
– 1 –

Introduction
The software included with the MDEV-USB-QS Master Development
Kit is a quick and easy way to test the features of the QS Series USB
module. The Manual for the kit explains the board and hardware, and
this document will explain how to use the software and explains some of
the source code. Any questions not answered by this document can be
referred to Linx.

The Program Interface
The development board connects the QS module to one of two sections,
so when the software is first started, a screen will be displayed asking
the user to choose which section of the board will be used. The USB to
RS232 section will activate the USB module and the serial port on the
PC. This section will send data through the USB bus and receive it back
through the serial port, and vice versa.

The USB to PIC section demonstrates how to interface the QS module
with a popular microcontroller, the PIC16F88 from Microchip. This section
will demonstrate how to have the PC instruct the PIC to turn on some
LEDs and have the PIC tell the PC to light an indicator on the screen
when a button on the board is pressed and move a slider when a poten-
tiometer is turned. The user should decide which section will be used and
click the appropriate button.

The PIC Control Screen
Selecting USB TO PIC will bring up the PIC Control screen as shown in
Figure 2.

This screen is divided into several sections. At the top, the CURRENT
DEVICE box will display the description and serial number of the device
to which the computer is currently connected. The CONNECTED USB
DEVICES box below that will list the description and serial number of all
of the QS modules that are currently connected to the bus. Clicking on
one of the listed devices and pressing the STATUS button will change the
current device to the one that was highlighted in the box. A green light
above the STATUS button indicates that the device is connected and

QS Series Master Development System

Software Documentation

Revised 11/28/12

Figure 1: The Choose Application Screen

– 2 –

communicating normally. A red light indicates that an error has occurred
or that no device is connected.

The section labeled A/D VOLTAGE ADJUST has a light bar and an
indicator that will change based on the position of the VOLTAGE AD-
JUST potentiometer on the evaluation board. The PIC will take a voltage
reading from its internal Analog-to-Digital Converter (ADC), will convert
that value into a voltage, and will send that voltage to the computer. The
computer will display the voltage in the indicator box and will activate the
light bar based on the percentage of full voltage.

The section labeled MODEM LINES controls the QS module’s UART
handshaking lines. The outputs, RTS and DTR can be activated by
pressing the buttons on the screen, which will turn on LEDs on the
evaluation board. Pressing the Modem Line buttons on the evaluation
board will cause the appropriate input indicator on the screen to turn on.

The buttons labeled LED 1, LED 2 and LED 3 will send a signal to the
PIC that will turn on and off three LEDs on the evaluation board. The indi-
cators above the buttons will also light up to match the state of the LEDs.

Pressing the button on the evaluation board will cause the PIC to send a
signal to the PC that will cause the indicator labeled USB COM to turn on
and off.

Figure 2: The PIC Control Screen

MDEV-USB-QS Software Documentation

– 3 –

The RS232 Control Screen
Selecting USB TO RS232 from the CHOOSE APPLICATION screen will
bring up the RS232 CONTROL screen as shown in Figure 3.

Selecting this option causes the SEND AND RECEIVE VIA RS232
section to become available. Pressing the USB COM button will send a
signal out of the computer’s serial port to the evaluation board, and back
into the computer through the QS module. This signal will cause the USB
COM indicator on the screen to turn on. Likewise, pressing the LED1,
LED2 and LED3 buttons in the SEND AND RECEIVE VIA USB section
will cause the appropriate lights in the SEND AND RECEIVE VIA RS232
section to turn on.

The Menus
The CONTROL screen has four menu items at the top of the screen. The
first menu, FILE, has only the EXIT option. This selection will close the
windows and exit the program.

The VIEW menu has three options: USB PROPERTIES, RS232 PROP-
ERTIES and CONTACT US. The USB PROPERTIES screen contains the
communications settings for the USB port, as seen in Figure 4.

Figure 3: The RS232 Control Screen

MDEV-USB-QS Software Documentation

– 4 –

The DEVICE DESCRIPTION box will show the description of the cur-
rent device. The BAUD RATE, DATA BITS and PARITY selection boxes
allow the user to set the communication parameters. When in PIC mode,
these options will be disabled and set for proper communication with the
processor. The ERROR DESCRIPTION and LOG REPORT will list any
communication errors that may occur. Click OK to apply any changes or
CANCEL to exit out and return to the CONTROL screen with no changes.

The RS232 PROPERTIES screen contains the communications settings
for the serial port, as seen in Figure 5.

The PORT NUMBER box will list all of the available COM ports on the
PC. The software will default to COM1, so select the port that will be con-
nected to the development board. The BAUD RATE, DATA BITS, STOP
BITS, and PARITY selection boxes allow the user to set the communica-
tion parameters. Click OK to apply any changes or CANCEL to exit out
and return to the CONTROL screen with no changes.

Figure 4: The USB Properties Screen

Figure 5: The RS232 Properties Screen

MDEV-USB-QS Software Documentation

– 5 –

The CONTACT US screen has all of the contact information for Linx
Technologies. Click on one of the web links to open the Linx Technologies
web site in the default web browser and the email link to send an email
in Microsoft Outlook. Click OK to exit out and return to the CONTROL
screen.

The WINDOW menu item has two options: PIC CONTROL and RS232
CONTROL. These options will toggle the CONTROL screen between the
PIC CONTROL screen and the RS232 CONTROL screen.

The HELP menu item has three options: ABOUT, HELP FILE, and
CONTACT US. The ABOUT screen displays information about the

software, as shown in Figure 7.
Click on one of the web links to open the Linx Technologies web site in
the default web browser and the email link to send an email in Microsoft
Outlook. Click OK to exit out and return to the CONTROL screen. Click
on SYSTEM INFO to open the Windows System folder.

The HELP FILE option will display this document in either .pdf or .htm
format. The CONTACT US option will display the CONTACT US screen
described above.

Figure 6: The Contact Us Screen

Figure 7: The About Screen

MDEV-USB-QS Software Documentation

– 6 –

A QS Module System Example
The rest of the manual will give some of the source code used in the
development software. The application software was written in Microsoft
Visual Basic 6.0 and the Programmer’s Guide has examples of these
functions written in C. Error handling and many of the references to
objects on the forms are not shown to conserve space and reduce the
possibility of confusion, but comments have been added where the user
should put their own code. The Programmer’s Guide should be used in
addition to this document to aid in software development.

The functions listed in this software are contained in the FTD2XX.dll file,
so these functions must be declared before they can be used. All of these
functions are described in the Programmer’s Guide in detail. The file “QS
VB Header File.txt” on the CD with the Master Development Kit Software
contains all of the necessary function and constant declarations used by
the software. This text file should be copied into a module in the Visual
Basic project. The header file is also included in the Programmer’s
Guide and can be downloaded from the Linx website as a text file.

The first step in this system example is to determine if and how many
devices are connected to the bus. This is done in C by using the FT_List-
Devices function, though a difference in the way the Visual Basic
variables are passed to the .dll has resulted in the creation of another
function, FT_GetNumDevices. The code is as follows:

LIST_BY_NUMBER_ONLY and OK are declared in the header file. If
this function is successful, then the number of QS devices connected
to the USB bus is stored in the variable lngNumDevices. If there is a
problem, then the error code should be viewed so that the cause can be
determined and corrected. This function can also be called periodically to
check the bus for new devices or to see if old ones have been
disconnected.

If devices are found, then the FT_ListDevices function can be used to
get the device description and serial number.

Note: This code is provided as an example to aid our customers
in their development and may or may not be appropriate for an
individual application. This code is provided “As Is” and Linx
Technologies makes no warrantees and assumes no liability for the
use of this code.

Dim lngStatus As Long
Dim lngNumDevices As Long’

‘ Get the number of devices attached to the bus
	 lngStatus = FT_GetNumDevices (lngNumDevices, vbNullString, LIST_BY_NUMBER_ONLY)
	 If lngStatus = OK Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action

	 End If

MDEV-USB-QS Software Documentation

– 7 –

Index is the number in which the bus located the device, starting with
zero. If multiple devices are located on the bus then the above code can
be used in a For loop to get the information for each device in turn,
allowing the application software to decide which device to interface with.
The For loop would be indexed by the number of devices returned by
FT_GetNumDevices.

At this point, there are three ways of opening a communication channel
with a device: by the index number, the description, or the serial num-
ber. The index number does not allow the application to open a specific
named device, and if there are two devices with the same description on
the bus then only the one with the lowest index number will be opened.
The serial number is unique to each device and can be used to ensure
that a specific device is opened. This example uses the serial number so
refer to the Programmer’s Guide for examples of the other two methods.

Dim lngStatus As Long
Dim Index As Integer
Dim strDescription as String
Dim strSerialNumber as String

‘ Get the device description
	 lngStatus = FT_ListDevices(Index, strDescription, LIST_BY_INDEX Or OPEN_BY_DESCRIPTION)
	 If lngStatus = OK Then
		 ‘The function was successful and the device description is in strDescription
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

‘ Get the device serial number
	 lngStatus = FT_ListDevices(Index, strSerialNumber, LIST_BY_INDEX Or OPEN_BY_SERIAL_NUMBER)
	 If lngStatus = OK Then
		 ‘The function was successful and the device serial number is in strSerialNumber
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

Dim arrDescription() As String * 256
Dim arrSerialNumber() As String * 256
Dim lngStatus As Long
Dim Index As Integer
Dim strDescription as String
Dim strSerialNumber as String
Dim lngNumDevices As Long

‘ Get the number of devices attached to the bus
	 lngStatus = FT_GetNumDevices(lngNumDevices, vbNullString, LIST_BY_NUMBER_ONLY)
	 If lngStatus = OK Then
		 ReDim arrDescription(lngNumDevices) As String * 256 ‘resize the arrays to the number of devices connected
		 ReDim arrSerialNumber(lngNumDevices) As String * 256
	 End If

	 For Index = 0 To (lngNumDevices - 1) Step 1
‘ Get the device description
	 lngStatus = FT_ListDevices(Index, strDescription, LIST_BY_INDEX Or OPEN_BY_DESCRIPTION)
	 If lngStatus = OK Then
		 arrDescription(Index) = strDescription
	 End If

‘ Get the device serial number
	 lngStatus = FT_ListDevices(Index, strSerialNumber, LIST_BY_INDEX Or OPEN_BY_SERIAL_NUMBER)
	 If lngStatus = OK Then
		 arrNumber(Index) = strSerialNumber
	 End If
Next Index

MDEV-USB-QS Software Documentation

– 8 –

This will open the device with the serial number that is contained in
strSerialNumber and return a unique number in lngHandle that will
be used by the other functions to communicate with the device. Once
opened, the communications parameters should be set. The following
function demonstrates the code to do this.

Now that the device has been opened and the communication parame-
ters have been set, the application can read and write data to the device.
The code below will write the contents of the string strWriteBuffer to the
device.

MDEV-USB-QS Software Documentation

Dim lngStatus As Long
Dim strSerialNumber as String
Dim lngHandle As Long

‘ Open the device using the serial number
	 lngStatus = FT_OpenEx(strSerialNumber, OPEN_BY_SERIAL_NUMBER, lngHandle)
	 If lngStatus = OK Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

Dim lngStatus As Long
Dim lngHandle As Long
Dim sngUSB_Baud As Single
Dim intUSB_DataBits As Integer
Dim intUSB_Stops As Integer
Dim intUSB_Parity As Integer

sngUSB_Baud = 9600 		 ‘9600bps baud
intUSB_Stops = 0 		 ‘Stop Bits: 1 bit = 0, 1.5 bits = 1, 2 bits = 2
intUSB_DataBits = 8 	 ‘Data Bits: 7 or 8
intUSB_Parity = 0 		 ‘Parity: none = 0, odd = 1, even = 2, mark = 3, space = 4

Function SetUpUSB()
	 ‘ Set baud rate
	 lngStatus = FT_SetBaudRate(lngHandle, sngUSB_Baud)
	 If lngStatus = OK Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If
	
	 ‘ Set data bits, stop bits, and parity
	 lngStatus = FT_SetDataCharacteristics(lngHandle, intUSB_DataBits, intUSB_Stops, intUSB_Parity)
	 If lngStatus = OK Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

	 ‘ no flow control
	 lngStatus = FT_SetFlowControl(lngHandle, FLOW_NONE, 0, 0)
	 If lngStatus = OK Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

	 ‘ 5 second read timeout
	 lngStatus = FT_SetTimeouts(lngHandle, 5000, 0)
	 If lngStatus = OK Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

End Function

– 9 – MDEV-USB-QS Software Documentation

Dim lngStatus As Long
Dim lngHandle As Long
Dim strWriteBuffer As String
Dim lngTXAmt As Long
Dim lngBytesWritten As Long

‘ Write the data
	 lngStatus = FT_Write(lngHandle, strWriteBuffer, lngTXAmt, lngBytesWritten)
	 If lngStatus = OK Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

The following code will read the data from the device and store it in
strReadBuffer.

Dim lngStatus As Long
Dim lngHandle As Long
Dim strReadBuffer As String * 256
Dim lngRXBytes As Long
Dim lngBytesRead As Long

‘ Read the data
	 lngStatus = FT_Read(lngHandle, strReadBuffer, lngRXBytes, lngBytesRead)
	 If (lngStatus = OK) Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

This will only read the data as soon as it is called, but will not be called
automatically when there is data to be read. This means that the device
must be periodically checked for data. The following code can be used
with a timer to periodically check the receive buffer and the state of the
modem control lines. In this example, the timer is set to check the device
every 200mS, though a specific application
may need more or less time.

Dim lngHandle As Long
Dim lngRXBytes As Long
Dim lngTXBytes As Long
Dim lngEvents As Long
‘ Set the timer to check the USB receive buffer
	 tmrCheckRx.Interval = 200

Private Sub tmrCheckRx_Timer()
‘ Timer to periodically check the device for data
	 If FT_GetStatus(lngHandle, lngRXBytes, lngTXBytes, lngEvents) = OK Then
		 If lngRXBytes > 0 Then
			 ‘The device has data, call the FT_Read function
		 End If
	 End If

‘ Get the status of the modem lines
	 lngStatus = FT_GetModemStatus(lngHandle, lngModemStatus)
	 If (lngModemStatus And MODEM_STATUS_CTS) = MODEM_STATUS_CTS Then
		 ‘CTS is high
	 Else
		 ‘CTS is low
	 End If
	 If (lngModemStatus And MODEM_STATUS_DSR) = MODEM_STATUS_DSR Then
		 ‘DSR is high
	 Else
		 ‘DSR is low
	 End If
	 If (lngModemStatus And MODEM_STATUS_DCD) = MODEM_STATUS_DCD Then
		 ‘DCD is high
	 Else
		 ‘DCD is low
	 End If
	 If (lngModemStatus And MODEM_STATUS_RI) = MODEM_STATUS_RI Then
		 ‘RI is high
	 Else
		 ‘RI is low
	 End If
End Sub

– 10 –

When the communication session has ended, close the channel to the
device using the following code.

The following function can be used to display the type of error should one
occur.

Should one of the functions fail, lngStatus can be passed to this func-
tion and strUSB_Error can be displayed on the form to show which error
occurred. For example, suppose a text box named txtStatus is placed on
the form, then the code to open the device could be modified to display
the results of the function call in the text box.

The other functions can be modified in a similar manner to suit the needs
of the application. Please refer to the Programmer’s Guide for a complete
list of functions and more sample code.

Dim lngHandle As Long

‘ Close the current device
	 lngStatus = FT_Close(lngHandle)
	 If (lngStatus = OK) Then
		 ‘The function was successful
	 Else
		 ‘The function failed and the error code should be viewed to determine corrective action
	 End If

Public strUSB_Error As String

Public Function ErrorCode(lngErrorNum As Long)
	 Select Case lngErrorNum
		 Case 0
			 strUSB_Error = “No Error”
		 Case 1
			 strUSB_Error = “Invalid Handle”
		 Case 2
			 strUSB_Error = “Device Not Found”
		 Case 3
			 strUSB_Error = “Device Not Opened”
		 Case 4
			 strUSB_Error = “IO Error”
		 Case 5
	 	 	 strUSB_Error = “Insufficient Resources”
		 Case 6
			 strUSB_Error = “Invalid Parameter”
		 Case 7
			 strUSB_Error = “Invalid Baud Rate”
		 Case 8
			 strUSB_Error = “Device Not Opened For Erase”
		 Case 9
			 strUSB_Error = “Device Not Opened For Write”
		 Case 10
			 strUSB_Error = “Failed To Write Device”
		 Case 11
			 strUSB_Error = “EEPROM Read Failed”
		 Case 12
			 strUSB_Error = “EEPROM Write Failed”
		 Case 13
			 strUSB_Error = “EEPROM Erase Failed”
		 Case 14
			 strUSB_Error = “EEPROM Not Present”
		 Case 15
			 strUSB_Error = “EEPROM Not Programmed”
		 Case 16
			 strUSB_Error = “Invalid Args”
		 Case 17
			 strUSB_Error = “Other Error”
	 End Select
End Function

‘ Open the device using the serial number
	 lngStatus = FT_OpenEx(strSerialNumber, OPEN_BY_SERIAL_NUMBER, lngHandle)
	 If lngStatus = OK Then
		 txtStatus.Text = “No Error”
	 Else
		 Call ErrorCode(lngStatus)
		 txtStatus.Text = “Open Failed: “ & strUSB_Error
	 End If

MDEV-USB-QS Software Documentation

– 11 –

The Microprocessor Code
The processor used on the evaluation board is the Microchip PIC16F88.
The source code for this chip is written in C and compiled using the CCS
PIC C Compiler (www.ccsinfo.com). Interfacing the microprocessor
to the QS module is very straightforward thanks to the UARTs built into
both devices. The processor is initialized to use the default RX and TX
lines as shown in the following code.

When a specific event occurs, PIC processors can jump out of the main
program into a program written for that event. These events are called
interrupts and must be defined in the code. The types of interrupts that
can be created depends on the processor. The first interrupt used by the
processor is for received data and is coded below.

When the processor receives a character, the interrupt is generated and
the code above is called. The getc() function gets the data from the
UART and the next line passes it to function Receive. This function would
then take an action based on the received data, such as taking a line
high to activate a LED. The second interrupt is for a timer that is used to
generate a value from the ADC to move the A/D Voltage Adjust slider on
the computer screen and also demonstrates how to send data to the QS
module.

#include <16F88.h>
#device ADC=8
#include <stdio.h>
#fuses NOWDT,INTRC_IO,NOMCLR
#use delay(clock=4000000)
#use rs232(baud=9600,xmit=PIN_B5,rcv=PIN_B2)

char RxData; 		 // Holds the received data character

//Interrupts when received data available
#int_rda
	 void rda_isr(void)
	 {
	 RxData = getc(); 	 //Get the character
	 Receive(RxData); 	 //Call the Receive function
	 }

int CurrentCount; 				 // Holds the current timer count
float OldValue; 	 	 	 	 // Holds the last voltage value sent

// Initialize the variables
CurrentCount = 10;
OldValue = 0;

// Interrupts when the clock overflows
#INT_RTCC
	 void clock_isr(void)
		 {
		 if(--CurrentCount==0) 	 // Subtract 1 from count and if it is 0
			 {
	 	 	 GetADC(OldValue); 	 // Call the GetADC function
			 CurrentCount = 10; 	// Reset the counter
			 }
		 }

MDEV-USB-QS Software Documentation

– 12 –

When the internal clock reaches its maximum value then this code will be
called. With a 4MHz clock this occurs about every 13mS and the coun-
ter will wait for the overrun to happen ten times before reading the ADC
value, meaning the GetADC function is called about every 130mS. This
function is shown below.

The ADC will return a value of 0 for a voltage of 0V and a value of 255 for
a voltage of Vcc, in this case 5V. The ratio of 5/255 will convert the ADC
value into the actual voltage measured on the pin. This value is compared
to the previous reading from the ADC and, if different, output to the QS
module with the printf() statement. This comparison helps to keep the bus
quiet by only sending the value when it has changed rather than sending
the same value repeatedly every 130mS.

The button press is detected by looking for a change on the button line.
The button on the board is momentary so the software is used to latch
the indicator in the application software. When a button press is detected,
the software check what was sent the last time and sends the opposite
command. It then waits for the line to go low to prevent the light from
constantly switching while the button is held down. Finally, a 100mS
debounce wait will prevent any noise from the button from causing the
PIC to recognize multiple presses.

int ADCValue; 	 	 	 	 // Holds the value read by the ADC
float Ratio; 	 	 	 	 // Holds MaxVolt/MaxADC
float Voltage; 	 	 	 	 // Holds the voltage measured by the ADC
	
Ratio = 0.019608; 				 // = 5/255

void GetADC(float LastValue)
	 {
	 ADCValue = Read_ADC(); 	 	 // Get the ADC value
	 Voltage = (ADCValue * Ratio); 	 // Multiply by ratio to convert to voltage
	 if (Voltage != LastValue) 	 	 // if it is not equal to the last value
		 {
	 	 printf(“%01.2f”, Voltage); 	 // Send the new value
	 	 OldValue = Voltage; 	 // Save the new value
		 }
	 }

char Data; 				 // Holds the last character sent by Button 1
Data1 = ‘h’; 				 // Initialize the button to off

void CheckButtons(void)
	 {
	 if(INPUT(PIN_B6)) 			 //If the button was pressed
		 {
		 if(Data==’h’) 		 //If the last character sent was h (Button off)
			 {
			 putc(‘g’); 	 //send g (Button on)
			 Data=’g’; 	 //update the last character sent
			 }
		 else if(Data==’g’) //If the last character sent was g (Button on)
			 {
			 putc(‘h’); 	 //send h (Button off)
			 Data=’h’; 	 //update the last character sent
			 }
		 while(INPUT(PIN_B6)) 	 //Wait for the line to go low again
			 {
			 delay_ms(1);
			 }
			 delay_ms(100); 	 //Debounce wait
		 }	
				 }

MDEV-USB-QS Software Documentation

– 13 –

Copyright © 2012 Linx Technologies

159 Ort Lane, Merlin, OR, US 97532
Phone: +1 541 471 6256
Fax: +1 541 471 6251
www.linxtechnologies.com

void main(void)
	 {
	 //Setup chip and initialize interrupts
	 setup_oscillator(OSC_4MHZ);
	 enable_interrupts(global);
	 enable_interrupts(int_rda);
	 setup_adc_ports(sAN0);
	 SETUP_ADC(ADC_CLOCK_INTERNAL);
	 set_adc_channel(0);
	 set_rtcc(0);
	 setup_counters(RTCC_INTERNAL, RTCC_DIV_256);
	 enable_interrupts(INT_RTCC);

	 //Initialize LED outputs to low
	 OUTPUT_LOW(PIN_A2);
	 OUTPUT_LOW(PIN_A3);
	 OUTPUT_LOW(PIN_A4);
	 }

The opening of the main function sets the clock speed, enables the ADC
and interrupts, and initializes the outputs.

MDEV-USB-QS Software Documentation

