

RDF Group © Page 1 of 7 25/06/20009

Introduction
Services and Processes are new architectural layers raising the level of abstraction required to

develop enterprise applications in a SOA environment.

Several vendors offer tools and technologies that support the implementation of these new

concepts. However efforts to integrate these concepts in the application development process

and related model-driven approaches, are lagging behind the technology, as evidenced by

the fact that the most recent version (2.1) of the Unified Modelling Language [1] lacks these

concepts.

This paper shows how Services and Processes can be integrated in the RDF Development

Process and associated model architecture, with little disruption to their fundamental principles

and structure. This is made possible by the specification-oriented modelling approach used at

RDF, in which system and component functionality are specified early in the development

process, using the ‘design-by-contract’ approach.

The RDF process
The RDF software development process has been used for several years in projects of medium

to large size (i.e. approximately from one thousand to ten thousand person days). It is heavily

influenced by the Unified Process [2], but it adopts a more rigorous, specification-based,

modelling approach influenced by robust object-oriented methodologies such as Catalysis [3].

The fundamental principles of the process are:

 It is use-case driven. Use cases capture requirements from the user’s standpoint and drive all

activities: analysis, design, development, testing, project planning and progress tracking.

Progress is measured by the delivery of visible functionality of value to the business rather

than by technical metrics such as lines of code completed.

 It is iterative and incremental. Functionality is built and delivered in increments using time-

boxed iterations. Advantages of this approach are: risk reduction, early visibility and higher

quality achieved through continuous testing.

 It is architecture centric. Analysis is object-oriented, while architecture and high-level design

are component-based. Object-oriented design does not scale up well to application level,

so it is used only inside components (‘design in the small’). Component interfaces play a

central role in the architecture. This means the level of reuse and encapsulation is raised

from objects to components, creating stable and coarse-grained abstractions, similar in

nature to services, as explained in more detail later.

 It is model driven. UML models drive progress and are used to specify and design business

processes and software artefacts. RDF models have a standard structure and a strong set of

best practice guidelines. The picture below illustrates the modelling layers and key models:

BPM and SOA – an integrated

modelling approach

 BPM and SOA – an integrated modelling approach

RDF Group © Page 2 of 7 25/06/2007

Business

Process ModelDomain Model

Business Model

System/Application

Models

Component Models

System Type Model

(system operation specs)

Use Case Model

UI Model

Interface Type Model

(component operation

specs)

Component Architecture

Model

Use Case Realisations

Artefacts not in

standard RUP
UP Artefacts

Artefacts not in

standard RUP

UP Artefacts

realise realise

realise realise

Figure 1: RDF’s platform independent model structure

System and component interface specifications
In the RDF process, system functionality is specified rigorously by modelling the system under

construction as a typed object providing one or more interfaces, with associated operations.

External systems are modelled as required interfaces.

Operations are specified in a declarative style, using pre- and post-conditions, based on an

underlying System Type Model, which provides the functional semantics of the operations.

The same approach is used to specify functionality offered by the main application layer

components in the system design. A component Interface Type Model provides the semantics

of component operations [4], just as the System Type Model provides the semantics of system

operations.

As noted in the diagram, the System Type Model and Interface Type Models are not standard

UP artefacts. Their use makes the RDF modelling approach easily portable to a SOA

environment, as explained in the following section.

 BPM and SOA – an integrated modelling approach

RDF Group © Page 3 of 7 25/06/2007

Modelling services
“Services are published capabilities that can be dynamically discovered and composed” [Kroll

and MacIsaac 2006]. In order to utilise a service, a client needs to obtain its interface and

invoke one of the operations published in that interface.

Services are similar to components. In UML2 a component is “a modular part of a system design

that hides its implementation behind a set of external interfaces”[1].

The main difference between a service and a component is that component interfaces

cannot be discovered dynamically. In all other respects, components and services are similar in

nature. They both offer functionality that can be invoked through interfaces, and both need to

have specifications associated with those interfaces. It follows that the modelling techniques

used to model components can be reused, bar the discovery side, to model services.

The diagram below shows how the RDF models can be adapted to the modelling needs of

SOA architectures with little disruption:

Business

Process ModelDomain Model

Business Model

Application Models

Component Models

Service Type Model

(service operation specs)

Use Case Model

UI Model

Interface Type Model

(component operation

specs)

Component Architecture

Model

Use Case Realisations

Artefacts not in

standard RUP
UP Artefacts

Artefacts not in

standard RUP

UP Artefacts

realise realise

realise realise

Service Models

uses

Figure 2: Replacing system with service models

 BPM and SOA – an integrated modelling approach

RDF Group © Page 4 of 7 25/06/2007

Service definition

Services are specified using the same technique currently used to model systems and

components. Each service is modelled as an interface, with a number of provided operations,

and the semantics of the operations are defined using pre- and post-conditions, based on an

underlying Service Type Model.

Applications continue to exist in a SOA environment, so use cases and user interfaces will

continue to be applicable modelling techiques. However, system functionality is captured as

Services rather than being provided by a ‘system’ abstraction.

Service identification

Currently there is no explicit step or method in existing methodologies to identify and define

services, as acknowledged in [6]. In RDF’s experience, services need to become visible

artefacts as early as possible in the development process, in the analysis stage, when system

functionality is discovered, analysed and specified, rather being just design artefacts. In other

words, we see services playing a role, in a SOA project, similar to the role played by the System

type in our pre-SOA projects. This has the advantage of making services visible to the user and

testing community, rather than being seen as an internal implementation mechanism,

increasing the opportunity for reuse in different business processes/applications.

As we believe that visible functionality, modelled as use cases, should continue to drive the

development process even in a SOA enviromment, we have added a Service Identification

step in our use case modelling technique. Services are identified and their purpose and scope

captured at the same time as use case flows are described.

Modelling processes

We model business processes, both in their ‘as-is’ and ‘to-be’ forms, using UML 2.0 Activity

Diagrams [1].

Traditionally applications automate part(s) of business processes, but the processes themselves

are not directly automated, i.e. they do not appear as an implementation artefact in the

enterprise architecture.

In SOA, business processes can be automated in the Service Orchestration layer of the

Enterprise Service Bus (ESB) [7], and become both consumers of services as well as suppliers of

services. For example, to initiate or resume a process, a client of the ESB will invoke a service

which will be routed to and consumed by the correct process. The process can reply to the

client (request-response invocation) or not (one way invocation). Requests originating from UI

clients will normally be of the request-response type.

Processes can invoke services during their execution. They can also generate events and can

wait for events to occur. For example, generating an external request and waiting for a reply

can be modelled with generating an event and receiving an event. A process can generate a

workflow task for a human agent - this can be achieved by invoking services provided by the

underlying Workflow platform. The process may or may not have to wait for the agent to take

action before proceeding.

This means that business process models have to be formalised and interfaced with the Service

Model, and used to generate executable process descriptions (e.g. BPEL descriptions) rather

than used as a mere documentation item.

 BPM and SOA – an integrated modelling approach

RDF Group © Page 5 of 7 25/06/2007

Putting it all together – business processes, use cases and

services

A use case represents a slice of a business process seen from the perspective of an application

user. The use case models the user-system dialogue. Whereas use cases are normally of short

duration, business processes are long-lived and can interface to a number of use cases during

their execution. For example, in the business process ‘Process Mortgage Application’, there will

be a number of use cases for different users, i.e. the customer, the underwriter, the bank

processing agent, etc. Each of these actors will perform a number of use cases, possibly using

different applications, to achieve their individual goals, which represent parts of the overall

business process.

The diagram on the next page shows a typical interaction scenario between use cases (only

partially shown via their primary actors for simplicity), processes, and services. Use cases invoke

the Mortgage Application Service, which provides entry points into the Mortgage Application

Process. The process invokes other services that encapsulate business logic. Note how the

Workflow Service allows the process to create tasks for human agents and suspend itself

waiting for the appropriate event.

 BPM and SOA – an integrated modelling approach

RDF Group © Page 6 of 7 25/06/2007

customer

underwriter

mortgage processing agent

mortgageApplicationService

Mortgage

Application

Process
Use Cases

decisionService workflowService

applyForMortgage
send mortgage application

Validate application

Receive Application

Take decision

[valid]

requestDecision()

decision result

Refer

[refer]

refer to underwriter

Receive underwriter decision

acceptReferredDecision

Determine next step

ask agent to progress

progressApplication()

app status

Other Services
Mortgage Application

Service

inform customer of referral

[invalid]

[accept]

validate

result

progress application

Receive progress requestapp status

.......

Figure 3: Typical Interaction pattern between use cases (actors), services and processes

 BPM and SOA – an integrated modelling approach

RDF Group © Page 7 of 7 25/06/2007

Conclusions

As the level of abstraction in enterprise application development is raised to include services

and processes, it is important that these concepts are explicitly modelled in a coherent and

integrated manner. RDF’s strong model-driven development process can readily incorporate

these new concepts with relatively small changes to the structure of the models and the steps

involved in system analysis and design.

References

[1] Grady Booch, Ivar Jacobson and James Rumbaugh, The Unified Modeling Language

Reference Manual, 2nd Edition, Addison-Wesley 2005

[2] Ivar Jacobson, Grady Booch and James Rumbaugh, The Unified Software Development

Process, Addison-Wesley 1999

[3] Desmond D’Souza and Alan Wills, Objects, Components and Frameworks with UML: the Catalysis

Approach, Addison-Wesley, 1999

[4] John Cheesman and John Daniels, UML Components: A Simple Process for Specifying

Component-based Software (Component-based Development), Addison-Wesley, 2000

 [5] Per Kroll and Bruce MacIsaac, Agility and Discipline Made Easy – Practices from OpenUP

and RUP, Addison-Wesley 2006

[6] Olaf Zimmermann, Pal Kroqdahl and Clive Gee, Elements of Service-Oriented Analysis and

Design, Article on IMB DeveloperWorks web site,

http://www.ibm.com/developerworks/library/ws-soad1/

[7] Thomas Erl, Service-Oriented Architecture – Concepts, Technology and Design, Prentice-

Hall, 2005

http://www.ibm.com/developerworks/library/ws-soad1/

