Classifying and predicting the electron
affinity of diamond nanoparticles using
machine learning

Diamond nanoparticles (nanodiamonds) are proving invaluable in bio-medical applications as a result of their bio-compatibility and
high surface area, combined with ‘tuneable’ properties which can be tailored to meet application-specific surface chemistry
requirements. This property-tuning is achieved through control over structural features; however, prediction of the relevant
structure/property relationship(s) is made difficult by their multivariate nature, and the challenges of experimental control. We
employed machine learning to perform the multivariate analysis, and electronic structure simulations to overcome experimental
constraints, to form predictions of electronic properties including the electron affinity which is crucial to determining surface
chemistry. Through the use of a suite of machine learning methods, we have found evidence of class-dependent structure/property
relationships in the electron affinity, which have not been reported in nanomaterials before!.

4 N
DATA CLEANING e Abbreviation Feature Description L BN Train 10 mmm Train
(Outller remova!, Quality NC Total number of carbon atoms Global, first order Bl Test 9 Bl Test
Correlation Matrix) NH Total number of hydrogen atoms  Global, first order 8
\. J NH/NC Surface-to-volume ratio Global, first order 4 7
D_nm Average particle diameter Global, first order o +
STRATIFICATION, 80/20 SPLIT Ensure Ani Particle anisotropy Global, first order g g 6
' Equality dCC Average C-C bond length Local, first order O QO 5
dCCe Uncertainty in the C-C bond length Local, second order O O 4
dCH Average C-H bond length Local, first order 6
dCHe Uncertainty in the C-H bond length Local, second order I I 3
Relate tCCC Average C-C-C bond angle Local, first order
CLASSIFICATION Clusters to tCCCe Uncertainty in the C-C-C bond angle Local, second order 2 . -
(RF Classifier) Propert tCCH Average C-C-H bond angle Local, first order l- l..- l 1 - -
perty tCCHe Uncertainty in the C-C-H bond angle Local, second order 0
(a) b
\7 Vv Table 1: Initial structural and morphological features used Standard'sed Values (b) Standardlsed Values
r A r A to described the nanodiamonds contained in the dataset. Figure 5: Stratified split of the (a) low EA energy and (b) high EA energy classes into training and testing sets. Stratifying
LOWNER Class HIGH NEA Class imbalanced datasets prior to train/test splits reduces the potential for biasing.
(Accuracy and Recall) (Accuracy and Recall)
\- / \ / R? =0.992, RMSE = 0.021, MAE = 0.013 R? = 0.952, RMSE = 0.061, MAE = 0.036
STRATIFICATION, 80/20 SPLIT STRATIFICATION, 80/20 SPLIT 40 - -
1.0 27 1.0 —
30 . ”
REGRESSION REGRESSION " . - K 1
(RF with Extra Trees) (RF with Extra Trees) r= "é‘ 05 ® "é‘ 0.5 ,/’
Feature Importance Feature Importance 8 20 — = ’,r; ee
O / %
10 0.0 e 0.0 %
CROSS VALIDATION EuistIre CROSS VALIDATION z z
Reliability || |||I [ - -
\l' ~l/ [ M — A 0.0 0.5 1.0 0.0 0.5 1.0
. A - A 6 ~4 2 0 ‘ Predicted (e) Predicted
Size-Dependent Anisotropy-Dependent @) Electron Affinity (eV) (a)
Structure/Property Structure/Property R2 = 0.958, RMSE = 0.047, MAE = 0.036 R2 = 0.962, RMSE = 0.054, MAE = 0.049
Relationship Relationship
- Y \_ y - B <-052
Em > -0.52 1.0 0,,/ 1.0 2 /,/’
Figure 1: Conceptual workflow applied to the 20 ,.‘3/ ,p"
classification and regression analysis of the electron {2 c ot - ¢
affinity with respect to the structural and % 15 2 0.5 /" g 0.5 -
morphological features listed in Table 1. O 10 : ,’.'/‘ v
00 /,6/0 00 /,.'/
5 I I I I . ,,,// - ,,,,/
; 1l 1
g Lz u.4 o — 14 >0 Pre(c)i'ifc):ted " >0 Pre?j.iited "
) Standardised values (b) (f)
Learning Curves Learning Curves
25 10 o—eo—o——o = ® o 1.0 R— — =
B Train EE—_— —o———— / =
20 . Test 0.8 0.8 B
215 o &
c 5 0.6 s 0.6
Q & &
O 10
0.4 0.4
| I —e— Training score —e— Training score
I Il 0.2 —+— Cross-validation score 0.2 —+— Cross-validation score
.I I .II
0 o L 50 75 100 125 150 20 30 40
Training examples Training examples
© Standardlsed Values (c) J P (8) J P
Feature importances Feature importances
0.8
Figure 2: Correlation matrix used to identify pairs of Figure 3: The histogram plots for (a) the electron
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® igure 6: Results of the random forest regression model for (a),(e) training data, (b),(f) testing data, (c),(g) the learning curves,
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< o and (d),(h) the feature importances in predicting the EA values of (a)-(d) the low energy class, and (e)-(h) the high energy class.
g g 0.2 While (d) shows that the EA of the low energy class is strongly size-dependent, (h) shows that the high energy class EA
b= 60 0.12 -10 %)) depends on the overall anisotropy of the particle and the nature of hydrogen passivation at the surface.
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Figure 4: (a) Confusion matrix used to assess the sensitivity and specificity of the random forest classifier, and (b) the relevant material. This specificity has not been reported in nanomaterials before, and so the
corresponding feature importances. The degree of variation in the bond angles and lengths, as well as changes in the insights presented here provide guidance to researchers underta king this type of analysis, das
magnitude of the bond angles and lengths, are the most important features in determining whether a nanodiamond well as to those developing nanodiamond-based applications.
belongs to a high or low EA class, while size is the least important.
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