KI_css_N*, see command
1.9.35 Setting the denominator of the | component of the cascading position controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKDcssz(int value);

This function sets the numerator of the D component of the cascading position
controller.

The function corresponds to the serial command " :CL_KD_css_Z<value>", see
command 1.9.36 Setting the numerator of the D component of the cascading position
controller.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LL

JG & DRIVE

cl.GetKDcssZ

cl.SetKDcssN

cl.GetKDcssN

Declaration:
static native int GetkKDcssZ();

This function reads out the numerator of the D component of the cascading position
controller.

The function corresponds to the serial command " :CL_KD_css_Z", see command
1.9.36 Setting the numerator of the D component of the cascading position controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetKDcssN(int value);

This function sets the denominator of the D component of the cascading position
controller.

The function corresponds to the serial command " :CL_KD_css_N<value>", see
command 1.9.37 Setting the denominator of the D component of the cascading
position controller.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetKDcssN(Q);

This function reads out the denominator of the D component of the cascading position
controller.

The function corresponds to the serial command " :CL_KD_css_N*, see command
1.9.37 Setting the denominator of the D component of the cascading position
controller.

Contained in firmware versions later than 15.03.2010.

cl.SetPositionWindow

Declaration:
static native void SetPositionWindow(int value);
This function sets the tolerance window for the end position in the closed loop mode.

The function corresponds to the serial command
":CL_position_window<value>*", see command 1.9.4 Setting the tolerance
window for the limit position.

Contained in firmware versions later than 15.03.2010.

cl.GetPositionWindow

Declaration:
static native int GetPositionWindow();

This function reads out the tolerance window for the end position in the closed loop
mode.

The function corresponds to the serial command " :CL_position_window®, see
command 1.9.4 Setting the tolerance window for the limit position.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

cl.SetPositionWindowTime
Declaration:
static native void SetPositionWindowTime(int time);

This function sets the time for the tolerance window of the end position in the closed
loop mode.

The function corresponds to the serial command
":CL_position_window_time<time>", see command 1.9.5 Setting the time for
the tolerance window of the limit position.

Contained in firmware versions later than 15.03.2010.

cl.GetPositionWindowTime
Declaration:
static native int GetPositionWindowTime();

This function reads out the time for the tolerance window of the end position in the
closed loop mode.

The function corresponds to the serial command " :CL_position_window_time”~,
see command 1.9.5 Setting the time for the tolerance window of the limit position.

Contained in firmware versions later than 15.03.2010.

cl.SetFollowingErrorWindow
Declaration:
static native void SetFollowingErrorWindow(int value);
This function sets the maximum allowed following error in the closed loop mode.

The function corresponds to the serial command
":CL_following_error_window<value>", see command 1.9.6 Setting the
maximum permissible following error.

Contained in firmware versions later than 15.03.2010.

cl.GetFollowingErrorWindow
Declaration:
static native int GetFollowingErrorWindow();
This function reads out the maximum allowed following error in the closed loop mode.

The function corresponds to the serial command
":CL_following_error_window", see command 1.9.6 Setting the maximum
permissible following error.

Contained in firmware versions later than 15.03.2010.

cl.SetFollowingErrorTimeout
Declaration:
static native void SetFollowingErrorTimeout(int time);

This function sets the time for the maximum allowed following error in the closed loop
mode.

The function corresponds to the serial command
":CL_following_error_timeout<time>", see command 1.9.7 Setting the time
for the maximum following error.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

cl.GetFollowingErrorTimeout
Declaration:
static native int GetFollowingErrorTimeout();

This function reads out the time for the maximum allowed following error in the closed
loop mode.

The function corresponds to the serial command
":CL_following_error_timeout”, see command 1.9.7 Setting the time for the
maximum following error.

Contained in firmware versions later than 15.03.2010.

cl.SetSpeedErrorWindow
Declaration:
static native void SetSpeedErrorWindow(int value);
This function sets the maximum allowed speed deviation in the closed loop mode.

The function corresponds to the serial command
":CL_speed_error_window<value>", see command 1.9.8 Maximum permissible
speed deviation.

Contained in firmware versions later than 15.03.2010.

cl.GetSpeedErrorwWindow
Declaration:
static native int GetSpeedErrorWindow();

This function reads out the maximum allowed speed deviation in the closed loop
mode.

The function corresponds to the serial command " :CL_speed_error_window", see
command 1.9.8 Maximum permissible speed deviation.

Contained in firmware versions later than 15.03.2010.

cl.SetSpeedErrorTimeout
Declaration:
static native void SetSpeedErrorTimeout(int time);

This function sets the time for the maximum allowed speed deviation in the closed
loop mode.

The function corresponds to the serial command
":CL_speed_error_timeout<time>", see command 1.9.9 Time for the maximum
permissible speed deviation.

Contained in firmware versions later than 15.03.2010.

cl.GetSpeedErrorTimeout
Declaration:
static native int GetSpeedErrorTimeout();

This function reads out the time for the maximum allowed speed deviation in the
closed loop mode.

The function corresponds to the serial command " :CL_speed_error_timeout”,
see command 1.9.9 Time for the maximum permissible speed deviation.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

cl.SetCLLoadAnglel
Declaration:
static native void SetCLLoadAnglel(int value);
This function sets the load angle 1 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_a<value>", see
command 1.10.2 Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.GetCLLoadAnglel
Declaration:
static native int GetCLLoadAnglel();
This function read out the load angle 1 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_a", see command 1.10.2
Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.SetCLLoadAngle2
Declaration:
static native void SetCLLoadAngle2(int value);
This function sets the load angle 2 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_b<value>~, see
command 1.10.2 Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.GetCLLoadAngle2
Declaration:
static native int GetCLLoadAngle2();
This function re.of the motor from the closed loop test run 2 ads out the load angle

The function corresponds to the serial command " :CL_la_b*", see command 1.10.2
Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.SetCLLoadAngle3
Declaration:
static native void SetCLLoadAngle3(int value);
This function sets the load angle 3 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_c<value>", see
command 1.10.2 Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

cl.GetCLLoadAngle3
Declaration:
static native int GetCLLoadAngle3();
This function reads out the load angle 3 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_c", see command 1.10.2
Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.SetCLLoadAngle4
Declaration:
static native void SetCLLoadAngle4(int value);
This function sets the load angle 4 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_d<value>~, see
command 1.10.2 Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.GetCLLoadAngle4d
Declaration:
static native int GetCLLoadAngled4();
This function reads out the load angle 4 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_d", see command 1.10.2
Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.SetCLLoadAngle5
Declaration:
static native void SetCLLoadAngle5(int value);
This function sets the load angle 5 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_e<value>", see
command 1.10.2 Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.GetCLLoadAngle5
Declaration:
static native int GetCLLoadAngle5Q);
This function reads out the load angle 5 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_e", see command 1.10.2
Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

cl.SetCLLoadAngle6
Declaration:
static native void SetCLLoadAngle6(int value);
This function sets the load angle 6 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_f<value>", see
command 1.10.2 Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.GetCLLoadAngle6
Declaration:
static native int GetCLLoadAngle6();
This function reads out the load angle 6 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_f*~, see command 1.10.2
Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.SetCLLoadAngle7
Declaration:
static native void SetCLLoadAngle7(int value);
This function sets the load angle 7 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_g<value>", see
command 1.10.2 Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.GetCLLoadAngle7
Declaration:
static native int GetCLLoadAngle7();
This function reads out the load angle 7 of the motor from the closed loop test run.

The function corresponds to the serial command " :CL_la_g", see command 1.10.2
Setting/reading out load angle measurement values of the motor.

Contained in firmware versions later than 15.03.2010.

cl.SetCLNodeDistance
Declaration:
static native void SetCLNodeDistance(int value);
This function sets the sampling point spacing for the load angle curve.

The function corresponds to the serial command
":CL_la node_distance<value>", see command 1.9.38 Setting the sampling
point spacing of the load angle curve.

Contained in firmware versions later than 15.03.2010.

Y Nanotec’

PLUG & DRIVE

cl.GetCLNodeDistance
Declaration:
static native int GetCLNodeDistance();
This function reads out the sampling point spacing for the load angle curve.

The function corresponds to the serial command " :CL_la_node_distance”®, see
command 1.9.38 Setting the sampling point spacing of the load angle curve.

Contained in firmware versions later than 15.03.2010.

cl.SetCLPoscntOffset
Declaration:
static native void SetCLPoscntOffset(int offset);
This function sets the offset between the encoder and the motor.

The function corresponds to the serial command " :CL_poscnt_offset<offset>",
see command 1.10.1 Reading out the encoder/motor offset.

Contained in firmware versions later than 15.03.2010.

cl.GetCLPoscntOffset

Declaration:
static native int GetCLPoscntOffset();

This function reads out the offset between the encoder and the motor determined
during the test run.

The function corresponds to the serial command " :CL_poscnt_offset”, see
command 1.10.1 Reading out the encoder/motor offset.

Contained in firmware versions later than 15.03.2010.

cl.GetVelocityActualValue
Declaration:
static native int GetVelocityActualVvalue();
This function reads out the current speed (only in closed loop mode).

The function corresponds to the serial command ” :v”, see command 1.7.11 Reading
out the speed.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

2.5.3 “comm” class

Application

The comm class is used to configure serial communication and send data.

comm.SendInt
Declaration:
static native void SendInt(int in);

Sends the specified integer value over the serial interface.

comm.SendLong
Declaration:
static native void SendLong(long in);

Sends the specified long value over the serial interface.

comm.SetBaudrate
Declaration:
static native void SetBaudrate(int value);
This function sets the baud rate of the controller.

The function corresponds to the serial command " zbaud<value>", see command
1.5.40 Setting baud rate of the controller.

Contained in firmware versions later than 15.03.2010.

comm.GetBaudrate
Declaration:
static native int GetBaudrate();
This function reads out the baud rate of the controller.

The function corresponds to the serial command " baud®, see command 1.5.40
Setting baud rate of the controller.

Contained in firmware versions later than 15.03.2010.

comm.SetCRC
Declaration:
static native void SetCRC(int value);

Switches on or off the check of the serial communication using a CRC checksum
(cyclic redundancy check):

e Value 0: CRC check deactivated
e Value 1: CRC check activated

The function corresponds to the serial command " zcrc<value>", see command
1.5.41 Setting the CRC checksum.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

comm.GetCRC
Declaration:
static native int GetCRC();

This function reads out whether the check of the serial communication using a CRC
checksum is switched on or off.

The function corresponds to the serial command " zcrc”, see command 1.5.41
Setting the CRC checksum.

Contained in firmware versions later than 15.03.2010.

comm.SetSupressResponse
Declaration:
static native void SetSupressResponse(int value);
This function activates or deactivates the response suppression on sending.
e value = 0: response suppression on
e value = 1: response suppression off

The function corresponds to the serial command " | <value>", see command 1.6.4
Reading out the current record.

Contained in firmware versions later than 15.03.2010.

2.5.4 "config" class

Application

The config class is used to configure the general controller settings.

config.SetSendStatusWhenCompleted
Declaration:
static native void SetSendStatusWhenCompleted(int flag);
This function switches the independent sending of a status on/off at the end of a run.
e sendStatus = 0: automatic sending off
e sendStatus = 1: automatic sending on

The function corresponds to the serial command *J<flag>", see command 1.5.33
Setting automatic sending of the status.

Contained in firmware versions later than 15.03.2010.

config.GetSendStatuswWhenCompleted
Declaration:
static native int GetSendStatusWhenCompleted();

This function reads whether the independent sending of a status at the end of a run is
switched on.

e sendStatus = 0: automatic sending off
e sendStatus = 1: automatic sending on
The function corresponds to the serial command "ZJ", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

config.SetRecordForAutoCorrect
Declaration:
static native void SetRecordForAutoCorrect(int record);
This function configures on the automatic error correction of the motor.

The function corresponds to the serial command "F<record>", see command 1.5.11
Setting the record for auto correction.

Contained in firmware versions later than 15.03.2010.

config.GetRecordForAutoCorrect
Declaration:
static native int GetRecordForAutoCorrect();
This function reads out which record is set for the automatic error correction.
The function corresponds to the serial command "ZF*", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

config.SetEncoderDirection
Declaration:
static native void SetEncoderDirection(int value);

This function sets the direction of rotation of the encoder. If the parameter value is 1,
the direction of the rotary encoder is reversed.

The function corresponds to the serial command *qg<value>", see command 1.5.12
Setting the encoder direction.

Contained in firmware versions later than 15.03.2010.

config.GetEncoderDirection
Declaration:
static native int GetEncoderDirection();

This function reads out whether the direction of rotation of the encoder will be
reversed.

The function corresponds to the serial command "Zqg~, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

config.SetSwingOutTime
Declaration:
static native void SetSwingOutTime(int time);
This function sets the swing out time.

The function corresponds to the serial command "0O<time>", see command 1.5.13
Setting the swing out time.

Contained in firmware versions later than 15.03.2010.

)] Nanotec

UG & DRIVE

config.GetSwingOutTime

Declaration:
static native int GetSwingOutTime();
This function reads out the swing out time.
The function corresponds to the serial command "Z0", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

config.SetAngleDeviationMax

Declaration:
static native void SetAngleDeviationMax(int value);

This function sets the maximum angle deviation between the setpoint position and the
encoder value.

The function corresponds to the serial command *X<value>", see command 1.5.14
Setting the maximum encoder deviation.

Contained in firmware versions later than 15.03.2010.

config.GetAngleDeviationMax

Declaration:
static native int GetAngleDeviationMax();

This function reads out the maximum angle deviation between the setpoint position
and the encoder value.

The function corresponds to the serial command *ZX*, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

config.SetCurrentReductionTime

Declaration:
static native void SetCurrentReductionTime(int value);
This function sets the waiting time at a standstill until the current is lowered.

The function corresponds to the serial command "G<value>", see command 1.7.8
Adjusting the time until the current reduction.

Contained in firmware versions later than 15.03.2010.

config.GetCurrentReductionTime

Declaration:

static native int GetCurrentReductionTime();
This function reads out the waiting time at a standstill until the current is lowered.
The function corresponds to the serial command "ZG*", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

config.SetReverseClearance
Declaration:
static native void SetReverseClearance(int value);
This function sets the reverse clearance in steps.

The function corresponds to the serial command "z<value>", see command 1.5.35
Setting the reverse clearance.

Contained in firmware versions later than 15.03.2010.

config.GetReverseClearance
Declaration:
static native int GetReverseClearance();
This function reads the reverse clearance in steps.
The function corresponds to the serial command “Zz", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

config.ResetEEProm
Declaration:
static native void ResetEEProm();

This function sets all settings of the controller back to default values (factory default
settings).

The function corresponds to the serial command "~*, see command 1.5.32 Carrying
out an EEPROM reset.

Contained in firmware versions later than 15.03.2010.
ATTENTION: This function also deletes the Java program! The program continues
running to the end (since in memory) but cannot be started again after that.
config.SetMotorPP
Declaration:
static native void SetMotorPP(int value);
This function sets the motor pole pair.

The function corresponds to the serial command " :CL_motor_pp<value>®, see
command 1.9.10 Setting the pole pairs of the motor.

Contained in firmware versions later than 15.03.2010.

config.GetMotorPP
Declaration:
static native int GetMotorPP();
This function reads out the motor pole pair.

The function corresponds to the serial command " :CL_motor_pp*~, see command
1.9.10 Setting the pole pairs of the motor.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

config.SetRotencinc
Declaration:
static native void SetRotenclnc(int value);
This function sets the number of encoder increments.

The function corresponds to the serial command " :CL_rotenc_inc<value>", see
command 1.9.12 Setting the number of increments.

Contained in firmware versions later than 15.03.2010.

config.GetRotenclinc
Declaration:
static native int GetRotencInc();
This function reads out the number of encoder increments.

The function corresponds to the serial command " :CL_rotenc_inc", see command
1.9.12 Setting the number of increments.

Contained in firmware versions later than 15.03.2010.

config.SetBrakeTA
Declaration:
static native void SetBrakeTA(int time);
This function sets the waiting time for switching off the brake voltage.

The function corresponds to the serial command " :brake_ta<time>", see
command 1.5.37 Setting the waiting time for switching off the brake voltage.

Contained in firmware versions later than 15.03.2010.

config.GetBrakeTA
Declaration:
static native int GetBrakeTAQ);
This function reads out the waiting time for switching off the brake voltage.

The function corresponds to the serial command " :brake_ta®, see command 1.5.37
Setting the waiting time for switching off the brake voltage.

Contained in firmware versions later than 15.03.2010.

config.SetBrakeTB
Declaration:
static native void SetBrakeTB(int time);

This function sets the time in milliseconds between switching off of the brake voltage
and enabling of a motor movement.

The function corresponds to the serial command " :brake_tb<time>", see
command 1.5.38 Setting the waiting time for the motor movement.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

config.GetBrakeTB
Declaration:
static native int GetBrakeTB();

This function sets the time between switching off of the brake voltage and enabling of
a motor movement.

The function corresponds to the serial command " :brake_tb", see command 1.5.38
Setting the waiting time for the motor movement.

Contained in firmware versions later than 15.03.2010.

config.SetBrakeTC
Declaration:
static native void SetBrakeTC(int time);
This function sets the waiting time for switching off the motor voltage.

The motor current is switched off by resetting the enable input (see Section 1.5.25
"Setting the function of the digital inputs").

The function corresponds to the serial command " :brake_tc<time>", see
command 1.5.39 Setting the waiting time for switching off the motor current.

Contained in firmware versions later than 15.03.2010.

config.GetBrakeTC
Declaration:
static native int GetBrakeTC();
This function reads out the waiting time for switching off the motor voltage.

The motor current is switched off by resetting the enable input (see Section 1.5.25
"Setting the function of the digital inputs").

The function corresponds to the serial command " :brake_tc*, see command 1.5.39
Setting the waiting time for switching off the motor current.

Contained in firmware versions later than 15.03.2010.

config.SetErrorCorrection
Declaration:
static native void SetErrorCorrection(int value);
This function sets the encoder monitoring mode.

The function corresponds to the serial command *U<value>", see command 1.5.10
Setting the error correction mode.

Contained in firmware versions later than 15.03.2010.

config.GetErrorCorrection
Declaration:
static native int GetErrorCorrection();
This function reads out the encoder monitoring mode.
The function corresponds to the serial command "ZU*, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

config.SetSpeedmodeControl
Declaration:
static native void SetSpeedmodeControl(int value);
This function sets the controller type for the speed mode.

The function corresponds to the serial command " :speedmode_control<value>",
see command 1.9.3 Setting the controller type for the speed mode.

Contained in firmware versions later than 15.03.2010.

config.GetSpeedmodeControl
Declaration:
static native int GetSpeedmodeControl();
This function reads out the controller type for the speed mode.

The function corresponds to the serial command * :speedmode_control ", see
command 1.9.3 Setting the controller type for the speed mode.

Contained in firmware versions later than 15.03.2010.

config.SetCLMotorType
Declaration:
static native void SetCLMotorType(int value);
This function defines the type of the connected motor.

The function corresponds to the serial command " :CL_motor_type<value>®, see
command 1.5.1 Setting the motor type.

Contained in firmware versions later than 15.03.2010.

config.GetCLMotorType
Declaration:
static native int GetCLMotorType();

This function reads out the type of the connected motor.

The function corresponds to the serial command " :CL_motor_type*, see command
1.5.1 Setting the motor type.

Contained in firmware versions later than 15.03.2010.

config.SetFeedConstNum
Declaration:
static native void SetFeedConstNum(int value);
This function sets the numerator of the feed rate.

The function corresponds to the serial command " : feed_const_num<value>", see
command 1.5.15 Setting the feed rate numerator.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

config.GetFeedConstNum
Declaration:
static native int GetFeedConstNum();
This function reads out the numerator of the feed rate.

The function corresponds to the serial command " : feed_const_num”, see
command 1.5.15 Setting the feed rate numerator.

Contained in firmware versions later than 15.03.2010.

config.SetFeedConstDenum
Declaration:
static native void SetFeedConstDenum(int value);
This function sets the denominator of the feed rate.

The function corresponds to the serial command " : feed_const_denum<value>"~,
see command 1.5.16 Setting the feed rate denominator.

Contained in firmware versions later than 15.03.2010.

config.GetFeedConstDenum
Declaration:
static native int GetFeedConstDenum();
This function reads out the denominator of the feed rate.

The function corresponds to the serial command " : feed_const_denum®, see
command 1.5.16 Setting the feed rate denominator.

Contained in firmware versions later than 15.03.2010.

config.SetCurrentTime
Declaration:
static native void SetCurrentTime(int time);
This function sets the current time constant for BLDC.

The function corresponds to the serial command " : itime<time>", see command
1.5.5 Setting the current time constant for BLDC.

Contained in firmware versions later than 15.03.2010.

config.GetCurrentTime
Declaration:
static native int GetCurrentTime();
This function reads out the current time constant for BLDC.

The function corresponds to the serial command " :itime®, see command 1.5.5
Setting the current time constant for BLDC.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

config.SetCurrentPeak
Declaration:
static native void SetCurrentPeak(int value);
This function sets the current peak value for BLDC.

The function corresponds to the serial command " : ipeak <value>", see command
1.5.4 Setting the peak current for BLDC.

Contained in firmware versions later than 15.03.2010.

config.GetCurrentPeak
Declaration:
static native int GetCurrentPeak();
This function reads out the current peak value for BLDC.

The function corresponds to the serial command * : ipeak®, see command 1.5.4
Setting the peak current for BLDC.

Contained in firmware versions later than 15.03.2010.

config.ResetStartCount
Declaration:
static native void ResetStartCount(int value);
This function sets the switch-on counter.
The value can only have the value 1.

The function corresponds to the serial command "%<value>", see command 1.7.7
Resetting the switch-on counter.

Contained in firmware versions later than 15.03.2010.

config.GetStartCount
Declaration:
static native int GetStartCount();
This function reads out the switch-on counter.

The function corresponds to the serial command "Z%", see command 1.7.7 Resetting
the switch-on counter.

Contained in firmware versions later than 15.03.2010.

config.SetLimitSwitchBehavior
Declaration:
static native void SetLimitSwitchBehavior(int value);
This function sets the limit switch behavior.
The value can only have the value 1.

The function corresponds to the serial command " I<value>", see command 1.5.9
Setting the limit switch behavior.

Contained in firmware versions later than 15.03.2010.

\) Nanotec’

PLUG & DRIVE

config.GetLimitSwitchBehavior
Declaration:
static native int GetLimitSwitchBehavior();
This function reads out the limit switch behavior.

The function corresponds to the serial command "Z1*, see command 1.5.9 Setting
the limit switch behavior.

Contained in firmware versions later than 15.03.2010.

config.SetMotorAddress
Declaration:
static native void SetMotorAddress(int value);
This function sets the motor address.

The function corresponds to the serial command "m<value>=, see command 1.5.7
Setting the drive address.

Contained in firmware versions later than 15.03.2010.

config.GetMotorAddress
Declaration:
static native int GetMotorAddress();
This function reads the motor address.

The function corresponds to the serial command *Zm*®, see command 1.5.7 Setting
the drive address.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

2.5.5 *“drive” class

drive.StartDrive
Declaration:
static native void StartDrive();

This function starts the motor. The currently selected data record (mode, speed, ramp,
etc.) is used here.

The function corresponds to the serial command "A*, see command 1.6.1 Starting a
motor.
drive.StopDrive
Declaration:
static native void StopDrive(int type);
Cancels the current travel; type determines how it will be stopped:
type = 0: A quickstop is carried out (braking with very steep ramp)
type = 1: Braking is carried out with the normal braking ramp

In the speed, analog and joystick modes, this is the only method of returning the motor
to the ready state.

The motor is brought to an immediate halt without ramps. This may result in step loss
at high speeds.

In the three modes named above the speed should, therefore, be reduced prior to the
stop command.

The function corresponds to the serial command *S*, see command 1.6.2 Stopping a
motor.
drive.SetMaxSpeed
Declaration:
static native void SetMaxSpeed(int value);
Specifies the maximum frequency in Hertz (steps per second).
The maximum frequency is reached after first passing through the acceleration ramp.
The function corresponds to the serial command "o<value>", see command 1.6.9
Setting the maximum frequency.
drive.GetMaxSpeed
Declaration:
static native int GetMaxSpeed();

Reads out the currently valid value of the maximum frequency in Hertz (steps per
second).

The function corresponds to the serial command "Zo*, see 1.3 Read command.

\Y) Nanotec’

LUG & DRIVE

drive.SetMaxSpeed?2
Declaration:
static native void SetMaxSpeed2(int speed);
Function sets the upper maximum frequency.

The function corresponds to the serial command "n<value>", see command 1.6.10
Setting the maximum frequency 2.

Contained in firmware versions later than 15.03.2010.

drive.GetMaxSpeed?2
Declaration:
static native int GetMaxSpeed2();
Function reads out the upper maximum frequency.
The function corresponds to the serial command “Zn~, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

drive.SetMinSpeed
Declaration:
static native void SetMinSpeed (int value);

Specifies the minimum speed in Hertz (steps per second) and can only be used in
open loop mode.

At the start of a record the motor begins to turn with the minimum speed. It then
accelerates up to the maximum speed with the set ramp.

The function corresponds to the serial command "u<value>", see command 1.6.8
Setting the minimum frequency.
drive.GetMinSpeed
Declaration:
static native int GetMinSpeed();
Reads out the currently valid value of the minimum speed in Hertz (steps per second).

The function corresponds to the serial command *"Zu*, see 1.3 Read command.

drive.SetAcceleration
Declaration:
static native void SetAcceleration(int value);
Specifies the acceleration ramp.
To convert the parameters to acceleration in Hz/ms, the following formula is used:
Acceleration in Hz/ms = ((3000.0 / sqrt((float)<value>)) - 11.7).
The function corresponds to the serial command "b<value>", see command 1.6.11
Setting the acceleration ramp.
drive.GetAcceleration
Declaration:
static native int GetAcceleration();
Reads out the currently valid value of the acceleration ramp.

The function corresponds to the serial command "Zb*, see 1.3 Read command.

Y Nanotec’

PLUG & DRIVE

drive.SetDeceleration
Declaration:
static native void SetDeceleration(int value);
This function sets the brake ramp.

The function corresponds to the serial command "B<value>", see command 1.6.13
Setting the brake ramp.

Contained in firmware versions later than 15.03.2010.

drive.GetDeceleration
Declaration:
static native int GetDeceleration();
This function reads out the brake ramp.
The function corresponds to the serial command "ZB*", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

drive.SetDecelerationHalt
Declaration:
static native void SetDecelerationHalt(int value);
This function sets the quick stop ramp.

The function corresponds to the serial command "H<value>", see command 1.5.44
Setting the quickstop ramp.

Contained in firmware versions later than 15.03.2010.

drive.GetDecelerationHalt
Declaration:
static native int GetDecelerationHalt();
This function reads out the quick stop ramp.
The function corresponds to the serial command "ZH", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

drive.SetRampType
Declaration:
static native void SetRampType(int ramp);
This function sets the ramp type.

The function corresponds to the serial command " zramp_mode<ramp>"=, see
command 1.5.36 Setting the ramp type.

Contained in firmware versions later than 15.03.2010.

Y Nanotec’

PLUG & DRIVE

drive.GetRampType

drive.SetJerk

drive.GetJerk

Declaration:
static native int GetRampType();:
This function reads out the ramp type.

The function corresponds to the serial command " : ramp_mode ™, see 1.5.36 Setting
the ramp type.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native void SetJerk(int value);
This function sets the maximum jerk for the acceleration in 100/s8.

The function corresponds to the serial command * :b<value>~, see command 1.6.20
Setting the maximum jerk for the acceleration ramp.

Contained in firmware versions later than 15.03.2010.

Declaration:
static native int GetJderk();
This function outputs the maximum jerk for the acceleration in 100/s3.
The function corresponds to the serial command "Z:b", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

drive.SetBrakeJerk

Declaration:
static native void SetBrakederk(int value);

This function sets the brake jerk in 100/s3.

The function corresponds to the serial command " :B<value>", see command 1.6.21
Setting the maximum jerk for the braking ramp.

Contained in firmware versions later than 15.03.2010.

drive.GetBrakeJerk

Declaration:
static native int GetBrakeJderk();
This function reads out the brake jerk in 100/s3.
The function corresponds to the serial command "Z:B*, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

drive.lsReferenced

Declaration:
static native int IsReferenced();

This function reads out whether the motor is referenced or not.

The function corresponds to the serial command " :is_referenced”, see 1.5.21
Request “Motor is referenced”.

Contained in firmware versions later than 15.03.2010.

drive.IncreaseFrequency
Declaration:
static native void IncreaseFrequency();
The function increases the speed in the speed mode by 100 steps/s.

The function corresponds to the serial command *+*, see 1.7.9 Increasing the
rotational speed.

Contained in firmware versions later than 15.03.2010.

drive.DecreaseFrequency
Declaration:
static native void DecreaseFrequency();
The function decreases the speed in the speed mode by 100 steps/s.
The function corresponds to the serial command " +*, see 1.7.10 Reducing the speed.

Contained in firmware versions later than 15.03.2010.

drive.TriggerOn
Declaration:
static native void Triggeron(Q);
Trigger for the flag positioning mode.
The function corresponds to the serial command "T*, see 1.7.12 Actuating the trigger.

Contained in firmware versions later than 15.03.2010.

drive.SetTargetPos
Declaration:
static native void SetTargetPos(int value);

Specifies the travel distance in (micro)steps. Only positive values are allowed for the
relative positioning. The direction is set with SetDirection.

For absolute positioning, this command specifies the target position. Negative values
are allowed in this case. The direction of rotation set with SetDirection is ignored, as
this results from the current position and the target position.

The value range is from -100,000,000 to +100,000,000.
In the adaptive mode, this parameter refers to half steps.

The function corresponds to the serial command "s<value>", see command 1.6.7
Setting the travel distance.

\) Nanotec’

PLUG & DRIVE

drive.GetTargetPos
Declaration:
static native int GetTargetPos();
Reads out the currently valid value of the travel distance in (micro)steps.

The function corresponds to the serial command "Zs*, see 1.3 Read command.

drive.SetMode
Declaration:
static native void SetMode(int value);
Sets the positioning type.

The positioning modes "p*~ are:

Positioning mode

p=1 Relative positioning;

The command 1.6.7 Setting the travel distance "s*” specifies the
travel distance relative to the current position.

The command 1.6.15 Setting the direction of rotation "d" specifies
the direction.

The parameter 1.6.7 Setting the travel distance "s® must be positive.

p=2 Absolute positioning;

The command 1.6.7 Setting the travel distance "s*" specifies the
target position relative to the reference position.

The command 1.6.15 Setting the direction of rotation *d~" is ignored.

p=3 Internal reference run;

The motor runs with the lower speed in the direction set in command
1.6.15 Setting the direction of rotation *d " until it reaches the index
line of the encoder. Then the motor runs a fixed number of steps to
leave the index line again. For the direction of free travel, see
command 1.5.9 Setting the limit switch behavior *1*. This mode is
only useful for motors with integrated and connected encoders.

p=4 External reference run;

The motor runs with the upper speed in the direction set in command
1.6.15 Setting the direction of rotation *d " until it reaches the limit
switch. Then a free run is performed, depending on the setting.

See command 1.5.9 Setting the limit switch behavior "1 *.

Speed mode

p=5 Speed mode;

When the motor is started, the motor increases in speed to the
maximum speed with the set ramp. Changes in the speed or direction
of rotation are performed immediately with the set ramp without
having to stop the motor first.

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;
see Positioning mode

\Y Nanotec’

PLUG & DRIVE

Flag positioning mode

p=6 Flag positioning mode;

After the start, the motor accelerates to the maximum rotational
speed. After arrival of the trigger event (command 1.7.12 Actuating
the trigger "T" or trigger input), the motor continues to travel the
selected stroke (command 1.6.7 Setting the travel distance "s™) and
changes its speed to the maximum speed 2 (command 1.6.10 Setting
the maximum frequency 2 "n") for this purpose.

p=3 Internal reference run;
see Positioning mode
p=4 External reference run;

see Positioning mode

Clock direction mode

p=7 Manual left.
p=8 Manual right.
p=9 Internal reference run;

see Positioning mode

p=10 External reference run;
see Positioning mode

Analog mode

p=11 | Analog mode

Joystick mode

p=12 | Joystick mode

Analog positioning mode

p=13 Analog positioning mode
p=3 Internal reference run;

see Positioning mode

p=4 External reference run;
see Positioning mode

HW reference mode

p=14 | HW reference mode

Torque mode

p=15 | Torque mode

CL test mode

p=16 CL quick test mode
p=17 CL test mode

p=19 CL quick test mode 2

CL Autotune mode

p=18 CL Autotune mode

)] Nanotec

LUG & DRIVE

drive.GetMode
Declaration:
static native int GetMode();
Reads out the current position type.

The function corresponds to the serial command "Zp*, see 1.3 Read command.

drive.SetCurrent
Declaration:
static native void SetCurrent(int value);
Sets the phase current in percent. Values above 100 should be avoided.
The function corresponds to the serial command " i<value>=, see command 1.5.2
Setting the phase current.
drive.GetCurrent
Declaration:
static native int GetCurrent();
Reads out the currently selected phase current in percent.

The function corresponds to the serial command "Zi ", see 1.3 Read command.

drive.SetCurrentReduction
Declaration:
static native void SetCurrentReduction(int value);

Sets the current of the current reduction at standstill in percent. Like the phase
current, this current is relative to the end value. Values above 100 should be avoided.

The function corresponds to the serial command " r<value>", see command 1.5.3
Setting the phase current at standstill.
drive.GetCurrentReduction
Declaration:
static native int GetCurrentReduction();
Reads out the currently selected phase current at standstill in percent.

The function corresponds to the serial command "Zr ", see 1.3 Read command.

drive.GetStatus
Declaration:
static native int GetStatus();
Returns the current status of the controller as a bit mask.
Bit 0 ready
Bit 1 reference
Bit 2 posError
Bit 3 endStartActive
Bit 4-7 mode

The function corresponds to the serial command "$*, see command 1.5.22 reading
out the status.

\Y) Nanotec’

LUG & DRIVE

drive.SetDirection
Declaration:
static native void SetDirection(int value);
Sets the direction of rotation:
value=0 Direction of rotation, left
value=1 Direction of rotation, right
The function corresponds to the serial command "d<value>", see command 1.6.15
Setting the direction of rotation.
drive.GetDirection
Declaration:
static native int GetDirection();
Reads out the currently set direction of rotation.

The function corresponds to the serial command 'Zd, see 1.3 Read command.

drive.SetDirectionReversing
Declaration:
static native void SetDirectionReversing (int value);
This function sets the reversal in the direction of rotation.

The function corresponds to the serial command " t<value>", see command 1.6.16
Setting the change of direction.

Contained in firmware versions later than 15.03.2010.

drive.GetDirectionReversing
Declaration:
static native int GetDirectionReversing ();
This function reads the value of the reversal in the direction of rotation.
The function corresponds to the serial command "Zt", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

drive.SetRepeat
Declaration:
static native void SetRepeat (int repeat);
This function sets the number of repetitions.

The function corresponds to the serial command "W<repeat>", see command 1.6.17
Setting the repetitions.

Contained in firmware versions later than 15.03.2010.

drive.GetRepeat
Declaration:
static native int GetRepeat ();
This function reads the number of repetitions.
The function corresponds to the serial command “ZW*", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

LUG & DRIVE

drive.SetPause
Declaration:
static native void SetPause (int pause);

Specifies the pause between record repetitions or between a record and a
continuation record in ms (milliseconds).

The function corresponds to the serial command "P<pause>", see command 1.6.18
Setting the record pause.

Contained in firmware versions later than 15.03.2010.

drive.GetPause
Declaration:
static native int GetPause ();

This function reads the pause time in milliseconds.
The function corresponds to the serial command "ZP*", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

drive.SetNextRecord
Declaration:
static native void SetNextRecord (int record);

This function sets the next record.

The function corresponds to the serial command "N< record>", see command
1.6.19 Setting the continuation record.

Contained in firmware versions later than 15.03.2010.

drive.GetNextRecord
Declaration:
static native int GetNextRecord ();
This function reads out the number of the next record.
The function corresponds to the serial command "ZN*, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

drive.GetEncoderPosition
Declaration:
static native int GetEncoderPosition();

Reads out the current position of the encoder.
The function corresponds to the serial command " 1 *, see command 1.5.19 Reading
out the encoder position.

drive.GetDemandPosition

Declaration:
static native int GetDemandPosition();

Reads out the current position of the motor.

The function corresponds to the serial command "C*, see command 1.5.20 Reading
out the position.

)] Nanotec

UG & DRIVE

drive.SetPosition

Declaration:
static native void SetPosition(int value);

Resets an error of the encoder monitor and sets the current and setpoint position to
the value the parameter passes.

The function corresponds to the serial command "D<value>", see command 1.5.17
Resetting the position error.

Function contained in firmware versions later than 15.03.2010.

drive.LoadDataSet

Declaration:

public static native void LoadDataSet (int whichone);
Parameter: int whichone 1-32
Return: None

Loads the selected data record into the controller. The data records can be configured
by means of NanoPro.

The function corresponds to the serial command ”y”, see command 1.6.3 Loading a
record from the EEPROM.

drive.SaveDataSet

Declaration:
static native void SaveDataSet(int whichone);
Parameter: int whichone 1-32
Return: None
Writes the values in the controller memory to the selected data record.

The function corresponds to the serial command ”>”, see command 1.6.5. Saving a
record.

Function contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

2.5.6 "dspdrive" class

Application
The dspdrive class is used to configure the current controller in controllers which are
equipped with a dspDrive.
dspdrive.SetDSPDrivePLow
Declaration:
static native void SetDSPDrivePLow(int value);
This function sets the P component of the current controller at a standstill.

The function corresponds to the serial command " :dspdrive_KP_low<value>",
see command 1.12.1 Setting the P component of the current controller at standstill.

Contained in firmware versions later than 15.03.2010.

dspdrive.GetDSPDrivePLow

Declaration:
static native int GetDSPDrivePLow();

This function reads out the P component of the current controller at a standstill.

The function corresponds to the serial command " :dspdrive_KP_low", see
command 1.12.1 Setting the P component of the current controller at standstill.

Contained in firmware versions later than 15.03.2010.

dspdrive.SetDSPDrivePHigh
Declaration:
static native void SetDSPDrivePHigh(int value);
This function sets the P component of the current controller during the run.

The function corresponds to the serial command " :dspdrive_KP_hig<value>",
see command 1.12.2 Setting the P component of the current controller during the run.

Contained in firmware versions later than 15.03.2010.

dspdrive.GetDSPDrivePHigh
Declaration:
static native int GetDSPDrivePHigh(Q);
This function reads out the P component of the current controller during the run.

The function corresponds to the serial command " :dspdrive_KP_hig", see
command 1.12.2 Setting the P component of the current controller during the run.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

dspdrive.SetDSPDrivePScale
Declaration:
static native void SetDSPDrivePScale(int value);

This function sets the scaling factor to speed-independent. adjustment of the P
component of the controller during the run.

The function corresponds to the serial command " :dspdrive_KP_scale<value>",
see command 1.12.3 Setting the scaling factor for speed-dependent adjustment of the
P component of the controller during the run.

Contained in firmware versions later than 15.03.2010.

dspdrive.GetDSPDrivePScale
Declaration:
static native int GetDSPDrivePScale();

The function reads out the scaling factor for the speed-dependent adjustment of the P
component of the controller during the run.

The function corresponds to the serial command " :dspdrive_KP_scale”, see
command 1.12.3 Setting the scaling factor for speed-dependent adjustment of the P
component of the controller during the run.

Contained in firmware versions later than 15.03.2010.

dspdrive.SetDSPDrivelLow
Declaration:
static native void SetDSPDrivelLow(int value);
This function sets the | component of the current controller at a standstill.

The function corresponds to the serial command " :dspdrive_KI_low<value>",
see command 1.12.4 Setting the | component of the current controller at standstill.

Contained in firmware versions later than 15.03.2010.

dspdrive.GetDSPDrivelLow
Declaration:
static native int GetDSPDrivelLow();
This function reads out the | component of the current controller at a standstill.

The function corresponds to the serial command " dspdrive_KP_low", see
command 1.12.4 Setting the | component of the current controller at standstill.

Contained in firmware versions later than 15.03.2010.

dspdrive.SetDSPDrivelHigh
Declaration:
static native void SetDSPDrivelHigh(int value);
This function sets the | component of the current controller during the run.

The function corresponds to the serial command " :dspdrive_KI1 _hig<value>",
see command 1.12.5 Setting the | component of the current controller during the run.

Contained in firmware versions later than 15.03.2010.

Y Nanotec’

PLUG & DRIVE

dspdrive.GetDSPDrivelHigh
Declaration:
static native int GetDSPDrivelHigh(Q);
This function reads out the | component of the current controller during the run.

The function corresponds to the serial command " :dspdrive_KI_hig", see
command 1.12.5 Setting the | component of the current controller during the run.

Contained in firmware versions later than 15.03.2010.

dspdrive.SetDSPDrivelScale
Declaration:
static native void SetDSPDrivelScale(int value);

This function sets the scaling factor for the speed-dependent adjustment of the |
component of the controller during the run.

The function corresponds to the serial command " :dspdrive_KIl_scale<value>",
see command 1.12.6 Setting the scaling factor for speed-dependent adjustment of the
| component of the controller during the run.

Contained in firmware versions later than 15.03.2010.

dspdrive.GetDSPDrivelScale
Declaration:
static native int GetDSPDrivelScale();

This function reads out the scaling factor for the speed-dependent adjustment of the |
component of the controller during the run.

The function corresponds to the serial command " :dspdrive_KI_scale”, see
command 1.12.6 Setting the scaling factor for speed-dependent adjustment of the |
component of the controller during the run.

Contained in firmware versions later than 15.03.2010.

Y Nanotec’

PLUG & DRIVE

25.7 “io” class

Application

The io class is used to manage the digital and analog inputs and outputs.

i0.SetLED
Declaration:
static native void SetLED(int in);
Sets the error LED.
1: LED on
2: LED off

i0.SetDigitalOutput
Declaration:
static native void SetDigitalOutput(int value);
Sets the digital outputs of the controller as bit-coded.

io.GetDigitalOutput
Declaration:
static native int GetDigitalOutput();
Reads out the currently set bit mask for the digital outputs.

io.GetDigitallnput
Declaration:
static native int GetDigitallnput();
Reads out the currently connected digital inputs.

io.GetAnaloglnput
Declaration:
static native int GetAnaloglnput(int Port);
Reads out the current values of the analog inputs. Port specifies the port to be read: 1
for the first analog port, 2 for the second port (if present).
io.SetAnalogDead
Declaration:
static native void SetAnalogDead(int analogDead);
This function sets the dead range of the analog input.

The function corresponds to the serial command "=<value>", see command 1.7.1
Setting the dead range for the joystick mode.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

io.GetAnalogDead

Declaration:
static native int GetAnalogDead();

This function reads out the dead range of the analog input.
The function corresponds to the serial command "Z=", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

io.SetAnalogFilter

Declaration:
static native void SetAnalogFilter(int filter);

This function sets the value for the filter of the analog input.

The function corresponds to the serial command " f<filter>", see command 1.7.2
Setting the filter for the analog and joystick modes.

Contained in firmware versions later than 15.03.2010.

io.GetAnalogFilter
Declaration:
static native int GetAnalogFilter();

This function reads out the value for the filter of the analog input.
The function corresponds to the serial command "Zf*", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

io.SetlnputMaskEdge

Declaration:
static native void SetlnputMaskEdge(int mask);

This function sets the polarity of the inputs and outputs.

The function corresponds to the serial command "h<mask>", see command 1.5.27
Masking and demasking inputs.

Contained in firmware versions later than 15.03.2010.

io.GetlnputMaskEdge

Declaration:
static native int GetlnputMaskEdge();

This function reads out the current polarity of the inputs and outputs.
The function corresponds to the serial command "Zh*, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

io.SetDebounceTime
Declaration:
static native void SetDebounceTime(int time);
This function sets the debounce time for the inputs in milliseconds.

The function corresponds to the serial command "K<time>", see command 1.5.29
Setting the debounce time for the inputs.

Contained in firmware versions later than 15.03.2010.

io.GetDebounceTime
Declaration:
static native int GetDebounceTime();
This function reads out the debounce time for the inputs in milliseconds.
The function corresponds to the serial command *ZK*", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

io.SetlnputlSelection
Declaration:
static native void SetlInputlSelection(int function);
This function sets the function for digital input 1.

The function corresponds to the serial command " :port_in_a<function>", see
command 1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

i0.GetlnputlSelection
Declaration:
static native int GetlnputlSelection();
This function reads out the function for digital input 1.

The function corresponds to the serial command " zport_in_a", see command
1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

io.Setlnput2Selection
Declaration:
static native void Setlnput2Selection(int function);
This function sets the function for digital input 2.

The function corresponds to the serial command " :port_in_b<function>", see
command 1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

io.Getlnput2Selection
Declaration:
static native int Getlnput2Selection();
This function reads out the function for digital input 2.

The function corresponds to the serial command " zport_in_b", see command
1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

io.Setlnput3Selection
Declaration:
static native void Setlnput3Selection(int function);
This function sets the function for digital input 3.

The function corresponds to the serial command * zport_in_c<function>", see
command 1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

i0.Getlnput3Selection
Declaration:
static native int Getlnput3Selection();
This function reads out the function for digital input 3.

The function corresponds to the serial command " zport_in_c", see command
1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

io.Setlnput4Selection
Declaration:
static native void SetlInputd4Selection(int function);
This function sets the function for digital input 4.

The function corresponds to the serial command " :port_in_d<function>", see
command 1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

io.Getlnput4Selection
Declaration:
static native int Getlnput4Selection();
This function reads out the function for digital input 4.

The function corresponds to the serial command " zport_in_d", see command
1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

io.Setlnput5Selection
Declaration:
static native void Setlnput5Selection(int function);
This function sets the function for digital input 5.

The function corresponds to the serial command " zport_in_e<function>", see
command 1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

i0.GetInput5Selection
Declaration:
static native int Getlnput5Selection();
This function reads out the function for digital input 5.

The function corresponds to the serial command " zport_in_e"~, see command
1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

i0.Setlnput6Selection
Declaration:
static native void SetlInput6Selection(int function);
This function sets the function for digital input 6.

The function corresponds to the serial command * zport_in_f<function>", see
command 1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

i0.Getlnput6Selection
Declaration:
static native int Getlnput6Selection();
This function reads out the function for digital input 6.

The function corresponds to the serial command " zport_in_f", see command
1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

io.Setlnput7Selection
Declaration:
static native void Setlnput7Selection(int function);
This function sets the function for digital input 7.

The function corresponds to the serial command " :port_in_g<function>", see
command 1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

i0.Getlnput7Selection
Declaration:
static native int Getlnput7Selection();
This function reads out the function for digital input 7.

The function corresponds to the serial command " zport_in_g", see command
1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

io.Setlnput8Selection
Declaration:
static native void Setlnput8Selection(int function);
This function sets the function for digital input 8.

The function corresponds to the serial command * zport_in_h<function>", see
command 1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

i0.Getlnput8Selection
Declaration:
static native int Getlnput8Selection();
This function reads out the function for digital input 8.

The function corresponds to the serial command " zport_in_h", see command
1.5.25 Setting the function of the digital inputs.

Contained in firmware versions later than 15.03.2010.

i0.SetOutputlSelection
Declaration:
static native void SetOutputlSelection(int function);
This function sets the function for digital output 1.

The function corresponds to the serial command " zport_out_a<function>", see
command 1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.GetOutputlSelection
Declaration:
static native int GetOutputlSelection();
This function reads out the function for digital output 1.

The function corresponds to the serial command " zport_out_a“, see command
1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

i0.SetOutput2Selection
Declaration:
static native void SetOutput2Selection(int function);
This function sets the function for digital output 2.

The function corresponds to the serial command " zport_out_b<function>", see
command 1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.GetOutput2Selection
Declaration:
static native int GetOutput2Selection();
This function reads out the function for digital output 2.

The function corresponds to the serial command " zport_out_b*, see command
1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.SetOutput3Selection
Declaration:
static native void SetOutput3Selection(int function);
This function sets the function for digital output 3.

The function corresponds to the serial command " zport_out_c<function>", see
command 1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.GetOutput3Selection
Declaration:
static native int GetOutput3Selection();
This function reads out the function for digital output 3.

The function corresponds to the serial command " zport_out_c*, see command
1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.SetOutput4Selection
Declaration:
static native void SetOutput4Selection(int function);
This function sets the function for digital output 4.

The function corresponds to the serial command " zport_out_d<function>", see
command 1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

i0.GetOutput4Selection
Declaration:
static native int GetOutput4Selection();
This function reads out the function for digital output 4.

The function corresponds to the serial command " zport_out_d", see command
1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.SetOutput5Selection
Declaration:
static native void SetOutput5Selection(int function);
This function sets the function for digital output 5.

The function corresponds to the serial command " zport_out_e<function>", see
command 1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.GetOutput5Selection
Declaration:
static native int GetOutput5Selection();
This function reads out the function for digital output 5.

The function corresponds to the serial command " zport_out_e", see command
1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.SetOutput6Selection
Declaration:
static native void SetOutput6Selection(int function);
This function sets the function for digital output 6.

The function corresponds to the serial command " zport_out_f<function>", see
command 1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.GetOutput6Selection
Declaration:
static native int GetOutput6Selection();
This function reads out the function for digital output 6.

The function corresponds to the serial command " :port_out_f*", see command
1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

i0.SetOutput7Selection
Declaration:
static native void SetOutput7Selection(int function);
This function sets the function for digital output 7.

The function corresponds to the serial command " zport_out_g<function>", see
command 1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.GetOutput7Selection
Declaration:
static native int GetOutput7Selection();
This function reads out the function for digital output 7.

The function corresponds to the serial command " zport_out_g~, see command
1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.SetOutput8Selection
Declaration:
static native void SetOutput8Selection(int function);
This function sets the function for digital output 8.

The function corresponds to the serial command " zport_out_h<function>", see
command 1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

i0.GetOutput8Selection
Declaration:
static native int GetOutput8Selection();
This function reads out the function for digital output 8.

The function corresponds to the serial command " zport_out_h", see command
1.5.26 Setting the function of the digital outputs.

Contained in firmware versions later than 15.03.2010.

io.SetAnalogMin
Declaration:
static native void SetAnalogMin(int value);
This function sets the minimum voltage for the analog input.

The function corresponds to the serial command "Q<value>", see command 1.7.3
Setting the minimum voltage for the analog mode.

Contained in firmware versions later than 15.03.2010.

\) Nanotec’

PLUG & DRIVE

io.GetAnalogMin

Declaration:
static native int GetAnalogMin();

This function reads out the minimum voltage for the analog input.
The function corresponds to the serial command "ZQ", see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

io.SetAnalogMax

Declaration:
static native void SetAnalogMax(int value);

This function sets the maximal voltage for the analog input.

The function corresponds to the serial command "R<value>", see command 1.7.4
Setting the maximum voltage for the analog mode.

Contained in firmware versions later than 15.03.2010.

io.GetAnalogMax

Declaration:
static native int GetAnalogMax();

This function reads out the maximum voltage for the analog input.
The function corresponds to the serial command "ZR*, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

\Y) Nanotec’

PLUG & DRIVE

2.5.8 “util” class

util.GetMillis
Declaration:
static native int GetMillis(Q);
Reads out the time since the controller was switched on in milliseconds.
util.Sleep
Declaration:
static void Sleep(int ms);
Waits for ms milliseconds.
util.TestBit
Declaration:
static boolean TestBit(int value, int whichone);
Checks that a bit is set.
value = value that contains the bit to be checked
whichone = specifies which bit should be tested
0 corresponds to the lowest bit
Return = true if the bit is set, otherwise false
util.SetBit
Declaration:
static int SetBit(int value, int whichone);
Sets a bit in an integer.
Value = value to which the bit should be set
whichone = specifies which bit should be set
0 corresponds to the lowest bit
Return = the changed value
util.ClearBit

Declaration:
static int ClearBit(int value, int whichone);
Deletes a bit in an integer.

Value = value in which the bit should be deleted
whichone = specifies which bit should be deleted
0 corresponds to the lowest bit
Return = the changed value
util.SetStepMode
Declaration:
static native void SetStepMode(int value);
This function sets the step mode.

The function corresponds to the serial command "g<value>", see command 1.5.6
Setting the step mode.

Contained in firmware versions later than 15.03.2010.

\Y Nanotec’

PLUG & DRIVE

util.GetStepMode

Declaration:
static native int GetStepMode();

This function reads out the step mode.
The function corresponds to the serial command "Zg*, see 1.3 Read command.

Contained in firmware versions later than 15.03.2010.

.’) Nanﬂtecé) Programming manual

RLG & DaivE Valid as of firmware 25.01.2013
Programming with Java (NanoJEasy)

2.6 Java programming examples

Some brief example programs follow. The programs are available as source code and
in already compiled form in the “Examples” directory.

2.6.1 AnalogExample.java
/** Reads the analog value every 2 seconds and moves to a
* position calculated from it
*
* %/
import nanotec.*;
class AnalogExample {
/** Reads out the analog value and calculates
* a target position from it
*
* %/
static int CalculateTargetPos(){
int pos = io.GetAnalogInput(1);
pos = (pos * 2) - 1000;

return pos;

public static void main() {

//Configure the motor

util.SetStepMode(4); //1/4 step
drive.SetTargetPos(9); //Target position:®o
drive.SetMaxSpeed(2000); //Speed
drive.SetMode(2); //Absolute positioning

//Main loop

while(true){
io.SetLED(1);
util.Sleep(100);

io.SetLED(9);
util.Sleep(1800);

drive.StopDrive(9);
drive.SetTargetPos(CalculateTargetPos ());

drive.StartDrive();

Issue: V2.7 175 of 250

Programming manual
Valid as of firmware 25.01.2013
Programming with Java (NanoJEasy)

\Y Nanotec’

PLUG & DRIVE

2.6.2 DigitalExample.java

/** When input 1 is active, the LED is switched on

* When input 2 is active, the value of the analog input is sent via the

* serial interface

*

*

**/

import nanotec.*;

class DigitalExample {

public static void main() {

int input = 0;

int cnt = 03

//Main

loop

while(true){

input = io.GetDigitalInput();

//Bit @ corresponds to input 1
if(util.TestBit(input,0)){

io.SetLED(1);
} else {

io.SetLED(©9);
}
cnt ++;

//Do not send analog value permanently since //hard to
read

if(util.TestBit(input,1) && ((cnt % 50) == 0)){
comm.SendInt(io.GetAnalogInput(1l));

176 of 250

Issue: V2.7

.,) Nanﬂtec® Programming manual

RLG & DaivE Valid as of firmware 25.01.2013
Programming with Java (NanoJEasy)

2.6.3 TimerExample.java

/** Example for a timer realized with GetMillis()

*

* The program causes the red LED to flash
**/

import nanotec.*;
class TimerExample {
public static void main() {

//Main loop

while(true){
io.SetLED(1);
util.Sleep(200);
io.SetLED(9);
util.Sleep(1800);
}

Issue: V2.7 177 of 250

Programming manual .,) Nanﬂtec®

Valid as of firmware 25.01.2013 PLUG & DRIVE
Programming with Java (NanoJEasy)

2.6.4 ConfigDriveExample.java
/** Configures the motor for absolute positioning
* and moves back and forth between 2 positions

* with different speeds

**/
import nanotec.*;
class ConfigDriveExample {
public static void main() {

//Configure the motor

drive.SetMode(2); //Absolute positioning
drive.SetMinSpeed(100);

drive.SetAcceleration(2000); //Ramp
drive.SetCurrent(10); //Current

drive.SetCurrentReduction(1); //Current for reduction

util.SetStepMode(2); //1/2 step
mode
//Main loop
while(true){
drive.SetMaxSpeed(1000); //Speed
drive.SetTargetPos(1000); //Target
drive.StartDrive();
util.Sleep(4000); //Wait 4 seconds
drive.SetMaxSpeed(2000); //Speed
drive.SetTargetPos(19); //Target
drive.StartDrive();
util.Sleep(2000); //Wait 2 seconds
}
}
}

178 of 250 Issue: V2.7

\Y Nanotec’

PLUG & DRIVE

2.6.5 DigitalOutput.java

/**Sets the outputs and sends the current status

* via the serial interface

*

**/

import nanotec.*;

class DigitalOutput {

public static void main() {

util.Sleep()s

io.SetDigitalOutput(1);
comm.SendInt(io.GetDigitalOutput());
util.Sleep();

io.SetDigitalOutput(2);
comm.SendInt(io.GetDigitalOutput());
util.Sleep();

io.SetDigitalOutput(4);
comm.SendInt(io.GetDigitalOutput());
util.Sleep();

io.SetDigitalOutput(7);
comm.SendInt(io.GetDigitalOutput());
util.Sleep();

io.SetDigitalOutput(2);
comm.SendInt(io.GetDigitalOutput());
util.Sleep()s

Programming manual .,) Nanatec®

Valid as of firmware 25.01.2013
Programming with Java (NanoJEasy)

PLUG & DRIVE

2.6.6 ExportAnaloglin.java

/** Reads the analog value and scales it. The result

* is written to the "Joystick mode dead range" setting.

* In this way, the current value can be read out with the 'Z='
* command (e.g. #1Z= for motor ID 1)

* Please note: Since the setting for the dead range is changed,
* this program cannot be operated together with an analog

* mode.

*/
import nanotec.*;
class ExportAnalogIn {
public static void main() {

while(true){
util.Sleep(1000);

io.SetAnalogDead((io.GetAnalogInput(l) - 500) / 10);

180 of 250

Issue: V2.7

\Y) Nanotec’

UG & DRIVE

2.7 Manual translation and transfer of a program without
NanoJEasy

2.7.1 Necessary tools

Introduction

Java SE

ejvm_linker

Alternatively to the translation and transfer of programs from the programming
environment, programs can also be translated and transferred manually. However, it is
recommended that you use NanoJEasy since it is more comfortable to use and less
fault-prone.

NanoJEasy contains the free Java compiler gcj of the GNU project to translate Java
files. It is located within the NanoJEasy installation directory in the java/bin directory.

Alternatively, the standard Java implementation Java SE from Oracle can also be
used. The JDK (Java Development Kit) can be downloaded free of charge from the
oracle.com website.

The ejvm_linker is a command line program which converts Java.class files in such a
way that they can be processed by the controller.

It is not essential to install the program. It is helpful, however, if you enter it in the
PATH variable. This means it is not necessary to enter the complete path when
starting the program.

Proceed as follows for entering the program in the PATH variable:

Step Implementation

1 Under Start -> Settings -> System driver -> System, select the
“Advanced” tab.

Click on the <Environment variables> button.

Mark the variable in the “System variables” window.

Click on <Edit> under the “System variables” window.

Enter the NanoJEasy installation path under “Value of the variables”.

o~ WIN

Click on <OK>.

Firmware utility

ejvm_emulator

The firmware utility (version 1.2 or higher required) is used for transferring firmware or
program files to a controller. The program does not have to be installed; it is sufficient
to execute firmware_util.exe.

The ejvm_emulator is used for the function test of the program on the PC. The
emulator can simulate problems such as a stack overflow on the VM.

Y Nanotec’

PLUG & DRIVE

2.7.2 Translating the program

The program must be translated with the GNU Java compiler:

gcj-exe —C Myprogram. java

Alternatively, the program can be translated with the normal Java SE compiler:
Javac.exe Myprogram.java

The result is a .class file which contains the finished program in binary form:
Myprogram.class

“Myprogram” is the placeholder for the name of your program.

2.7.3 Linking and converting a program

Overview

Before the program can be transferred to the controller, it must be linked and
converted. This is carried out with the aid of the ejvm_linker.exe. Some checks are
also carried out during the conversion, especially of the program size.

Starting ejvm_linker.exe

Enter:
ejvm_linker._.exe Myprogram.class Myprogram.prg

“Myprogram” is the placeholder for the name of your program.

Usually, the Nanotec classes that can be linked need to be additionally specified:

ejvm_linker.exe Myprogram.class nanotec\comm.class
nanotec\config.class nanotec\drive.class nanotec\io.class
nanotec\cl.class nanotec\util.class nanotec\dspdrive.class
nanotec\capture.class Myprogram.prg

Result

The result of the linking and conversion is a .prg file which can be loaded into the
controller:

Myprogram.prg

\Y Nanotec’

PLUG & DRIVE

2.7.4 Transferring the program to the controller

Firmware utility dialog window
The transfer to the controller is performed using the firmware utility:

a_.!l‘lanotec Firmware Utility 1.30 - |E||5|
File Configuration Edit Help
Firmware Java I Configuration I
I~ Enable Log Swirite Firmuware
Send Command | [~ Enable Poling Clear EEPROM
Motor Mumber. |1 vl Test B Busler AutoFlash

Procedure
Proceed as follows for entering the program in the PATH variable:

Step Implementation

1 Open the “Configuration” menu item and enter the correct COM port and
a baud rate of 115,200.

2 Check that the number that appears in the “Motor Number” input field
agrees with the position of the hex switch of the controller (for more
details, see the manual of the controller).

3 Open the File -> Open menu item and select the .prg file of your program.
The upper text field of the firmware utility is filled out.

4 To transfer the program to the controller, click on the <Transfer Program>
button.

2.7.5 Executing the program

Firmware utility

Serial commands can also be transferred to the controller with the firmware utility. To
do this, enter the desired command in the text field with the <Send Command> button.

The commands listed in the following sections are available:

(JA ... starts the loaded Java program " \f "q

This command starts the program. (JA+ is received as the response if the program
was started successfully or (JA- if the program could not be started (no valid or no
program at all installed on the controller). See also Section 1.8.2 Starting the loaded
Java program.

\Y) Nanotec’

PLUG & DRIVE

(JS ... stops the running Java program " \f "q

This command stops the program.

(JS+ is received as the response if the program was stopped successfully or (JS- if
the program was already ended. See also Section 1.8.3 Stopping the running Java
program.

(JB ... automatically starts the Java program when switching on the controller " \f "q

This command can be used to determine whether the program is started automatically
when the controller is switched on:

(JB=1 the program is started automatically.

(JdB=0 the program is not started automatically.

See also Section 1.8.4 Automatically starting the Java program when switching on the
controller.

(JE ... reads out the error of the Java program " \f "q

This command reads out the last error:

ERROR_NOT_NATIVE

ERROR_FUNCTION_PARAMETER_TYPE

ERROR_FUNCTION_NOT_FOUND
ERROR_NOT_LONG
ERROR_UNKNOWN_OPCODE
ERROR_TOO_MANY_PARAMS
ERROR_NO_MAIN_METHOD
ERROR_CP_OUT_OF RANGE
ERROR_LOCAL_VAR_OUT_OF RANGE
ERROR_NOT_AN_VAR_IDX
ERROR_VAR_IS_NO_INT
ERROR_STACK_OVERFLOW
ERROR_STACK_UNDERFLOW
ERROR_HEAP_OVERFLOW
ERROR_HEAP_UNDERFLOW
ERROR_FRAME_OVERLOW
ERROR_UNKNOWN_DATATYPE
ERROR_LOCAL_VAR_OVERFLOW

MmO O ® > © 0 N O o W N P

[
= O

12

See also Section 1.8.5 Reading out the Java program error and 2.8 Possible Java
error messages.

(JW ... reads out the warning " \f "q

This command reads out the last warning:
WARNING_FUNCTION_NOT_SUPPORTED

To display the outputs of the program, the checkmark must be set against “Debug
Log” (see “DigitalOutput.java” program example). See also Section 1.8.6 Reading out
the warning of the Java program.

1

\) Nanotec’

PLUG & DRIVE

2.8 Possible Java error messages

Meaning of the error messages

The error messages read out with the “JE" command have the following meaning:

Index

Error message

Meaning

1

ERROR_NOT_NATIVE

This command is not
supported by the controller.

ERROR_FUNCTION_PARAMETER_TYPE

The transfer parameter of a
function has the wrong type
(e.g. “float” instead of “int”).

ERROR_FUNCTION_NOT_FOUND

An unknown function has
been called up.

Check that all files have been
included.

See also Section 2.4.3
Integrated commands
(Include Manager).

ERROR_NOT_LONG

An incorrect data type is
being used (should be
“long”).

ERROR_UNKNOWN_OPCODE

A Java function that is not
supported is being called up
(e.g. “new”).

ERROR_TOO_MANY_PARAMS

The number of parameters in
the call-up of a function is not
correct.

ERROR_NO_MAIN_METHOD

The “public static void main()”
function is missing.

ERROR_CP_OUT_OF RANGE

Memory error; Check that all
files have been included. See
also Section 2.4.3 Integrated
commands (Include
Manager).

ERROR_LOCAL_VAR_OUT _OF RANGE

Memory error: Check that all
files have been included. See
also Section 2.4.3 Integrated
commands (Include
Manager).

ERROR_NOT_AN_VAR_IDX

Memory error: Check that all
files have been included. See
also Section 2.4.3 Integrated
commands (Include
Manager).

ERROR_VAR_IS_NO_INT

An incorrect data type is
being used (should be “int").

ERROR_STACK_OVERFLOW

Stack overflow: Too many
function calls have been
nested within one another
(possibly recursion too deep).

\Y Nanotec’

PLUG & DRIVE

Index

Error message

Meaning

ERROR_STACK_UNDERFLOW

Stack underflow: Check that
all files are included. See
also Section 2.4.3 Integrated
commands (Include
Manager).

ERROR_HEAP_OVERFLOW

Heap overflow: Too many
function calls have been
nested within one another
(possibly recursion too deep).

ERROR_HEAP_UNDERFLOW

Heap underflow: Check that
all files have been included.
See also Section 2.4.3
Integrated commands
(Include Manager).

10

ERROR_FRAME_OVERLOW

Frame overflow: Too many
class call-ups have been
used.

11

ERROR_UNKNOWN_DATATYPE

An unknown data type is
used.

12

ERROR_LOCAL_VAR_OVERFLOW

Memory error; Check that all
files have been included. See
also Section 2.4.3 Integrated
commands (Include
Manager).

See also Section 1.8.5 Reading out the Java program error and Section 2.7.5
Executing the program.

\Y) Nanotec’

PLUG & DRIVE

3 Programming via the COM interface

3.1 Overview

About this chapter

This chapter contains an overview of the COM interface for programming the Nanotec
stepper motor controllers.

Operating systems and NanoPro versions

The functions required for serial communication with the stepper motor controllers are
currently only written for the Windows operating system and its derivates (x64).

This documentation is valid from NanoPro version 1.60.0.0 and SDK version 1.60.0.0.

Prerequisites

To develop a program for controlling the stepper motor controllers, the following
preconditions must be fulfilled:

e Programming knowledge is required.

e The SDK (Software Development Kit) for “NanoPro” should be installed. The
PDA4l.dll command is registered on its installation.

e The .net framework 2.0 must be installed.

Programming environments

Microsoft Visual Studio or any other suitable high language IDE can be used as the
programming environment. The sample projects delivered with NanoPro were created
with Microsoft Visual Studio.

Programming examples

Several examples for the use of CommandsPD41 are provided in the NanoPro
installation directory in the SDK\example subdirectory. All examples are implemented
as projects for Microsoft Visual Studio.

)] Nanotec

LUG & DRIVE

3.2 Command overview

A list of the commands for programming via the COM interface can be found below:

Baudratecocoeeiiieiie e 193
ChOOSERECONM......ccvvieiiiieiieeie e 196
DecreaseFrequencyccccceeeennnnnnnnnnnnn. 195
Errorflag.....cceeeeeiecciieee e, 192
ErrorMessageString........coccvvvveeveeeesvcvvnnnnnn, 192
ErrorNumber........ccooovvvei e, 192
GetAnalogAmplitude..........cccoooeeeiniinennnne, 232
GetAnalogOffSet......uvveiviiieeiiiieeeeee e 233
GetAnalogueMaX........ccovveeeiiiiiee i 206
GetAnalogueMin.........ccoocveeeiiiiie e 206
GetAngelDeviationMaX...........ccceeeviveeennnnen. 206
GetAvailableMotorAddresses...........cceeneee. 193
GetBrakeJerk.......ccoocvveiiiiiiiii e 212
GetBrakeRampoccvuveeeieiiiiiieieceeeeee 211
GetBrakeTA ... 217
GetBrakeTB......cccoe i 217
GetBrakeTC.....coooiiiiiieiieeree e 218
GetBreak........cccovieiiiie 197
GetCascIsEnabled...........cccocviiiiiiiineen 233
GetCasCStartcoocvvveircee e 233
GetCasCSIOP .vvvvvvieiiriiieeie e 233
GetCLLoadANglecooiviiiieiiceeeeee 213
GetCLNodeDistance..........ccccovcvveeeenieeeennnee 234
GetClockinterpolated.........c.cccooiviieeieeennnnns 234
GetCloSEdLOOP...cie et 213
GetClosedLoopOlaCurrent.........cccccceeeeeenes 213
GetClosedLoopOlaLoadAngle..................... 214
GetClosedLoopOlaVelocitycccveeenee 214
GetCLPOSCNTOSSELcovvveeeiiieieeiiieeeee 234
GetCurrentPeak.........cccocvevieinie e 232
GetCurrentReduction.............ccocvverveerineenns 204
GetCUurrenNtTiMeociveeeie e 232
GetDebounceTimecoovvveeeiniieee e 201
GetDIreCtion........ceveiviiiieiieee e 209
GetDirectionReversecccovceeeeviieeennnnnn, 209
GetEnableAutoCorrectccoccveeeiiieeennnee 203

GetEncoderDirectioncooceveeeeevivieeieeennnnns 210

GetEncoderRotaryccoceeiviieeeiniieneenns 210
GEtEIMOr .. 203
GetErrorAddress.........oeeevvveeeiiiieee e 203
GetFeedConstDenum.........ccccocveeeeiiieeennes 232
GetFeedConsStNUMccovviiiiiiiie e 231
GetFollowingErrorTimeout...........cccceeeeeneee 216
GetFollowingErrorWindowccccceeeeeinnes 215
GetlnputlSelectioncccceeeviieeeiiiieeeenns 226
Getlnput2Selectioncccceevveeeiiiieeeenns 226
Getlnput3Selectionccccccoeviiiiiiieeneneenn. 227
GetlnputdSelectioncccccceeviiiiiiiieenenennn. 227
GetlnputbSelectionccceeevviieeiiiieeeens 227
GetlnputeSelectioncccceevvveeeiiciieeeenee 228
Getlnput7Selectioncccceevveeeevcieeeenee 228
GetInput8Selectionccccevvvveeeiciieeeenee 228
GetlnputMaskEdgecceeevevivieiieeeeeiinins 200
GELIO ...t 199
GetIerk .o 211
GEetKDCSSN ...ooviiiiiiiiiieeeeee e 224
GEtKDCSSZ.....oeviiiiiiiiiieet e 223
GEetKDCSVNooiiiiiiiiiiicicec e 226
GEtKDCSVZ.....ooiiiiiiiiiieiiie e 225
GetKDSN ..., 220
GetKDSZ ..., 219
GetKDVUN ..., 222
GetKDVZ ..., 221
GetKICSSNooiiiiieiiee e 223
GEtKICSSZ ..o 223
GetKICSYNociiiiiiiieccee e 225
GEetKICSVZ ..o 225
GetKISN ... 219
GetKISZ ... 219
GetKIVN oo 221
GetKIVZ .o 221
GEetKPCSSN ...oooiiiiiiiieeee e 222
GEetKPCSSZoivieiiiiiece e 222
GEetKPCSVN ...oovviiiiiiiiiiiiice e 224

)] Nanotec

LUG & DRIVE

GetKPCSVZ ... 224
GetKPSN.. .o, 218
GetKPSZ ... 218
GetKPVYN ... 220
GetKPVZ ... 220
GetLimitSwitchBehaviorccccovevveennen. 205
GetMaxFrequeNCycooeeeeeeeeeeeecececeecee e 197
GetMaxFreqUEeNCY2........cccevvvvivieeeeeeneinenns 208
GetMOtorAddressccoovveeeeviieeeerieee e 202
GetNextOperation............ccceeevieeeiniieee e 204
GetOutputlSelectioncccocvveeeviiieeenninn 229
GetOutput2Selectionccoccvveeeviieeennnne 229
GetOutput3Selectioncccocveeeeriiieeenninne 229
GetOutputdSelectionccccevcvveeeviiieeeenne 230
GetOutputsSelectionccccevvveeeviieeeeene 230
GetOutputbSelectionccccccveveeviiieeeenne, 230
GetOutput7Selectionccccoevcvvveeeeeeeiiinnns 231
GetOutput8Selectionccoovcvvvvveeeeeiiinnns 231
GetPhaseCurrent..........ocveveereeiieee e 204
GetPlayeveeiiiiiee 200
GetPOSItION ... 199
GetPOSItIONTYPE ..ocovvieeeeieeee e 207
GetPositioNWindowccccooveeeiiiieeennee 214
GetPositionWindowTimecccceevveeeennnn. 215
GetQuickStoppRaMP.....eevveeiiiiiiiiiiieeeeee 212
GetRamMpP .o 196
GetRampType ..o, 210
GetRepeaLlvv v 212
GetReverseClearance..........cccocceevceeenieenne. 205
GetRotationModecccoevveiiieeriienieen 209
GetROteNCINC........coociieeiiee e 216
GetSendStatusWhenCompleted 199
GetSoftwareFilter........ccocovvieiiiiciee e 201
GetSpeedErrorTimeouteveevvccvvieeeeeeneenes 216
GetSpeedErrorWindow...........occeeeeviieeennnne 215
GetStartFrequencyccccceeevivviiieieeeee e 208
GetStatusByteooovcvvvieiiiii 193
GetStepModecoovviviiiiiiee e 202
GetStEPS... i 207

GetSWINngOULTIME ... 203

GetVErSIONveviii e 198
HasEndedTravelProfileAndStartinputStillActive

... 194
HasPOSItIONEITOr.........ccccviiiiieieiiiee e, 194
INCreaseFreqUEeNCYeeeeeeeeeeeeeeeeeeeennnns 195
IsAnalogModeACtiVeceeeeeieeiiiiiiiieen, 194
IsAtReferencePositioncccovcvvevveennnen. 193
IsClockDirectionModeActiveccouee.. 194
IsFlagPositionModeActiveccccvvveeee.. 194
ISJoyStickMOdeACHIVEcocvveeiiiiieeiee, 194
ISMasterMOodeACHIVEccovcveveeiiiieeene 195
ISMOtOrREadYccuvvviiiiiieeieee e 193
ISPositionModeACtIVe...........ccceveeiiiieeeie 194
IsSSpeedModeACtIVEccevvveveeiiiiee e 194
ISTorqueModeACtIVEcccovvvveeiiiiee e 194
MOLOrAdAreSSe. ...ccvvveireeeieeee e 193
QuickStopTravelProfilecccccvvvveeeins 195
ResetAllSettings.......ccvveevivciviieree e 198
ResetPOoSItIoNEIOr ..o, 198
SelectedPoOrtoocoveeiiiiiie 193
SendCommandStringcccovcveeevnierennnnne. 234
SerialPortsccveeiiiiee 192
SetAnalogAmplitudeccooiiiiiininnne. 232
SetAnalogOffset.......cccvveeiiiiiiiiiie 233
SetAnalogueMaX........cceevveeeeiiiiieeniiiineene 206
SetAnalogueMin.........ccocceeeeiiiiiiiiieeecee e 206
SetAngelDeviationMaXcccceveeeeeeeninns 206
SetBrakeJerkccocvvveiiiiiiniie e 211
SetBrakeRamMpP.......coovcvvvieiiee e 211
SetBrakeTA. ..o 217
SetBrakeTB......ccccevviieiiiiie e 217
SetBrakeTC ... 217
SetBreak ... 196
SetCascStart. ..o 233
SetCasCSIOP ..uuviviieiiiiriret e 233
SetCLNOdeDIStanCeccceevvvveeeeiiiieeenns 234
SetClockinterpolated.............cccooiiiiieenennnn. 234
SetClosSedLoopcoovvvviiieeieeiiiiiiieeeeeen 213
SetCLPOSCNTORSEL.....ccovvieeeiiiieeeciieeeee 234
SetCurrentPeakccoceeeieeiniieiiiieieee 232

)] Nanotec

LUG & DRIVE

SetCurrentReductioncccovcveeeiiieeeenne 204
SetCurrentTimeocvveviieeieeee e 232
SetDebounceTime........cocoevieerieeiiieeiieee 200
SetDIreCONccovee e 197
SetDirectionReverse.........ccccveeerceeenneennn 209
SetEnableAutoCorrect........cccocvvvieverneenene, 203
SetENcoderDireCtion...........cccevevverererenneennn 210
SetFeedConstDenum...........cocceeeeviieeeeinee 231
SetFeedConstNUMocccveiiiiieeiriieee 231
SetFollowingErrorTimeout.............ccveeeeeee. 216
SetFollowingErrorWindowccccoeeneeeee 215
SetinputlSelectioncccceevvieieiniieeenee 226
Setlnput2Selectionccccevviieeiiiieeenenn 226
Setlnput3Selectionccceevviieiiiiieee e, 226
Setlnput4Selectionccccceevvviieeiiieeee e, 227
Setlnput5Selectionccocceevvciveeiiieeee e, 227
Setlnput6Selectionccccceevveciiieeeeeennen, 227
Setlnput7Selectionccccceevviiiiiieiieeen s 228
Setlnput8Selectionccccceevviiiiiieeeeennenne 228
SetinputMaskEdgeccocceiviiiiiiiiineneee, 200
SetlO. ., 199
SetIErK. oo 211
SetKalibrierModusccoceiviiiiiiiiineeene 213
SEtKDCSSNoiiiiiiiiiiii e 223
SEtKDCSSZ.....ovviiiiiiiiiiieiieee e 223
SEtKDCSVNooviiiiiiiiiiecc e 225
SetKDCSVZ.....cooiiiiiiiee 225
SEetKDSN .., 219
SEtKDSZ ..., 219
SEtKDVN ..., 221
SEtKDVZ ... 221
SEetKICSSN ... 223
SEetKICSSZ ..o 222
SEetKICSVN ...oiiiiiiiiiiieee e 225
SEtKICSVZ ..o 224
SEetKISN.....oiiiiiiee e 219
SetKISZ ..., 218
SetKIVN.....o 221
SetKIVZ ..., 220
SetKPCSSN ..., 222

SEtKPCSSZ ... 222
SEtKPCSVN ...oiiiiiiiiiic e 224
SEtKPCSVZ ...t 224
SetKPSN ..., 218
SetKPSZ.... 218
SEtKPYN ..o 220
SEtKPVZ....ooeiii 220
SetLimitSwitchBehaviorccccovveeennee. 205
SetMaxFrequenCy........ccccccveeeiniiiiiieeeneeeennn 197
SetMaxFrequency?2.........ccccccevvvicrineeeneeeenn 208
SetMOdUS8.....coiieeiiieee e 213
SetMOtOrAddressvvvevvieeeeiiiiee e 202
SetNextOperationcccccoviiiieeeeneeenennns 204
SetOutputlSelection........ccccevcvveiviieeeennee, 228
SetOutput2Selection........cccccovcvvveeviieeeennnee, 229
SetOutput3Selection........cccccoccvveeviieeeenee 229
SetOutputdSelection.......cccccoevecvvveeeeeeniinns 229
SetOutputsSelection........ccccoevecvvveeeeeeniinns 230
SetOutputbSelection........ccccoevecvvveeeeeeniinns 230
SetOutput7Selection.........cccoevecvvvieereeninnnns 230
SetOutput8Selection.......ccccccevecvvvieereeeinnns 231
SetPhaseCurrentccoccvveeviieeeniiineeee 204
SetPlay......ccooiiiiie 200
SetPoSItIONTYPE...cooiiiiiieeeee e 207
SetPositioNWINAOWcooceeiiiiiniee e 214
SetPositionWindowTime..........cccceevvveeennee 214
SetQUICKStOPPRAMP ...ooevvieeeiiiieee e 212
SetRamp ... 196
SetRampType...ccooeeeeeeeeeeeeeee 210
SEtRECOI ...ooiiieiiieiee e 200
SetREPEAL......ccveii i 212
SetReverseClearance..........cccccevvvveeennnen. 205
SetRotationModeccoceevviiiiiiniieeene 198
SetROteENCINCccovviiiieie s 216
SetSendStatuswhenCompleted................. 199
SetSoftwareFilter ... 201
SetSpeedErrorTimeoutcccvvveeeeeeeinnnns 216
SetSpeedErrorWindowcccceeeeeeennnns 215
SetStartFrequency..........ccooeeeieeeeee e, 208

SetStepModeocooviviiiiieee e 201

\Y Nanotec’

PLUG & DRIVE

Programming manual
Valid as of firmware 25.01.2013
Programming via the COM interface

SEetStePS ... 207
SetSuppressRESPONSE......ccveeevviiiiieeieeenene 208
SetSWINgOULTIME......coovviiieeeciie e 203
StartTravelProfile...........cccooeeriiiiiiiiee 195

StopTravelProfile ... 195
510 o] o o] 1 1o PP RRRRRN 193
LI 1o o =IO] o PSR 196

Issue: V2.7

191 of 250

Y Nanotec’

PLUG & DRIVE

3.3 Description of the functions

3.3.1 General information

Methods

There are two categories of methods:

¢ Set methods which pass information to the controller. The value returned in the
'Set' method can be used to check that the information has also been sent to the
controller.

e Get methods that fetch information from the controller.

Calling up the status of the objects

Information on the status of the object can be called up explicitly after every call-up of
the method with the following functions:

e Errorflag this function returns the error status
e ErrorNumber this function returns the error number
e ErrorMessageString this function returns a description of the error

3.3.2 List of functions

ErrorFlag
Definition:
bool ErrorFlag
If this variable has the value true, an error occurred.
ErrorNumber

Definition:
int ErrorNumber

If an error occurred, this variable stores the number of the error.

ErrorMessagesString
Definition:
string ErrorMessageString

If an error occurred, this variable stores the description of the error.

SerialPorts
Definition:
string[] SerialPorts

This field contains a list of available serial interfaces of the computer system.

Y Nanotec’

PL

UG & DRIVE

SelectedPort

Baudrate

Supportlog

Definition:
string SelectedPort
This variable is used to define the serial interface to be used (e.g. "COM1").

Definition:
int Baudrate

This variable is used to define the transmission rate to be used.

Definition:
bool Supportlog
This variable is used to define whether a support log should be written.

GetAvailableMotorAddresses

Definition:
IList<int> GetAvailableMotorAddresses

This field contains a list of possible motor addresses.

MotorAddresse

GetStatusByte

IsMotorReady

Definition:
int MotorAddresse
This variable defines the motor addresses to be used for communication.

Definition:
byte GetStatusByte()
This function can be used to query the status byte of the controller.

The function corresponds to the serial command "$*.

Definition:
bool IsMotorReady()
This function returns true if bit O in the status byte is set (controller is ready).

IsAtReferencePosition

Definition:
bool IsAtReferencePosition()

This function returns true if bit 1 in the status byte is set (zero position reached).

Y Nanotec’

PLUG & DRIVE

HasPositionError
Definition:
bool HasPositionError()

This function returns true if bit 2 in the status byte is set (position error).

HasEndedTravelProfileAndStartinputStillActive
Definition:
bool HasEndedTravelProfileAndStartinputStillActive()
This function returns true if bit 3 in the status byte is set (input 1 is set while controller
is ready again).
IsPositionModeActive
Definition:
bool IsPositionModeActive()

This function returns true if the positioning mode is active.

IsSpeedModeActive
Definition:
bool IsSpeedModeActive()

This function returns true if the speed mode is active.

IsFlagPositionModeActive
Definition:
bool IsFlagPositionModeActive()

This function returns true if the flag positioning mode is active.

IsClockDirectionModeActive
Definition:
bool IsClockDirectionModeActive()

This function returns true if the clock direction mode is active.

IsJoyStickModeActive
Definition:
bool IsJoyStickModeActive()

This function returns true if the joystick mode is active.

IsAnalogModeActive
Definition:
bool IsAnalogModeActive()

This function returns true if the analog mode is active.

IsTorgueModeActive
Definition:
bool IsTorqueModeActive()

This function returns true if the torque mode is active.

\Y) Nanotec’

PLUG & DRIVE

IsMasterModeActive
Definition:
bool IsMasterModeActive()

This function returns true if the master mode ("!10") is active.

StartTravelProfile
Definition:
bool StartTravelProfile()
This function can be used to start the travel profile.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "A*.

StopTravelProfile
Definition:
bool StopTravelProfile()
This function can be used to stop the travel profile.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "S1°-.

QuickStopTravelProfile
Definition:
bool QuickStopTravelProfile()
This function can be used to stop the travel profile rapidly.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command *S*.

IncreaseFrequency
Definition:
bool IncreaseFrequency()
This function increases the frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " +*.

DecreaseFrequency
Definition:
bool DecreaseFrequency()
This function decreases the frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " -".

Y Nanotec’

PLUG & DRIVE

TriggerOn
Definition:
bool Triggeron(Q)
This function sends the trigger command to the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "T*".

SetRamp
Definition:
bool SetRamp(int ramp)
This function sets the acceleration ramp.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "b*.

SetBreak
Definition:
bool SetBreak(double breakTime)
This function sets the pause time in milliseconds.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "P*~.

ChooseRecord
Definition:
bool ChooseRecord(int recordNumber)
This function loads a specific record (travel profile).

The recordNumber parameter is the record number (travel profile) that should be
loaded.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "y*".

GetRamp
Definition:
int GetRamp(int operationNumber)
This function reads out the acceleration ramp.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "Zb*.

)] Nanotec

UG & DRIVE

GetBreak

SetDirection

Definition:
int GetBreak(int operationNumber)
This function reads the pause time in milliseconds.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "ZP".

Definition:

bool SetDirection(int direction)
This function sets the direction of rotation of the motor.
e direction = 0 corresponds to left
o direction = 1 corresponds to right

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command “d*.

SetMaxFrequency

Definition:
bool SetMaxFrequency(int maxFrequency)
This function sets the target frequency.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "o°".

GetMaxFrequency

Definition:
int GetMaxFrequency(int operationNumber)
This function reads out the target frequency.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "Zo".

)] Nanotec

LUG & DRIVE

SetRotationMode

Definition:
bool SetRotationMode(int rotationMode)
This function sets the encoder monitoring mode.
e rotationMode = 0 corresponds to switched off
¢ rotationMode = 1 corresponds to checking at the end
¢ rotationMode = 2 corresponds to checking during travel

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The "Check during travel" setting exists for compatibility reasons and is equivalent to
the "Check at end" behavior. To actually make a correction during travel, the closed
loop mode should be used.

The function corresponds to the serial command "U*".

ResetPositionError

Definition:
bool ResetPositionError(bool useEncoderValue, iInt position)

This function can be used to reset a position error and set the value of the position
counter.

e useEncoderValue = true: set position counter to value displayed by the encoder
e useEncoderValue = false: set position counter to the value of the position variable

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "D".

ResetAllSettings

GetVersion

Definition:
bool ResetAllSettings()

This function sets all settings of the controller back to default values (factory default
settings).

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " ~".

Definition:
string GetVersion()
This function returns the version string of the controller.

The function corresponds to the serial command "v*.

Y Nanotec’

LUG & DRIVE

SetSendStatusWhenCompleted

Definition:
bool SetSendStatusWhenCompleted(bool sendStatus)
This function switches the independent sending of a status at the end of a travel.
e sendStatus = 0: automatic sending off
e sendStatus = 1: automatic sending on

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command *J*.

GetSendStatusWhenCompleted

GetPosition

GetlO

SetlO

Definition:
bool GetSendStatusWhenCompleted()

This function reads whether the independent sending of a status at the end of a run is
switched on.

¢ sendStatus = 0: automatic sending off
e sendStatus = 1: automatic sending on

The function corresponds to the serial command “ZJ*.

Definition:
int GetPosition()
This function outputs the value of the position counter.

The function corresponds to the serial command "C*.

Definition:
int GetlO(Q)
This function returns the status of the inputs as an integer value.

The function corresponds to the serial command "ZY*".

Definition:
bool SetlO(int i0)

This function sets the status of the outputs via an integer value.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "Y*

\Y) Nanotec’

PLUG & DRIVE

SetinputMaskEdge

Definition:
bool SetlnputMaskEdge(int ioMask)
This function sets the polarity of the inputs and outputs.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

Refer to the serial command "h*" for an exact description of the usage.

GetlnputMaskEdge

SetRecord

SetPlay

GetPlay

Definition:
int GetlnputMaskEdge()
This function outputs the current polarity of the inputs and outputs.

The function corresponds to the serial command "Zh*.

Definition:
bool SetRecord(int recordNumber)

This function saves the record parameters previously set in the record with the
number passed in the parameter.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command ">".

Definition:
bool SetPlay(int play)
This function sets the dead range of the analog input.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command *=".

Definition:
int GetPlay()
This function returns the value of the dead range of the analog input.

The function corresponds to the serial command “Z=".

SetDebounceTime

Definition:
bool SetDebounceTime(int debounceTime)
This function sets the debounce time for the inputs in milliseconds.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "K*".

Y Nanotec’

PLL

JG & DRIVE

GetDebounceTime

Definition:
int GetDebounceTime()
This function returns the debounce time for the inputs in milliseconds.

The function corresponds to the serial command " ZK*.

SetSoftwareFilter

Definition:
bool SetSoftwareFilter(int softwareFilter)
This function sets the value for the filter of the analog input.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " f~.

GetSoftwareFilter

SetStepMode

Definition:
int GetSoftwareFilter()
This function reads out the value for the filter of the analog input.

The function corresponds to the serial command " Zf~.

Definition:

bool SetStepMode(int stepMode)
This function sets the step mode.
e stepMode = 1 corresponds to a full step
e stepMode = 2 corresponds to half of a step
e stepMode = 4 corresponds to a quarter of a step
e stepMode = 5 corresponds to a fifth of a step
e stepMode = 8 corresponds to an eighth of a step
e stepMode = 10 corresponds to a tenth of a step
e stepMode = 16 corresponds to a 16th of a step
e stepMode = 32 corresponds to a 32nd of a step
e stepMode = 64 corresponds to a 64th of a step
o stepMode = 254 corresponds to the feed rate
e stepMode = 255 corresponds to adaptive microstep

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "g*~.

Y Nanotec’

PLUG & DRIVE

GetStepMode

Definition:
int GetStepMode()
This function reads out the current step mode.
e Return = 1 corresponds to full step
e Return = 2 corresponds to half of a step
e Return = 4 corresponds to a quarter of a step
e Return = 5 corresponds to a fifth of a step
e Rickgabe = 8 corresponds to an eighth of a step
e Return =10 corresponds to a tenth of a step
e Return = 16 corresponds to a 16th of a step
e Return = 32 corresponds to a 32nd of a step
e Return = 64 corresponds to a 64th of a step
e Return = 254 corresponds to the feed rate
e Return = 255 corresponds to adaptive microstep

The function corresponds to the serial command "Zg-.

SetMotorAddress

Definition:
bool SetMotorAddress(int newMotorAddress)
This function sets the motor address.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "m*.

GetMotorAddress

Definition:
int GetMotorAddress(int selectedMotor)

This function reads out the motor address. The value of the passed parameter
selectedMotor is irrelevant since the command is sent to all bus users.

Attention:
When this command is used, only one controller should be connected to the RS485
bus.

\Y) Nanotec’

LUG & DRIVE

GetErrorAddress
Definition:
int GetErrorAddress()
This function reads the error address at which the last error code is found.

The function corresponds to the serial command "E*.

GetError
Definition:
int GetError(int errorAddress)
This function reads the error (status) to the address handed over.

The function corresponds to the serial command " ZE*.

SetEnableAutoCorrect
Definition:

bool SetEnableAutoCorrect(string recordNumber, bool
autoCorrect)

This function configures on the automatic error correction of the motor.
The value of autoCorrect specifies whether a correction should take place.

The recordNumber parameter is the record number (travel profile) with which an error
should be corrected.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "F*.

GetEnableAutoCorrect
Definition:
int GetEnableAutoCorrect(int errorAddress)
This function reads out which record is set for the automatic error correction.

The function corresponds to the serial command " ZF*.

SetSwingOutTime
Definition:
bool SetSwingOutTime(int swingOutTime)
This function sets the swing out time.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "0°".

GetSwingOutTime
Definition:
int GetSwingOutTime()
This function reads out the swing out time.

The function corresponds to the serial command "Z0".

\Y) Nanotec’

LUG & DRIVE

SetNextOperation
Definition:
bool SetNextOperation(int operationNumber)
This function sets the next record.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "N*.

GetNextOperation
Definition:
int GetNextOperation(int operationNumber)
This function reads out the number of the next record.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "ZN*.

SetPhaseCurrent
Definition:
bool SetPhaseCurrent(int phaseCurrent)
This function sets the phase current in percent. Values above 100 should be avoided.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "1 ".

GetPhaseCurrent
Definition:
int GetPhaseCurrent()
This function returns the phase current in percent.

The function corresponds to the serial command “Zi ".

SetCurrentReduction
Definition:
bool SetCurrentReduction(int currentReduction)

This function sets the phase current at a standstill in percent. Values above 100
should be avoided.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "r*~.

GetCurrentReduction
Definition:
int GetCurrentReduction()
This function returns the phase current at standstill in percent.

The function corresponds to the serial command “Zr*~.

\Y) Nanotec’

PLUG & DRIVE

SetLimitSwitchBehavior
Definition:

bool SetLimitSwitchBehavior(int refBehaviorsinternal, int
norBehaviorsinternal, int refBehaviorsExternal, int
norBehaviorsExternal)

This function sets the limit switch behavior.

The individual parameters have the following meanings:

o refBehaviorsinternal = behavior of the internal limit switch during a reference run
e norBehaviorsinternal = behavior of the internal limit switch during a normal run

o refBehaviorsExternal = behavior of the external limit switch during a reference run
¢ norBehaviorsExternal = behavior of the external limit switch during a normal run

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

Refer to the serial command 1" for an exact description of the usage.

GetLimitSwitchBehavior
Definition:

bool GetLimitSwitchBehavior(out int refBehaviorsinternal,
out int norBehaviorsinternal, out int
refBehaviorskExternal, out int norBehaviorsExternal)

This function reads out the limit switch behavior.

The individual return parameters have the following meanings:

o refBehaviorsinternal = behavior of the internal limit switch during a reference run
¢ norBehaviorsinternal = behavior of the internal limit switch during a normal run

o refBehaviorsExternal = behavior of the external limit switch during a reference run
o norBehaviorsExternal = behavior of the external limit switch during a normal run

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

Refer to the serial command " 1" for an exact description of the usage.

SetReverseClearance
Definition:
bool SetReverseClearance(int reverseClearance)
This function sets the reverse clearance in steps.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "z".

GetReverseClearance
Definition:
int GetReverseClearance()
This function outputs the reverse clearance in steps.

The function corresponds to the serial command "Zz".

\Y) Nanotec’

PLUG & DRIVE

SetAnalogueMin
Definition:
bool SetAnalogueMin(double analogueMin)
This function sets the minimum voltage for the analog input.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "Q".

GetAnalogueMin
Definition:
double GetAnalogueMin()
This function outputs the minimum voltage for the analog input.

The function corresponds to the serial command "ZQ".

SetAngelDeviationMax
Definition:
bool SetAngelDeviationMax(int deviation)

This function sets the maximum angle deviation between the setpoint position and the

encoder value.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " X*.

GetAngelDeviationMax
Definition:
int GetAngelDeviationMax()

This function outputs the maximum angle deviation between the setpoint position and

the encoder value.

The function corresponds to the serial command " ZX".

SetAnalogueMax
Definition:
bool SetAnalogueMax(double analogueMax)
This function sets the maximal voltage for the analog input.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "R".

GetAnalogueMax
Definition:
double GetAnalogueMax()
This function outputs the maximum voltage for the analog input.

The function corresponds to the serial command “ZR".

Y Nanotec’

PLUG & DRIVE

SetPositionType

Definition:

bool SetPositionType(int positionType)
This function sets the position type.
e positionType = 1 corresponds to relative; depends on operating mode
e positionType = 2 corresponds to absolute; depends on operating mode
e positionType = 3 corresponds to internal reference run;
e positionType = 4 corresponds to external reference run;

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

Refer to the serial command "p* for an exact description of the usage.

GetPositionType

SetSteps

GetSteps

Definition:

int GetPositionType(int operationNumber)
This function reads out the positioning type.
e 1 corresponds to relative; depends on operating mode
e 2 corresponds to absolute; depends on operating mode
e 3 corresponds to an internal reference run;
e 4 corresponds to an external reference run

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

Refer to the serial command "p*" for an exact description of the usage.

Definition:
bool SetSteps(int steps)
This function sets the number of steps.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "s”.

Definition:
int GetSteps(int operationNumber)
This function reads out the number of steps.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command “Zs*.

Y Nanotec’

PLUG & DRIVE

SetStartFrequency
Definition:
bool SetStartFrequency(int startFrequency)
This function sets the start frequency.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "u”.

GetStartFrequency
Definition:
int GetStartFrequency(int operationNumber)
This function outputs the start frequency.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "Zu*.

SetMaxFrequency?2
Definition:
bool SetMaxFrequency2(int maxFrequency)
This function sets the upper maximum frequency.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "n*.

GetMaxFrequency?2
Definition:
int GetMaxFrequency2(int operationNumber)
This function outputs the upper maximum frequency.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "Zn*.

SetSuppressResponse
Definition:
bool SetSuppressResponse(int suppress)
This function activates or deactivates the response suppression on sending.
e suppress = 0: response suppression on
e suppress = 1: response suppression off

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " | *.

)] Nanotec

LUG & DRIVE

GetRotationMode
Definition:
int GetRotationMode()
This function reads the encoder monitoring mode.
e 0 means no monitoring
¢ 1 means a check at the end
e 2 means a check during a run

The "Check during travel" setting exists for compatibility reasons and is equivalent to
the "Check at end" behavior. To actually make a correction during travel, the closed
loop mode should be used.

The function corresponds to the serial command "ZU".

GetDirection
Definition:
int GetDirection(int operationNumber)

This function outputs the direction of rotation of the motor.
e 0 corresponds to left
e 1 corresponds to right

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "Zd~.

SetDirectionReverse
Definition:
bool SetDirectionReverse(bool directionReverse)
This function sets the reversal in the direction of rotation.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "t*~.

GetDirectionReverse
Definition:
bool GetDirectionReverse(int operationNumber)
This function reads out the reversal in the direction of rotation.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command “Zt".

Y Nanotec’

PLUG & DRIVE

SetEncoderDirection
Definition:
bool SetEncoderDirection(bool encoderDirection)

This function sets the direction of rotation of the encoder. If the encoderDirection
parameter is true, the direction of the rotary encoder is reversed.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "q"~.

GetEncoderDirection
Definition:
bool GetEncoderDirection()
This function outputs whether the encoder rotation direction will be reversed.

The function corresponds to the serial command "Zqg-.

GetEncoderRotary
Definition:
int GetEncoderRotary()
This function reads out the encoder position.

The function corresponds to the serial command "1 *.

SetRampType
Definition:
bool SetRampType(int rampType)
This function sets the ramp type.
e rampType = 0: trapezoidal ramp
e rampType = 1: sinusoidal ramp
e rampType = 2: jerk-free ramp

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zramp_mode~.

GetRampType
Definition:
int GetRampType(Q)
This function outputs the ramp type.
e rampType = 0: trapezoidal ramp
e rampType = 1: sinusoidal ramp
e rampType = 2: jerk-free ramp

The function corresponds to the serial command " :ramp_mode*.

Y Nanotec’

PLL

JG & DRIVE

SetJerk

GetJerk

SetBrakeRamp

Definition:
bool SetJerk(int jerk)
This function sets the jerk in 100/s3.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :b".

Definition:
int GetJerk(int operationNumber)
This function outputs the jerk in 100/s3.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command “Z:b*".

Definition:
bool SetBrakeRamp(int rampBrake)
This function sets the brake ramp.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "B*~.

GetBrakeRamp

SetBrakeJerk

Definition:
int GetBrakeRamp(int operationNumber)
This function reads out the brake ramp.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "ZB*.

Definition:
bool SetBrakeJderk(int jerk)
This function sets the brake jerk in 100/s3.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :B".

Y Nanotec’

PLUG & DRIVE

GetBrakeJerk

Definition:
int GetBrakeJerk(int operationNumber)
This function outputs the brake jerk in 100/s2.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "Z:B*".

SetQuickStoppRamp

Definition:
bool SetQuickStoppRamp(int rampQuickStopp)
This function sets the quick stop ramp.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "H".

GetQuickStoppRamp

SetRepeat

GetRepeat

Definition:
int GetQuickStoppRamp(int operationNumber)
This function reads out the quick stop ramp.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "ZH".

Definition:
bool SetRepeat(int repeats)
This function sets the number of repetitions.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "W*.

Definition:
int GetRepeat(int operationNumber)
This function reads out the number of repetitions.

Here the operationNumber parameter is the record number (travel profile) that should
be read out from.

The function corresponds to the serial command "ZW*.

\Y) Nanotec’

LUG & DRIVE

SetModus8

Definition:
bool SetModus8()
This function sets operating mode 14 which corresponds to an internal reference run.

In older firmwares, a run in this operating mode was necessary to activate the closed
loop mode.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

SetKalibrierModus

Definition:
bool SetKalibrierModus(Q)

This function sets operating mode 17 which performs the calibration run of the CL
wizard.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

SetClosedLoop

Definition:
bool SetClosedLoop(int value)
This function activates or deactivates the closed loop mode.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_enable~.

GetClosedLoop

Definition:
int GetClosedLoop()
This function outputs whether the closed loop mode is activated.

The function corresponds to the serial command " :CL_enable~.

GetCLLoadAngle

Definition:
int GetCLLoadAngle(int tripelNumber)
This function reads out a load angle of the motor from the closed loop test run.
The tripelNumber parameter is the number (0-9) of the value that should be read out.

The function corresponds to the serial command ":CL_la_a"to ":CL _la j-~.

GetClosedLoopOlaCurrent

Definition:
int GetClosedLoopOlaCurrent(int tripelNumber)

This function reads out a correction angle of the current controller from the closed loop
test run.

The tripelNumber parameter is the number (0-6) of the value that should be read out.

The function corresponds to the serial command ":CL_ola_i1_a" to
":CL ola_i1_g".

\Y) Nanotec’

PLUG & DRIVE

GetClosedLoopOlaVelocity
Definition:
int GetClosedLoopOlaVelocity(int tripelNumber)

This function reads out a correction value of the speed controller from the closed loop
test run.

The tripelNumber parameter is the number (0-6) of the value that should be read out.
The function corresponds to the serial command ":CL_ola v_a" to
":CL_ola_v_g".
GetClosedLoopOlaLoadAngle
Definition:
int GetClosedLoopOlaLoadAngle(int tripelNumber)

This function reads out a correction value of the position controller from the closed
loop test run.

The tripelNumber parameter is the number (0-6) of the value that should be read out.
The function corresponds to the serial command ":CL_ola 1 _a" to
":CL_ola_l_g".
SetPositionWindow
Definition:
bool SetPositionWindow(int positionWindow)
This function sets the tolerance window for the end position in the closed loop mode.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_position_window".

GetPositionWindow
Definition:
int GetPositionWindow()

This function outputs the value for the tolerance window for the end position in the
closed loop mode.

The function corresponds to the serial command " :CL_position_window"®.

SetPositionWindowTime
Definition:
bool SetPositionWindowTime(int time)

This function sets the time for the tolerance window of the end position in the closed
loop mode.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_position_window_time-~.

\Y) Nanotec’

PLUG & DRIVE

GetPositionWindowTime
Definition:
int GetPositionWindowTime()

This function outputs the value for the time for the tolerance window for the end
position in the closed loop mode.

The function corresponds to the serial command " :CL_position_window_time*®.

SetFollowingErrorWindow
Definition:
bool SetFollowingErrorWindow(int followingErrorWindow)
This function sets the maximum allowed following error in the closed loop mode.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command
":CL_following_error_window".
GetFollowingErrorWindow
Definition:
int GetFollowingErrorWindow()

This function outputs the value for the maximum allowed following error in the closed
loop mode.

The function corresponds to the serial command
":CL_following_error_window".
SetSpeedErrorwWindow
Definition:
bool SetSpeedErrorWindow(int speedErrorWindow)
This function sets the maximum allowed speed deviation in the closed loop mode.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_speed_error_window".

GetSpeedErrorWindow
Definition:
int GetSpeedErrorWindow()

This function outputs the value for the maximum allowed speed deviation in the closed
loop mode.

The function corresponds to the serial command " :CL_speed_error_window".

\Y) Nanotec’

LUG & DRIVE

SetFollowingErrorTimeout
Definition:
bool SetFollowingErrorTimeout(int timeout)

This function sets the time for the maximum allowed following error in the closed loop
mode.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command
":CL_following_error_timeout-~.
GetFollowingErrorTimeout
Definition:
int GetFollowingErrorTimeout()

This function outputs the value for the time for the maximum allowed following error in
the closed loop mode.

The function corresponds to the serial command
":CL_following_error_timeout-”.
SetSpeedErrorTimeout
Definition:
bool SetSpeedErrorTimeout(int timeout)

This function sets the time for the maximum allowed speed deviation in the closed
loop mode.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_speed_error_timeout”.

GetSpeedErrorTimeout
Definition:
int GetSpeedErrorTimeout()

This function outputs the value for the time for the maximum allowed speed deviation
in the closed loop mode.

The function corresponds to the serial command " :CL_speed_error_timeout”.

SetRotencinc
Definition:
bool SetRotenclnc(int rotenclnc)
This function sets the number of encoder increments.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_rotenc_inc".

GetRotencinc
Definition:
int GetRotenclnc()
This function outputs the number of encoder increments.

The function corresponds to the serial command " :CL_rotenc_inc".

Y Nanotec’

PLUG & DRIVE

SetBrakeTA
Definition:
bool SetBrakeTA(UInt32 brake)
This function sets the waiting time for switching off the brake voltage.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command " brake_ta-“.
GetBrakeTA
Definition:
int GetBrakeTAQ)
This function outputs the waiting time for switching off the brake voltage.
The function corresponds to the serial command " zbrake_ta-~.
SetBrakeTB
Definition:
bool SetBrakeTB(UInt32 brake)
This function sets the time in milliseconds between switching off of the brake voltage
and enabling of a motor movement.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command " :brake_tb".
GetBrakeTB
Definition:
int GetBrakeTB()
This function outputs the time between switching off the brake voltage and enabling a
motor movement.
The function corresponds to the serial command " :brake_tb".
SetBrakeTC

Definition:
bool SetBrakeTC(UInt32 brake)
This function sets the waiting time for switching off the motor voltage.

The motor current is switched off by resetting the enable input (see Section 1.5.25
"Setting the function of the digital inputs").

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :brake_tc".

\Y) Nanotec’

PLUG & DRIVE

GetBrakeTC
Definition:
int GetBrakeTC()
This function outputs the waiting time for switching off the motor voltage.
The motor current is switched off by resetting the enable input (see Section 1.5.25
»Setting the function of the digital inputs").
The function corresponds to the serial command " :brake_tc*".
SetKPszZ
Definition:
bool SetKPsz(int value)
This function sets the numerator of the P component of the position controller.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command " :CL_KP_s Z*.
GetKPsZ
Definition:
int GetkPsz()
This function outputs the numerator of the P component of the position controller.
The function corresponds to the serial command " :CL_KP_s_Z".
SetKPsN
Definition:
bool SetKPsN(int value)
This function sets the denominator of the P component of the position controller.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command " :CL_KP_s N-.
GetKPsN
Definition:
int GetkPsNQ)
This function outputs the denominator of the P component of the position controller.
The function corresponds to the serial command " :CL_KP_s N-.
SetKlIszZ

Definition:
bool SetKlsz(int value)
This function sets the numerator of the | component of the position controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KI_s Z~.

\Y) Nanotec’

PLUG & DRIVE

GetKlsZ

SetKIsN

GetKIsN

SetKDsZ

GetKDsZ

SetKDsN

Definition:
int GetKIsz()
This function outputs the numerator of the | component of the position controller.

The function corresponds to the serial command " :CL_KI_s Z*.

Definition:
bool SetKIsN(int value)
This function sets the denominator of the | component of the position controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KI_s_N-.

Definition:
int GetKIsNQ
This function outputs the denominator of the | component of the position controller.

The function corresponds to the serial command " :CL_KI_s_N-.

Definition:
bool SetKDsz(int value)
This function sets the numerator of the D component of the position controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command ":CL_KD s Z*.

Definition:
int GetkDsz()
This function outputs the numerator of the D component of the position controller.

The function corresponds to the serial command " :CL_KD_s_Z".

Definition:
bool SetKDsN(int value)
This function sets the denominator of the D component of the position controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KD_s N-.

Y Nanotec’

PLUG & DRIVE

GetKDsN
Definition:
int GetkDsN()
This function outputs the denominator of the D component of the position controller.
The function corresponds to the serial command " :CL_KD_s_N-".
SetKPvZ
Definition:
bool SetKPvZ(int value)
This function sets the numerator of the P component of the speed controller.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command " :CL_KP_v_Z"*.
GetKPvZz
Definition:
int GetkPvz()
This function outputs the numerator of the P component of the speed controller.
The function corresponds to the serial command " :CL_KP_v_Z"*.
SetKPvN
Definition:
bool SetKPvN(int value)
This function sets the denominator of the P component of the speed controller.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command " :CL_KP_v_N".
GetKPvN
Definition:
int GetkKPvNQ
This function outputs the denominator of the P component of the speed controller.
The function corresponds to the serial command " :CL_KP_v_N".
SetKlIvZ

Definition:
bool SetKlvzZ(int value)
This function sets the numerator of the | component of the speed controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KI_v_Z*.

Y Nanotec’

PLUG & DRIVE

GetKlvZ

SetKIvN

GetKIvN

SetKDvZ

GetKDvZ

SetKDvN

Definition:
int Getklvz()
This function outputs the numerator of the | component of the speed controller.

The function corresponds to the serial command " :CL_KI1_v_Z*.

Definition:
bool SetKIvN(int value)
This function sets the denominator of the | component of the speed controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KI_v_N".

Definition:
int GetkKlvN(Q)
This function outputs the denominator of the | component of the speed controller.

The function corresponds to the serial command " :CL_KI_v_N".

Definition:
bool SetKDvZ(int value)
This function sets the numerator of the D component of the speed controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KD_v_Z"*.

Definition:
int GetkdDvz()
This function outputs the numerator of the D component of the speed controller.

The function corresponds to the serial command " :CL_KD_v_Z"~.

Definition:
bool SetKDvN(int value)
This function sets the denominator of the D component of the speed controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KD_v_N-.

Y Nanotec’

PLUG & DRIVE

GetKDvN
Definition:
int GetkDvNQ)
This function outputs the denominator of the D component of the speed controller.

The function corresponds to the serial command " :CL_KD_v_N-".

SetKPcssZ
Definition:
bool SetKPcssz(int value)

This function sets the numerator of the P component of the cascading position
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KP_css _Z".

GetKPcssZ
Definition:
int GetkPcssz()

This function outputs the numerator of the P component of the cascading position
controller.

The function corresponds to the serial command " :CL_KP_css_Z".

SetKPcssN
Definition:
bool SetKPcssN(int value)

This function sets the denominator of the P component of the cascading position
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KP_css_N-.

GetKPcssN
Definition:
int GetkPcssNQ)

This function outputs the denominator of the P component of the cascading position
controller.

The function corresponds to the serial command " :CL_KP_css_N-.

SetKlcssZ
Definition:
bool SetKlcssz(int value)

This function sets the numerator of the | component of the cascading position
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KI_css _Z".

\Y) Nanotec’

LUG & DRIVE

GetKlcssZ

SetKlcssN

GetKlcssN

SetKDcssZ

GetKDcssZ

SetKDcssN

Definition:
int GetKlcssz()

This function outputs the numerator of the | component of the cascading position
controller.

The function corresponds to the serial command " :CL_KI_css_Z".

Definition:
bool SetKlcssN(int value)

This function sets the denominator of the | component of the cascading position
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KI_css_N-.

Definition:
int GetKlcssNQ)

This function outputs the denominator of the | component of the cascading position
controller.

The function corresponds to the serial command " :CL_KI_css_N-.

Definition:
bool SetKDcsszZ(int value)

This function sets the numerator of the D component of the cascading position
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KD _css Z*.

Definition:
int GetkDcsszZ()

This function outputs the numerator of the D component of the cascading position
controller.

The function corresponds to the serial command " :CL_KD _css Z*.

Definition:
bool SetKDcssN(int value)

This function sets the denominator of the D component of the cascading position
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KD_css_N-".

Y Nanotec’

PLUG & DRIVE

GetKDcssN

SetKPcsvZ

GetKPcsvZz

SetKPcsvN

GetKPcsvN

SetKlcsvZ

Definition:
int GetkKDcssNQ)

This function outputs the denominator of the D component of the cascading position
controller.

The function corresponds to the serial command " :CL_KD_css_N-".

Definition:
bool SetKPcsvz(int value)

This function sets the numerator of the P component of the cascading speed
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KP_csv_Z".

Definition:
int GetKPcsvzZ()

This function outputs the numerator of the P component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KP_csv_Z".

Definition:
bool SetKPcsvN(int value)

This function sets the denominator of the P component of the cascading speed
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KP_csv_N*.

Definition:
int GetkPcsvNQ)

This function outputs the denominator of the P component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KP_csv_N*.

Definition:
bool SetKlcsvZ(int value)
This function sets the numerator of the | component of the cascading speed controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KI_csv_Z".

\Y) Nanotec’

LUG & DRIVE

GetKlcsvZ

SetKlcsvN

GetKlcsvN

SetKDcsvZ

GetKDcsvZ

SetKDcsvN

Definition:
int GetKlcsvz()

This function outputs the numerator of the | component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KI_csv_Z".

Definition:
bool SetKlcsvN(int value)

This function sets the denominator of the | component of the cascading speed
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KI_csv_N-~.

Definition:
int GetKlcsvN(Q)

This function outputs the denominator of the | component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KI_csv_N-.

Definition:
bool SetKDcsvzZ(int value)

This function sets the numerator of the D component of the cascading speed
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KD _csv_Z".

Definition:
int GetkDcsvzZ()

This function outputs the numerator of the D component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KD _csv_Z".

Definition:
bool SetKDcsvN(int value)

This function sets the denominator of the D component of the cascading speed
controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :CL_KD_csv_N-".

\Y) Nanotec’

PLUG & DRIVE

GetKDcsvN
Definition:
int GetkDcsvNQ)

This function outputs the denominator of the D component of the cascading speed
controller.

The function corresponds to the serial command " :CL_KD_csv_N-".

SetinputlSelection
Definition:
bool SetlnputlSelection(InputSelection inputSelection)
This function sets the function for digital input 1.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_in_a“.

GetlnputlSelection
Definition:
InputSelection GetlnputlSelection()
This function outputs the function for digital input 1.

The function corresponds to the serial command " zport_in_a“.

Setlnput2Selection
Definition:
bool Setlnput2Selection(InputSelection inputSelection)
This function sets the function for digital input 2.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_in_b".

Getlnput2Selection
Definition:
InputSelection Getlnput2Selection()
This function outputs the function for digital input 2.

The function corresponds to the serial command " zport_in_b-".

Setinput3Selection
Definition:
bool Setlnput3Selection(InputSelection inputSelection)
This function sets the function for digital input 3.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_in_c~.

\Y) Nanotec’

PLUG & DRIVE

Getlnput3Selection
Definition:
InputSelection Getlnput3Selection()
This function outputs the function for digital input 3.

The function corresponds to the serial command " zport_in_c".

Setlnput4Selection
Definition:
bool Setlnput4Selection(InputSelection inputSelection)
This function sets the function for digital input 4.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_in_d".

Getlnput4Selection
Definition:
InputSelection Getlnput4Selection()
This function outputs the function for digital input 4.

The function corresponds to the serial command " zport_in_d".

Setinput5Selection
Definition:
bool Setlnput5Selection(InputSelection inputSelection)
This function sets the function for digital input 5.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_in_e".

Getlnput5Selection
Definition:
InputSelection Getlnput5Selection()
This function outputs the function for digital input 5.

The function corresponds to the serial command " zport_in_e".

Setinput6Selection
Definition:
bool Setlnput6Selection(InputSelection inputSelection)
This function sets the function for digital input 6.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_in_f".

\Y) Nanotec’

PLUG & DRIVE

Getlnput6Selection
Definition:
InputSelection Getlnput6Selection()
This function outputs the function for digital input 6.

The function corresponds to the serial command " zport_in_f".

Setlnput7Selection

Definition:
bool Setlnput7Selection(InputSelection inputSelection)

This function sets the function for digital input 7.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_in_g".

Getlnput7Selection
Definition:
InputSelection Getlnput7Selection()
This function outputs the function for digital input 7.

The function corresponds to the serial command " zport_in_g".

Setinput8Selection
Definition:
bool Setlnput8Selection(InputSelection inputSelection)
This function sets the function for digital input 8.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_in_h".

Getlnput8Selection
Definition:
InputSelection Getlnput8Selection()
This function outputs the function for digital input 8.

The function corresponds to the serial command " zport_in_h".

SetOutputlSelection
Definition:
bool SetOutputlSelection(OutputSelection outputSelection)
This function sets the function for digital output 1.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_out_a-“.

\Y) Nanotec’

PLUG & DRIVE

GetOutputlSelection
Definition:
OutputSelection GetOutputlSelection()
This function outputs the function for digital output 1.

The function corresponds to the serial command " zport_out_a-“.

SetOutput2Selection
Definition:
bool SetOutput2Selection(OutputSelection outputSelection)
This function sets the function for digital output 2.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_out _b*".

GetOutput2Selection
Definition:
OutputSelection GetOutput2Selection()
This function outputs the function for digital output 2.

The function corresponds to the serial command " zport_out _b*".

SetOutput3Selection
Definition:
bool SetOutput3Selection(OutputSelection outputSelection)
This function sets the function for digital output 3.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_out_c*".

GetOutput3Selection
Definition:
OutputSelection GetOutput3Selection()
This function outputs the function for digital output 3.

The function corresponds to the serial command " zport_out_c”".

SetOutput4Selection
Definition:
bool SetOutput4Selection(OutputSelection outputSelection)
This function sets the function for digital output 4.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_out_d*".

\Y) Nanotec’

PLUG & DRIVE

GetOutput4Selection
Definition:
OutputSelection GetOutput4Selection()
This function outputs the function for digital output 4.

The function corresponds to the serial command " zport_out _d".

SetOutput5Selection

Definition:
bool SetOutput5Selection(OutputSelection outputSelection)

This function sets the function for digital output 5.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " :port_out_e”".

GetOutput5Selection
Definition:
OutputSelection GetOutput5Selection()
This function outputs the function for digital output 5.

The function corresponds to the serial command " zport_out_e”".

SetOutput6Selection
Definition:
bool SetOutput6Selection(OutputSelection outputSelection)
This function sets the function for digital output 6.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_out_T~.

GetOutput6Selection
Definition:
OutputSelection GetOutput6Selection()
This function outputs the function for digital output 6.

The function corresponds to the serial command " zport_out_T~.

SetOutput7Selection
Definition:
bool SetOutput7Selection(OutputSelection outputSelection)
This function sets the function for digital output 7.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_out_g-~.

\Y) Nanotec’

PLUG & DRIVE

GetOutput7Selection
Definition:
OutputSelection GetOutput7Selection()
This function outputs the function for digital output 7.

The function corresponds to the serial command " zport_out_g-.

SetOutput8Selection
Definition:
bool SetOutput8Selection(OutputSelection outputSelection)
This function sets the function for digital output 8.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " zport_out_h-".

GetOutput8Selection
Definition:
OutputSelection GetOutput8Selection()
This function outputs the function for digital output 8.

The function corresponds to the serial command " zport_out_h-".

SetFeedConstNum
Definition:
bool SetFeedConstNum(int feedConstNum)
This function sets the numerator of the feed rate.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " : feed_const_num~.

GetFeedConstNum
Definition:
int GetFeedConstNum()
This function outputs the numerator of the feed rate.

The function corresponds to the serial command " : feed_const_num~.

SetFeedConstDenum
Definition:
bool SetFeedConstDenum(int feedConstDenum)
This function sets the denominator of the feed rate.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " - feed_const_denum®.

\Y) Nanotec’

PLUG & DRIVE

GetFeedConstDenum
Definition:
int GetFeedConstDenum()
This function outputs the denominator of the feed rate.

The function corresponds to the serial command " : feed_const_denum®.

SetCurrentPeak
Definition:
bool SetCurrentPeak(int currentPeak)
This function sets the current peak value for BLDC.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " - ipeak”.

GetCurrentPeak
Definition:
int GetCurrentPeak()
This function outputs the current peak value for BLDC.

The function corresponds to the serial command " : ipeak”.

SetCurrentTime
Definition:
bool SetCurrentTime(int currentTime)
This function sets the current time constant for BLDC.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command " itime”®.

GetCurrentTime
Definition:
int GetCurrentTime()
This function outputs the current time constant for BLDC.

The function corresponds to the serial command " - itime”®.

GetAnalogAmplitude
Definition:
int GetAnalogAmplitude()
Reads out the amplitude for the analog input.

The function corresponds to the serial command "Z:aaa“.

SetAnalogAmplitude
Definition:
bool SetAnalogAmplitude(int analogAmplitude)
Sets the amplitude for the analog input.

The function corresponds to the serial command " zaaa“.

Y Nanotec’

PLUG & DRIVE

GetAnalogOffset
Definition:
int GetAnalogOffset()
Reads out the offset for the analog input.

The function corresponds to the serial command "Z:aoa”.

SetAnalogOffset
Definition:
bool SetAnalogOffset(int analogOffset)
Sets the offset for the analog input.

The function corresponds to the serial command " zaoa”.

GetCasclsEnabled
Definition:
bool GetCasclsEnabled()

Returns whether the cascade controller is currently active *Z:ce*".

GetCascStart
Definition:
int GetCascStart()
Reads out the start frequency for the cascade controller.

The function corresponds to the serial command "Z:ca”.

SetCascStart
Definition:
bool SetCascStart(int frequency)
Sets the start frequency for the cascade controller.

The function corresponds to the serial command " :ca”.

GetCascStop
Definition:
int GetCascStop()
Reads out the end frequency for the cascade controller.

The function corresponds to the serial command "Z:cs”.

SetCascStop
Definition:
bool SetCascStop(int frequency)
Sets the end frequency for the cascade controller.

The function corresponds to the serial command " :cs”.

)] Nanotec

LUG & DRIVE

GetCLNodeDistance
Definition:
int GetCLNodeDistance()
Reads out the CL sampling point spacing.

The function corresponds to the serial command "Z:CL_la_node_distance”.

SetCLNodeDistance
Definition:
bool SetCLNodeDistance(int nodeDistance)
Sets the CL sampling point spacing.

The function corresponds to the serial command " :CL_la_node_distance”.

GetClockInterpolated
Definition:
int GetClocklInterpolated()
Reads out the clock mode gradient factor.

The function corresponds to the serial command "Z:clock _interp

SetClockInterpolated
Definition:
bool SetClocklInterpolated(int gradient)
Sets the clock mode gradient factor.

The function corresponds to the serial command " :clock_interp

GetCLPosCNTOffset
Definition:
int GetCLPosCNTOffset()
Reads out the encoder index offset.

The function corresponds to the serial command "Z:CL_poscnt_offset

SetCLPosCNTOffset
Definition:
bool SetCLPosCNTOffset(int posCNTOffset)
Sets the encoder index offset.

The function corresponds to the serial command " :CL_poscnt_offset

SendCommandString
Definition:
bool SendCommandString(String commandString)

Sends the transferred string to the controller.

)] Nanotec

LUG & DRIVE

3.4 Programming examples

Introduction

Some examples for the use of the commandsPDA41 function library are provided in the
NanoPro installation directory in the SDK/example subdirectory. All examples are
implemented as projects for Microsoft Visual Studio. All examples demonstrate the
interaction with 2 controllers at different serial interfaces. A short list of the examples
follows.

CsharpExample

This example is implemented in the C# programming language and realized as a
Visual Studio 2005 project.

ManagedC++Example:

This example is implemented in the C++ programming language using Managed Code
and is realized as a Visual Studio 2008 project.

UnmanagedC++Example:

This example is implemented in the C++ programming language using Unmanaged
Code and is realized as a Visual Studio 2008 project. Unlike the other examples, this
example does not have a graphical user interface.

VBExample:

This example is implemented in the Visual Basic programming language and realized
as a Visual Studio 2005 project.

\Y Nanotec’

PLUG & DRIVE

4 Appendix: Calculating the CRC Checksum

Purpose of the CRC checksum

The CRC checksum is calculated by Nanotec stepper motor controllers, Plug & Drive

motors and the NanoPro software to detect possible transmission errors to the RS485
bus.

Function for calculating the CRC checksum

The rs485_com.dll utilizes the following C function to calculate the CRC checksum:
unsigned char mcrc8(unsigned char crc, char* str, int len) {

const unsigned char pol = H
unsigned char c;
unsigned char i;

while(len--) {
c =*str;
for(i=0; i<8 ; i++) {
if ((crc &)!= (c &)){
crc = (crc << 1) ~pol;

} else {
crc <<=1;
¥
C k=13
}
str++;

}

returncrc;

}
Arguments for the function
e unsigned char crc: start value for the checksum. 0 is always used.
e char* str: pointer to the first character of the char array to be sent.
¢ intlen: length of the string to be sent without carriage return.

\) Nanotec’

PLUG & DRIVE

Application example

Send

String to be sent "#1V\r"

Arguments for invoking the function e unsigned char crc: 0

merc8 e char* str: corresponding pointer to the first
character of the char array to be sent.

¢ intlen: length of the string to be sent

without carriage return = 3.

Return value of the function 87 (decimal) = 0x57 (hexadecimal)

Actual string to be sent "#IV57\r"

(The CRC checksum is separated from

the actual command string by a

tabulator character \t and sent too. For

control purposes, the controller then

also calculates the checksum of the

received string.)

Receive
Controller response "lv SMCI47-S_RS485_29-09-2010\t75\r"
Arguments for invoking the function e unsigned char crc: 0
merc8 e char* str: corresponding pointer to the first
character of the received char array.
¢ intlen: length of the received string up to
the tabulator characters = 28.
Return value of the function 117 (decimal) = 0x75 (hexadecimal)

If the calculated checksum matches the received checksum, the transmission was
error-free.

\Y) Nanatec’

PLUG & DRIVE

5 Appendix: Motor Data

5.1 Default values for stepper motors

Load angle Value

16384
18384
20384
22384
24384
26384
28384

N o (oW IN e

5.2 Default values for BLDC motors

Load angle Value

16384
16500
17000
17500
18000
18500
19000

N o (oW N

5.3 Stepper motors of the series STxxxx

The following table applies to stepper motors of the series ST2018, ST3518, ST4118,
ST4209, ST4218, ST5709, ST5909, ST5918, ST6018, ST6318, ST8918, ST11018

Load angle Value

16384
16500
17000
17500
18000
18500
19000

N o (oW N

\Y Nanotec’

PLUG & DRIVE

5.4 BLDC motors of the series DB22

DB22L01

Load angle Value

16000

16500

17000

17500

18000

18500

N oo W N

19000

DB22M01

Load angle Value

16000

16500

17000

17500

18000

18500

N oo W IN e

18500

55 BLDC motors of the series DB28

DB28M01

Load angle Value

16000

17000

17000

17000

18000

18000

N | oo [N

18000

\Y Nanotec’

PLUG & DRIVE

DB28S01

Load angle

Value

16000

16500

17000

17500

18000

18500

N o o [N

18500

5.6 BLDC motors of the series DB33

DB33S01

Load angle

Value

16000

16000

16500

16500

17000

17000

N oo W IN e

17000

5.7 BLDC motors of the series DB42

DB42C01

Load angle

Value

16000

18000

20000

20000

20000

21000

N oo [N

20000

\Y Nanotec’

PLUG & DRIVE

DB42C02

Load angle

Value

16000

18000

20000

20000

20000

21000

N o o [N

22000

DB42C03

Load angle

Value

16000

16500

16800

17100

17400

17700

N oo W N

17800

DB42L01

Load angle

Value

16000

17000

17500

17500

17700

18300

N oo W IN

18400

\Y Nanotec’

PLUG & DRIVE

DB42M01

Load angle

Value

16000

16500

17000

17500

18500

18750

N o o [N

19000

DB42M02

Load angle

Value

16000

18000

20000

20000

20000

21000

N oo W N

22000

DB42M03

Load angle

Value

16000

17000

17000

17000

18000

19000

N oo W IN

19000

\Y Nanotec’

PLUG & DRIVE

DB42S01

Load angle

Value

16000

16500

17000

17500

18000

18000

N o o [N

18500

DB42S02

Load angle

Value

16000

18000

18000

18000

18500

19000

N oo W N

19000

DB42S03

Load angle

Value

16000

18000

20000

20000

20000

21000

N oo W IN

22000

\Y Nanotec’

PLUG & DRIVE

5.8 BLDC motors of the series DB57

DB57C01

Load angle

Value

16000

16500

16500

16500

17000

17000

N oo W N

17000

DB57L01

Load angle

Value

16000

17000

17000

17000

17000

17000

N oo W IN e

17000

DB57S01

Load angle

Value

16500

17000

17000

17000

17000

17500

N o (oW N[

17500

\Y Nanotec’

PLUG & DRIVE

59 BLDC motors of the series DB87

DB87L01-S

Load angle Value

16384

17000

17000

17000

17000

17000

N o o [N

17000

DB87M01-S

Load angle Value

16384

18384

20384

22384

24384

26384

N oo W N

28384

DB87S01-S

Load angle Value

16000

16500

17000

17250

17500

17500

N oo W IN

18000

\Y) Nanotec’

PLUG &

DRIVE

Index
A
Activating closed loop mode..........cccccceeeeennne 71
Activating the scope modecccevveeenee. 97
Actuating the triggercccoooeeiiiiiei e 67
Adjusting the time until the current reduction 65
Analog input, reading out the voltage.......... 100
Automatic start of the Java program when
switching on the controllerc.......... 69
C
Carrying out an EEPROM reset..................... 38
Cascade controller,
reading out the statusccccvveeeeeeenns 92
setting the lower limitc.oociiveeneennn, 91
setting the upper limit............cccoeecvieeneennn. 92
Cascading position controller, setting the
denominator of the D component 90
Cascading position controller, setting the
denominator of the | component................ 89
Cascading position controller, setting the
denominator of the P component............... 88
Cascading position controller, setting the
numerator of the D component.................. 90
Cascading position controller, setting the
numerator of the | component.................... 89
Cascading position controller, setting the
numerator of the P component.................. 88
Cascading speed controller, setting the
denominator of the D component 84
Cascading speed controller, setting the
denominator of the | component................ 83
Cascading speed controller, setting the
denominator of the P component............... 82
Cascading speed controller, setting the
numerator of the D component.................. 84
Cascading speed controller, setting the
numerator of the | component................... 83
Cascading speed controller, setting the
numerator of the P component 82
Change commandcccccceeiiviiiinieeeeeenns 13
Class

b 121

CAPLUIE ettt 117

COMIMitiiiiiiiiiiiriiii et 138

(o0] 01T [139

AMVE. .o 149

ASPDIIVE e 160

i0163

U] 173
Classes and functions...........ccocceeeeviveeennnnes 117
Closed 100p Settings.........ccvveerrieeeeniieeeneene 71
Closed loop, test run load angle values........ 93
COM interface......cccocvvveeiiieieeiiee e 187

FUNCHIONSociiiiiiiiiiiiee e 192

Programming examplescccccceeeene 235
Commands for JAVA program...................... 68
Configuration of current controller, controllers

With dSpDIiVe......cccvvveeeeeiiccieee e, 105
Configuring the current controller for

controllers with dspDrivecccvveee. 105
Controller command structureccc...... 11
Controller reSpoNSe........cccevvvcvveeeeeereiicinnnnnns 11
Controller Status..........coovveeeiriiiie e 29
Correction values, test run, CL mode

Reading out the encoder/motor offset....... 93
CRC checksum, calculating........................ 236
D
Debouncing iNPULSocvveveiiiiiiiceieen 36
Demasking iNPULScceeeiireieiieeeeniiieeenn 34
Denominator of the D component of the

cascading speed controller, setting........... 84
E
Encoder,

setting the type ..., 77
Error COdescoovviiiiiiciie e 28
F
Following error,

setting the maximum permissible time...... 75

\Y Nanotec’

PLUG & DRIVE

Following error, setting the maximum

permissible valuecccccciiiiiin, 75
I
Increasing the rotational speed 66
Increments

setting the number ofccooeinen, 78
Integration of a SCOPEe.......oovcvvveeereee i, 97
J
Java

Manual translation and transfer without

NanoJEasyccccceeeeeeeiieeeee 181

NaNOJEASY......ccccoi e 108

Programmingccccoevvveeeniiieee e 108
Java error mesSages........cccvveveveeiinnnnneneeens 185

Java program,

automatically starting when switching on the

CONroller... ..o, 69
reading OUL €ITOrceeevvveeeeiiiiiee e 69
reading OUt Warningcccceveveeeeviiveeennnns 70
starting a loaded program...........ccccceevveeen. 68
stopping a running program...........cccceee..... 68
transferring to the controller....................... 68

Java programming examples 175

K

KEYWOIAS ...ceveeeiiciiiieieeee et 12

L

Limit position, setting the time for the tolerance
WINAOW ... 74

Limit position, setting the tolerance window..74

Load angle values of closed loop mode test

Load angle values, test run, CL mode
Current measurement values 95
Motor load angle measurement values......93

Test run load angle measurement values..95

Velocity measurement values.................... 94
Loading a record from the EEPROM............. 48
Long command format..........cccceceveeeveicnvnnnnen. 12
Long command StrucCture..........cccoevveeerivneenns 12

M
Masking and Demasking Inputs.................... 34
Masking INPULSceeeeieiiiiiiiiieeee e, 34
Maximum permissible speed deviation......... 76
MOLOr datal........cevvvvieieiiiiiie e 238
Motor is referenced..........ccccccovveviiiineiinnnnnn, 30
Motor,
setting the number of pole pairs................ 77
N
NANOJEASY.....cuvurrerieeeeeeerireeeeeeeeeeeeeennenenennnes 108
P
Position controller, setting the denominator of
the D component........ccceeeveevvveeeeeeeees e 87
Position controller, setting the denominator of
the | component.........ccococeevieeiniien e, 86
Position controller, setting the denominator of
the P componentococeevviieennienen e, 85
Position controller, setting the numerator of the
D component ..o 87
Position controller, setting the numerator of the
I component.......cooooeeeiiie e 86
Position controller, setting the numerator of the
P component...........cooooeeiiiiiiiiiiciee e, 85
Programming examples, Java.................... 175
R
Ramp generator, reading out the setpoint
POSItION ..o 98
Ramp type, Setting........cccccevveieiiniiieinniieenn, 40
Read command.............ccoovvvvveeeereeerennnn. 12, 17
Reading out current measurement values of
the teSt run ... 95
Reading out load angle measurement values
of the Motor ..., 93
Reading out load angle measurement values
of the test run ..., 95
Reading out the actual position of the encoder
... 98
Reading out the actual voltage of the controller
... 99
Reading out the CAN bus load 101

Reading out the closed loop mode status 73

Reading out the controller temperature....... 101

\Y) Nanotec’

PLUG & DRIVE

Reading out the current record...................... 49
Reading out the digital inputs...................... 100
Reading out the EEPROM byte..................... 38
Reading out the encoder position.................. 29
Reading out the encoder/motor offset............ 93
Reading out the error memory 28
Reading out the firmware version.................. 31
Reading out the following error 104
Reading out the Hall configuration 44
Reading out the Java program error 69
Reading out the operating time since the
firmware updateccoceiiiiiie i 31
Reading out the position............ccccceeviiinneen. 29
Reading out the setpoint current of the motor
CONLIONIEY ... 99
Reading out the setpoint position of the ramp
OENEIALON......ciiiiiiiiiiiiieieee e 98
Reading out the speedccccoceveeeieiiinnnee, 66
reading out the status...........cccceeeveeeevcciinnnen, 30
Reading out the temperature value................ 45

Reading out the velocity measurement values
of the teSt ruNcccoevvii e, 94

Reading out the voltage at the analog input100

Reading out the warning of the Java program

... 70
RECOMAS ...t 18
Reducing the rotational speed...................... 66
Resetting the position errorcccceveveeens 27
Resetting the switch-on counter 65
Reversing the polarity of the inputs and

OULPULS ittt 35
Revolutions,

setting the number ofccccccoiiiinnn. 78
S
Saving @ reCordccceevveveeeniiiie e 50
Saving travel distances............occceeeeeieiiniines 18
SCOPE MOME ...t 97
Setting analog mode............c.ccoceeeviiiiennnnnn. 155
Setting analog positioning mode.................. 155
Setting automatic sending of the status 38

Setting baud rate of the controller 43

Setting CL quick test mode..........ccccceeennnne 155
Setting clock direction mode....................... 155
Setting flag positioning mode...................... 155
Setting HW reference modec......... 155
Setting joystick mode.............ccccvvveeeeeeniinnns 155
Setting speed Mode........ccccceevevviieeeeeeiiiens 154
Setting the acceleration ramp.............cc..eeee. 55
Setting the acceleration ramp (without

(070 11Y/=T £ T0] o) 55
Setting the brake rampcccccceeveeiiinnnen. 56
Setting the brake ramp (without conversion) 56
Setting the change of direction 57
Setting the continuation record..................... 59
Setting the controller type for the speed mode

... 73
Setting the CRC checksum...........cccccceevuneee. 44

Setting the current time constant for BLDC .. 21
Setting the dead range for the joystick mode 61
Setting the debounce time for the inputs....... 36

Setting the denominator of the D component of

the cascading position controller............... 20
Setting the denominator of the D component of
the position controller............ccceoviieeennnen. 87
Setting the denominator of the D component of
the speed controller..........cccoceeeiiieeeninnn 81
Setting the denominator of the | component of
the cascading position controller............... 89
Setting the denominator of the | component of
the cascading speed controller 83
Setting the denominator of the | component of
the position controller............ccccccoeevnvnnneen. 86
Setting the denominator of the | component of
the speed controller..........ccocveeveeiivicninne, 80
Setting the denominator of the P component of
the cascading position controller............... 88
Setting the denominator of the P component of
the cascading speed controller 82
Setting the denominator of the P component of
the position controllercccccoveiieennne. 85
Setting the denominator of the P component of
the speed controller...........ccceeeiiiiniiiinnee. 79
Setting the direction of rotation..................... 57
Setting the drive address..........cccccceeevvnnnneen. 22
Setting the encoder direction 25

\Y Nanotec’

PLUG & DRIVE

Setting the encoder type.........ccoovieeeneeennns 77
Setting the error correction mode................... 24
Setting the feed rate denominator-................. 27
Setting the feed rate numerator..................... 26
Setting the filter for analog mode 61
Setting the function of the digital inputs......... 32
Setting the function of the digital outputs 33
Setting the gain of the analog input............... 64
Setting the gear factor (denominator)............ a7
Setting the gear factor (numerator) 46

Setting the | component of the current
controller at standstill (controllers with
ASPDIIVE) ..t 106

Setting the | component of the current
controller during the run (controllers with

ASPDIIVE) .cceiiiiiiiieee e 107
Setting the interpolation time period for the
clock direction modeccccevviieeiiinnnn, 67
Setting the jerk for the acceleration............... 59
Setting the jerk for the braking ramp 60
Setting the limit switch behavior 23
Setting the maximum encoder deviation 26
Setting the maximum frequency.................... 54
Setting the maximum frequency 2................. 54
Setting the maximum jerk for the acceleration
... 59
Setting the maximum jerk for the braking ramp
... 60
Setting the maximum permissible following
LT o] PP PP PP 75
Setting the maximum voltage for the analog
MOAE .ttt 63
Setting the minimum frequency........ccc.ccoo.... 53
Setting the minimum voltage for the analog
70T [SRR 63
Setting the Motor ID.........ccccceviiiieiiieee e 22
Setting the MOotor typecccceevvieveeniiieeen, 19
Setting the number of increments 78
Setting the number of revolutions.................. 78

Setting the numerator of the D component of
the cascading position controller 90

Setting the numerator of the D component of
the cascading speed controller.................. 84

Setting the numerator of the D component of

the position controllerccccovvieeennne 87
Setting the numerator of the D component of
the speed controller...........ccceeiniieennnenn. 81
Setting the numerator of the | component of
the cascading position controller............... 89
Setting the numerator of the | component of
the cascading speed controller 83
Setting the numerator of the | component of
the position controller...........ccccceeeeriinnnee, 86
Setting the numerator of the | component of
the speed controller...........ccccvveeeeeeiiiicnnnns 80
Setting the numerator of the P component of
the cascading position controller............... 88
Setting the numerator of the P component of
the cascading speed controller 82
Setting the numerator of the P component of
the position controllercccceeviieeennnen. 85
Setting the numerator of the P component of
the speed controller..........ccocvveeiiieeeninn, 79
Setting the offset of the analog input............ 64
Setting the oUtPULScvvvvieeiiiiiieieee e, 37

Setting the P component of the current
controller at standstill (controllers with
ASPDIIVE) ceeeeiiiciieieeee e 105

Setting the P component of the current
controller during the run (controllers with

ASPDIIVE) o 105
Setting the peak current for BLDC................ 20
Setting the phase current............cccccoeeeeneee 19
Setting the phase current at standstill........... 20
Setting the pole pairs of the motor................ 77
Setting the positioning mode 154
Setting the positioning mode (hew scheme.. 51
Setting the quickstop rampcccoecveeennen. 45
Setting the quickstop ramp (without

CONVEISION) ..eeiiiiiiieee ittt 46
Setting the record for auto correction 24
Setting the record pause...........cccccceevvienneen. 58
Setting the repetitionscccoeeeee i, 58
Setting the reverse clearance....................... 39
Setting the sample rate..........cccccveveeivcinnneen, 97

Setting the sampling point spacing of the load
aNgle CUNVEuuvevee e 91

Setting the scaling factor for speed-dependent
adjustment of the | component of the

Y Nanotec’

PLUG & DRIVE

controller during the run (controllers with
ASPDIIVE) .ceiiiiiiiiiiieee e 107

Setting the scaling factor for speed-dependent
adjustment of the P component of the
controller during the run (controllers with

ASPDIIVE).ceeiie i 106
Setting the step mode............coccvvvevveeiiiinnns 21
Setting the swing out timecccccceee v, 25
Setting the time for the maximum following

=] (] P 75
Setting the time for the tolerance window of the

[IMIt POSItION ..eeeviiiiiiiiee e 74
Setting the tolerance window for the limit

POSITION ...t 74
Setting the travel distance..............ccccccoennnee. 53
Setting the waiting time for switching off the

brake voltagecccuveeeeiiiiiiiiiiiiie, 41, 42
Setting the waiting time for switching off the

MOLOr CUIMTENT....cceieeeeee e 42
Setting the waiting time for the motor

(00101 V7=T 0 1= o | 42
Setting torque Modecceevcveeerriieeeniee 155
Settings, closed 100pcccccevviiieeiiiiineene 71

Speed controller, setting the denominator of
the D compoNent.........occceeeeviieeeiniiene e 81

Speed controller, setting the denominator of
the | component........cccoceveiiiiee e 80

Speed controller, setting the denominator of
the P componentcccccooviiiiiiiennninnes 79

Speed controller, setting the numerator of the
D component........ooooeiiiiiiie 81

Speed controller, setting the numerator of the |
COMPONENT.....cciiiiiiiiiiiiiieieeeeeeeee e 80

Speed controller, setting the numerator of the
P component............coo oo, 79

Speed deviation,

maximum permissible time........................ 76
Speed deviation, maximum permissible value

... 76
Starting @ MOtOreevevviieeiiieee e 48
Starting the bootloaderccccccveeiiiiinneen. 39
Stopping @ MOLON........euiiiieiiiiiiiiiee e 48
T
Time for the maximum permissible speed

deVviationcoovvieeiiiiiee e 76
Travel distances, Saveccccevvveeeriieeeennns 18

	About this manual
	1 Command reference of the Nanotec firmware
	1.1 General information
	1.1.1 Command structure
	1.1.2 Long command format XE "Long command format"

	1.2 Command overview
	1.3 Read command XE "Read command"
	1.4 Records XE "Records"
	1.5 General commands
	1.5.1 Setting the motor type XE "Setting the motor type"
	1.5.2 Setting the phase current XE "Setting the phase current"
	1.5.3 Setting the phase current at standstill XE "Setting the phase current at standstill"
	1.5.4 Setting the peak current for BLDC XE "Setting the peak current for BLDC"
	1.5.5 Setting the current time constant for BLDC XE "Setting the current time constant for BLDC"
	1.5.6 Setting the step mode XE "Setting the step mode"
	1.5.7 Setting the drive address XE "Setting the drive address"
	1.5.8 Setting the motor ID XE "Setting the motor ID"
	1.5.9 Setting the limit switch behavior XE "Setting the limit switch behavior"
	1.5.10 Setting the error correction mode XE "Setting the error correction mode"
	1.5.11 Setting the record for auto correction XE "Setting the record for auto correction"
	1.5.12 Setting the encoder direction XE "Setting the encoder direction"
	1.5.13 Setting the swing out time XE "Setting the swing out time"
	1.5.14 Setting the maximum encoder deviation XE "Setting the maximum encoder deviation"
	1.5.15 Setting the feed rate numerator XE "Setting the feed rate numerator"
	1.5.16 Setting the feed rate denominator XE "Setting the feed rate denominator"
	1.5.17 Resetting the position error XE "Resetting the position error"
	1.5.18 Reading out the error memory XE "Reading out the error memory"
	1.5.19 Reading out the encoder position XE "Reading out the encoder position"
	1.5.20 Reading out the position XE "Reading out the position"
	1.5.21 Request “Motor is referenced” XE "Motor is referenced"
	1.5.22 reading out the status XE "reading out the status"
	1.5.23 Reading out the firmware version XE "Reading out the firmware version"
	1.5.24 Reading out the operating time since the firmware update XE "Reading out the operating time since the firmware update"
	1.5.25 Setting the function of the digital inputs XE "Setting the function of the digital inputs"
	1.5.26 Setting the function of the digital outputs XE "Setting the function of the digital outputs"
	1.5.27 Masking and demasking inputs XE " Masking and Demasking Inputs"
	1.5.28 Reversing the polarity of the inputs and outputs XE "Reversing the polarity of the inputs and outputs"
	1.5.29 Setting the debounce time for the inputs XE "Setting the debounce time for the inputs" XE "Debouncing inputs"
	1.5.30 Setting the outputs XE "Setting the outputs"
	1.5.31 Reading out EEPROM byte (read EE byte) XE "Reading out the EEPROM byte"
	1.5.32 Carrying out an EEPROM reset XE "Carrying out an EEPROM reset"
	1.5.33 Setting automatic sending of the status XE "Setting automatic sending of the status"
	1.5.34 Starting the bootloader XE "Starting the bootloader"
	1.5.35 Setting the reverse clearance XE "Setting the reverse clearance"
	1.5.36 Setting the ramp type XE "Ramp type, setting"
	1.5.37 Setting the waiting time for switching off the brake voltage XE "Setting the waiting time for switching off the brake voltage"
	1.5.38 Setting the waiting time for the motor movement XE "Setting the waiting time for the motor movement"
	1.5.39 Setting the waiting time for switching off the motor current XE "Setting the waiting time for switching off the motor current"
	1.5.40 Setting baud rate of the controller XE "Setting baud rate of the controller"
	1.5.41 Setting the CRC checksum XE "Setting the CRC checksum"
	1.5.42 Reading out the Hall configuration XE "Reading out the Hall configuration"
	1.5.43 Reading out the temperature value XE " Reading out the temperature value"
	1.5.44 Setting the quickstop ramp XE "Setting the quickstop ramp"
	1.5.45 Setting the quick stop ramp (without conversion) XE "Setting the quickstop ramp (without conversion)"
	1.5.46 Setting the gear factor (numerator) XE " Setting the gear factor (numerator)"
	1.5.47 Setting the gear factor (denominator) XE " Setting the gear factor (denominator)"

	1.6 Record commands
	1.6.1 Starting a motor XE "Starting a motor"
	1.6.2 Stopping a motor XE "Stopping a motor"
	1.6.3 Loading a record from the EEPROM XE "Loading a record from the EEPROM"
	1.6.4 Reading out the current record XE "Reading out the current record"
	1.6.5 Saving a record XE "Saving a record"
	1.6.6 Setting the positioning mode (new scheme) XE "Setting the positioning mode (new scheme"
	1.6.7 Setting the travel distance XE "Setting the travel distance"
	1.6.8 Setting the minimum frequency XE "Setting the minimum frequency"
	1.6.9 Setting the maximum frequency XE "Setting the maximum frequency"
	1.6.10 Setting the maximum frequency 2 XE "Setting the maximum frequency 2"
	1.6.11 Setting the acceleration ramp XE "Setting the acceleration ramp"
	1.6.12 Setting the acceleration ramp (without conversion) XE "Setting the acceleration ramp (without conversion)"
	1.6.13 Setting the brake ramp XE "Setting the brake ramp"
	1.6.14 Setting the brake ramp (without conversion) XE "Setting the brake ramp (without conversion)"
	1.6.15 Setting the direction of rotation XE "Setting the direction of rotation"
	1.6.16 Setting the change of direction XE "Setting the change of direction"
	1.6.17 Setting the repetitions XE "Setting the repetitions"
	1.6.18 Setting the record pause XE "Setting the record pause"
	1.6.19 Setting the continuation record XE "Setting the continuation record"
	1.6.20 Setting the maximum jerk for the acceleration ramp XE "Setting the maximum jerk for the acceleration" XE "Setting the jerk for the acceleration"
	1.6.21 Setting the maximum jerk for the braking ramp XE "Setting the maximum jerk for the braking ramp" XE "Setting the jerk for the braking ramp"

	1.7 Mode-specific commands
	1.7.1 Setting the dead range for the joystick mode XE "Setting the dead range for the joystick mode"
	1.7.2 Setting the filter for the analog and joystick modes XE "Setting the filter for analog mode" XE "Setting the filter for analog mode"
	1.7.3 Setting the minimum voltage for the analog mode XE "Setting the minimum voltage for the analog mode"
	1.7.4 Setting the maximum voltage for the analog mode XE "Setting the maximum voltage for the analog mode"
	1.7.5 Setting the offset of the analog input XE "Setting the offset of the analog input"
	1.7.6 Setting the gain of the analog input XE "Setting the gain of the analog input"
	1.7.7 Resetting the switch-on counter XE "Resetting the switch-on counter"
	1.7.8 Adjusting the time until the current reduction XE "Adjusting the time until the current reduction"
	1.7.9 Increasing the rotational speed XE "Increasing the rotational speed"
	1.7.10 Reducing the speed XE "Reducing the rotational speed"
	1.7.11 Reading out the speed XE "Reading out the speed"
	1.7.12 Actuating the trigger XE "Actuating the trigger"
	1.7.13 Setting the interpolation time period for the clock direction mode XE " Setting the interpolation time period for the clock direction mode"

	1.8 Commands for JAVA program XE "Commands for JAVA program"
	1.8.1 Transferring a Java program to the controller XE "Java program,:transferring to the controller"
	1.8.2 Starting the loaded Java program XE "Java program,:starting a loaded program"
	1.8.3 Stopping the running Java program XE "Java program,:stopping a running program"
	1.8.4 Automatically starting the Java program when switching on the controller XE "Automatic start of the Java program when switching on the controller" XE "Java program,:automatically starting when switching on the controller"
	1.8.5 Reading out the Java program error XE "Reading out the Java program error" XE "Java program,:reading out error"
	1.8.6 Reading out the warning of the Java program XE "Reading out the warning of the Java program" XE "Java program,:reading out warning"

	1.9 Closed loop settings XE "Closed loop settings" XE "Settings, closed loop"
	1.9.1 Activating closed loop mode XE "Activating closed loop mode" XE "Activating closed loop mode"
	1.9.2 Reading out the closed loop mode status XE "Reading out the closed loop mode status"
	1.9.3 Setting the controller type for the speed mode XE " Setting the controller type for the speed mode"
	1.9.4 Setting the tolerance window for the limit position XE "Setting the tolerance window for the limit position" XE " Limit position, setting the tolerance window"
	1.9.5 Setting the time for the tolerance window of the limit position XE "Setting the time for the tolerance window of the limit position" XE "Limit position, setting the time for the tolerance window"
	1.9.6 Setting the maximum permissible following error XE "Setting the maximum permissible following error" XE "Following error, setting the maximum permissible value"
	1.9.7 Setting the time for the maximum following error XE "Setting the time for the maximum following error" XE "Following error,:setting the maximum permissible time"
	1.9.8 Maximum permissible speed deviation XE "Maximum permissible speed deviation" XE "Speed deviation, maximum permissible value"
	1.9.9 Time for the maximum permissible speed deviation XE "Time for the maximum permissible speed deviation" XE "Speed deviation,:maximum permissible time"
	1.9.10 Setting the pole pairs of the motor XE "Setting the pole pairs of the motor" XE "Motor,:setting the number of pole pairs"
	1.9.11 Setting the encoder type XE "Setting the encoder type" XE "Encoder,: setting the type"
	1.9.12 Setting the number of increments XE "Setting the number of increments" XE "Increments:setting the number of"
	1.9.13 Setting the number of revolutions XE "Setting the number of revolutions" XE "Revolutions,:setting the number of"
	1.9.14 Setting the numerator of the P component of the speed controller XE "Setting the numerator of the P component of the speed controller" XE " Speed controller, setting the numerator of the P component"
	1.9.15 Setting the denominator of the P component of the speed controller XE "Setting the denominator of the P component of the speed controller" XE "Speed controller, setting the denominator of the P component"
	1.9.16 Setting the numerator of the I component of the speed controller XE "Setting the numerator of the I component of the speed controller" XE "Speed controller, setting the numerator of the I component"
	1.9.17 Setting the denominator of the I component of the speed controller XE "Setting the denominator of the I component of the speed controller" XE "Speed controller, setting the denominator of the I component"
	1.9.18 Setting the numerator of the D component of the speed controller XE "Setting the numerator of the D component of the speed controller" XE "Speed controller, setting the numerator of the D component"
	1.9.19 Setting the denominator of the D component of the speed controller XE "Setting the denominator of the D component of the speed controller" XE "Speed controller, setting the denominator of the D component"
	1.9.20 Setting the numerator of the P component of the cascading speed controller XE "Setting the numerator of the P component of the cascading speed controller" XE " Cascading speed controller, setting the numerator of the P component"
	1.9.21 Setting the denominator of the P component of the cascading speed controller XE "Setting the denominator of the P component of the cascading speed controller" XE "Cascading speed controller, setting the denominator of the P component"
	1.9.22 Setting the numerator of the I component of the cascading speed controller XE "Setting the numerator of the I component of the cascading speed controller" XE "Cascading speed controller, setting the numerator of the I component"
	1.9.23 Setting the denominator of the I component of the cascading speed controller XE "Setting the denominator of the I component of the cascading speed controller" XE "Cascading speed controller, setting the denominator of the I component"
	1.9.24 Setting the numerator of the D component of the cascading speed controller XE "Setting the numerator of the D component of the cascading speed controller" XE "Cascading speed controller, setting the numerator of the D component"
	1.9.25 Setting the denominator of the D component of the cascading speed controller XE "Denominator of the D component of the cascading speed controller, setting" XE "Cascading speed controller, setting the denominator of the D component"
	1.9.26 Setting the numerator of the P component of the position controller XE "Setting the numerator of the P component of the position controller" XE "Position controller, setting the numerator of the P component"
	1.9.27 Setting the denominator of the P component of the position controller XE "Setting the denominator of the P component of the position controller" XE "Position controller, setting the denominator of the P component"
	1.9.28 Setting the numerator of the I component of the position controller XE "Setting the numerator of the I component of the position controller" XE "Position controller, setting the numerator of the I component"
	1.9.29 Setting the denominator of the I component of the position controller XE "Setting the denominator of the I component of the position controller" XE "Position controller, setting the denominator of the I component"
	1.9.30 Setting the numerator of the D component of the position controller XE "Setting the numerator of the D component of the position controller" XE "Position controller, setting the numerator of the D component"
	1.9.31 Setting the denominator of the D component of the position controller XE "Setting the denominator of the D component of the position controller" XE "Position controller, setting the denominator of the D component"
	1.9.32 Setting the numerator of the P component of the cascading position controller XE "Setting the numerator of the P component of the cascading position controller" XE "Cascading position controller, setting the numerator of the P component"
	1.9.33 Setting the denominator of the P component of the cascading position controller XE "Setting the denominator of the P component of the cascading position controller" XE "Cascading position controller, setting the denominator of the P component"
	1.9.34 Setting the numerator of the I component of the cascading position controller XE "Setting the numerator of the I component of the cascading position controller" XE "Cascading position controller, setting the numerator of the I component"
	1.9.35 Setting the denominator of the I component of the cascading position controller XE "Setting the denominator of the I component of the cascading position controller" XE "Cascading position controller, setting the denominator of the I component"
	1.9.36 Setting the numerator of the D component of the cascading position controller XE "Setting the numerator of the D component of the cascading position controller" XE "Cascading position controller, setting the numerator of the D component"
	1.9.37 Setting the denominator of the D component of the cascading position controller XE "Setting the denominator of the D component of the cascading position controller" XE "Cascading position controller, setting the denominator of the D component"
	1.9.38 Setting the sampling point spacing of the load angle curve XE "Setting the sampling point spacing of the load angle curve"
	1.9.39 Setting the lower limit for the cascade controller XE "Cascade controller,:setting the lower limit"
	1.9.40 Setting the upper limit for the cascade controller XE "Cascade controller,:setting the upper limit"
	1.9.41 Reading out the status of the cascade controller XE "Cascade controller,:reading out the status"

	1.10 Motor-dependent load angle values determined by test runs for the closed loop mode
	1.10.1 Reading out the encoder/motor offset XE "Reading out the encoder/motor offset" XE "Correction values, test run, CL mode:Reading out the encoder/motor offset"
	1.10.2 Setting/reading out load angle measurement values of the motor XE " Reading out load angle measurement values of the motor" XE " Load angle values, test run, CL mode:Motor load angle measurement values "
	1.10.3 Reading out the velocity measurement values of the test run XE " Reading out the velocity measurement values of the test run " XE " Load angle values, test run, CL mode:Velocity measurement values "
	1.10.4 Reading out current measurement values of the test run XE " Reading out current measurement values of the test run " XE " Load angle values, test run, CL mode:Current measurement values "
	1.10.5 Reading out load angle measurement values of the test run XE " Reading out load angle measurement values of the test run " XE " Load angle values, test run, CL mode:Test run load angle measurement values "

	1.11 Scope mode XE "Scope mode"
	1.11.1 Integration of a scope XE "Integration of a scope"
	1.11.2 Setting the sample rate XE "Setting the sample rate" XE "Activating the scope mode"
	1.11.3 Reading out the setpoint position of the ramp generator XE "Reading out the setpoint position of the ramp generator" XE "Ramp generator, reading out the setpoint position"
	1.11.4 Reading out the actual position of the encoder XE "Reading out the actual position of the encoder" XE "Reading out the actual position of the encoder"
	1.11.5 Reading out the setpoint current of the motor controller XE "Reading out the setpoint current of the motor controller"
	1.11.6 Reading out the actual voltage of the controller XE "Reading out the actual voltage of the controller"
	1.11.7 Reading out the digital inputs XE "Reading out the digital inputs"
	1.11.8 Reading out the voltage at the analog input XE "Reading out the voltage at the analog input" XE "Analog input, reading out the voltage"
	1.11.9 Reading out the CAN bus load XE "Reading out the CAN bus load"
	1.11.10 Reading out the controller temperature XE "Reading out the controller temperature"
	1.11.11 Reading out the following error XE "Reading out the following error"

	1.12 Configuration of the current controller for controllers with dspDrive XE "Configuration of current controller, controllers with dspDrive" XE "Configuring the current controller for controllers with dspDrive"
	1.12.1 Setting the P component of the current controller at standstill XE "Setting the P component of the current controller at standstill (controllers with dspDrive)"
	1.12.2 Setting the P component of the current controller during the run XE "Setting the P component of the current controller during the run (controllers with dspDrive)"
	1.12.3 Setting the scaling factor for speed-dependent adjustment of the P component of the controller during the run XE "Setting the scaling factor for speed-dependent adjustment of the P component of the controller during the run (controllers with dspDrive)"
	1.12.4 Setting the I component of the current controller at standstill XE "Setting the I component of the current controller at standstill (controllers with dspDrive)"
	1.12.5 Setting the I component of the current controller during the run XE "Setting the I component of the current controller during the run (controllers with dspDrive)"
	1.12.6 Setting the scaling factor for speed-dependent adjustment of the I component of the controller during the run XE "Setting the scaling factor for speed-dependent adjustment of the I component of the controller during the run (controllers with dspDrive)"

	2 Programming with Java (NanoJEasy) XE "Java:Programming" XE "NanoJEasy" XE "Java:NanoJEasy"
	2.1 Overview
	2.2 Command overview
	2.3 Installing NanoJEasy
	2.4 Working with NanoJEasy
	2.4.1 Main window of NanoJEasy
	2.4.2 Development process with NanoJEasy
	2.4.3 Integrated commands

	2.5 Classes and functions XE "Classes and functions"
	2.5.1 “capture” class XE "Class:capture"
	2.5.2 "cl" class XE "Class:b"
	2.5.3 “comm” class XE "Class:comm"
	2.5.4 "config" class XE "Class:config"
	2.5.5 “drive” class XE "Class:drive"
	2.5.6 "dspdrive" class XE "Class:dspDrive"
	2.5.7 “io” class XE "Class:io"
	2.5.8 “util” class XE "Class:util"

	2.6 Java programming examples XE "Programming examples, Java" XE "Java programming examples"
	2.6.1 AnalogExample.java
	2.6.2 DigitalExample.java
	2.6.3 TimerExample.java
	2.6.4 ConfigDriveExample.java
	2.6.5 DigitalOutput.java
	2.6.6 ExportAnalogIn.java

	2.7 Manual translation and transfer of a program without NanoJEasy XE "Java:Manual translation and transfer without NanoJEasy"
	2.7.1 Necessary tools
	2.7.2 Translating the program
	2.7.3 Linking and converting a program
	2.7.4 Transferring the program to the controller
	2.7.5 Executing the program

	2.8 Possible Java error messages XE "Java error messages"

	3 Programming via the COM interface XE "COM interface"
	3.1 Overview
	3.2 Command overview
	3.3 Description of the functions XE "COM interface:Functions"
	3.3.1 General information
	3.3.2 List of functions

	3.4 Programming examples XE "COM interface:Programming examples"

	4 Appendix: Calculating the CRC Checksum XE "CRC checksum, calculating"
	Index

