Communication protocol for the
OpenShoe modules

John-Olof Nilsson
January 30, 2015

This document

This documents describes how to control and communicate with
the OpenShoe modules. The general structure of the packages and the
logics of the communication are described and details of the different
commands, states, and processing functions and their functionality
are given.

The document describes the communication protocol as of repos-
itory revisions 2{f7cedc and e48a22e for the runtime environment and
the algorithm library, respectively. For earlier revisions there is no
documentation apart from the code itself. However, the communica-
tion logic is similar but some commands differ.

If something doesn’t work as described, most likely the documen-
tation is wrong or the documentation describes the functionality of an
older or newer version of the code. Have a look in the embedded code
and update your module! If things still does not make sense, if rele-
vant information is missing, or if you have any suggestions concerning
this document, send an e-mail to openshoe@ee.kth.se.

mailto:openshoe@ee.kth.se

Contents

1 Introductionl 5
[2 Setting up the communication| 5
[3 Command and response structures| 5
B.1 Command structurel.o 6
[3.2 Response structure] 6
B3 Checksuml 7
[4 Reception and transmission logics| 7
4.1 Command reception| 7
4.2 Response transmission| 8
5 Commands| 8
Auziliary commands
5.1 Package acknowledgement (0x01) 9
5.2 Ping (0x03)] 10
53 Modulo 1D (0x00)] . - . - - o o 1
Debugging commands
5.4 Setup debug processing and output (0x10)[. 12
5.5 Input raw IMU data (Ox11) 13
5.6 Set state (OXI2-0X17)] - - o v oo e e 14
Request-data commands
5.7 Request output of state (0x20)|. 16
5.8 Request output of multiple states (0x21)[. 18
5.9 Turn off all output (0x22)] 20
5.10 Conditional output setup (0x23)|. 21
5.11 Output raw IMU data (0x28)] 22
Request-processing commands
5.12 Run processing function (0x30)[. 24
5.13 Run multiple processing functions (0x31) 25
5.14 Stop all processing f0X32E| 26
5.15 Reset ZUPT-aided INS (0x33)] 27
5.16 Step-wise dead reckoning (0x34)[. 28
5.17 Start inertial frontend (0x35)] 30
5.18 Restore process sequence setup (0x36)] 31

5.19 Store and empty process sequence (0x37)[. 32
5.20 Restore process sequence (0x38)| 33
Combined commands
5.21 Use as normal IMU (0x40)| 34
5.22 Use as normal IMU with online bias estimation (0x41) 35
6 States| 36
System states
6.1 IMU time stamp (0x01)[. 36
6.2 Interrupt counter (0x02)] 36
6.3 Main loop time differential (0x03) 36
6.4 Module ID (0x04)[. 37
6.5 General purpose ID (0x05)[. 37
Inertial frontend states
6.6 Combined inertial readings — preproc (0x10)| 37
6.7 Combined inertial readings — statdet (0x11)] 37
6.8 Time stamp of Ox11 (0x12)|. 38
6.9 Combined inertial readings — floats (0x13)| 38
6.10 Time differential (0x14) 38
6.11 Gaussian error model test statistics (0x15)[. 38
6.12 Gaussian and bias error model test statistics (0x16) 39
6.13 Stationarity detection based on 0x15 (0x17)] 39
6.14 Stationarity detection based on 0x16 (0x18) 39
Filtering states
6.15 Position (0x20)[. 39
6.16 Velocity (0x21)| 39
6.17 Orientation (0x22)| 40
6.18 Filter error covariance (0x23)[. 40
6.19 Initialization-done flag (0x24)| 40
Dead reckning states
6.20 Step (0x30)| 40
6.21 Step error covariance (Ox31)[., 40
6.22 Step counter (0x32)[. L 41
6.23 Filter-reset flag (0x33)[. 41
Raw IMU data states
6.24 Raw inertial readings from IMUs (0x40-0x5F) 41
6.25 Raw temperature readings from IMUs (0x60-Ox7F) 41

[7 Processing functions| 42
Auxiliary process functions

[7.1 Store and empty process sequence (0x01)| 42
[7.2 Restore process sequence (0x02)] 42
[7.3 Empty process sequence (0x03)| 42
7.4 Conditional restore of process sequence (0x04)] 42
7.5 Conditional state output (0x05) 42
7.6 Single conditional state output (0x06)|. 42
[7.7 Conditional state output — counter (0x07) 43
Frontend process functions

7.8 Frontend preprocessing (0x10)| 43
7.9 Frontend statistics calculation (Ox11)[. 43
7.10 Frontend postprocessing (0x12)] 43
Aided inertial navigation functions

7.11 Mechanization (0x20)[. 43
7.12 Time update (0x21)[. 43
7.13 Zero-velocity update (0x22)] 43
7.14 Initial alignment (0x23)] 44
Dead reckoning functions

[7.15 Stepwise system reset (0x24)[. 44

1 Introduction

The OpenShoe modules (MIMU22BT, MIMU3333, MIMU4444) are con-
trolled by a set of commands. The commands can be sent over either com-
munication interfaces, USB or Bluetooth (UART). The commands supported
by the embedded code and their functionality is described in this document.

A command can essentially do three different things: it can request a
state a single time or at some rate, it can change a state of the module, and
it can manipulate the process function sequence to modify the processing
ran at each time instant. The behaviour of a command is controlled by a
connected response function, which is run in response to the command being
received by the module, and the command arguments which are passed to
the response function.

It is possible for the process functions in the process sequence to modify
the process sequence itself and to request the output of some state. For exam-
ple, a process function may request a state to be output when some condition
detected by the function appears. There are numerous utility functions and
commands implemented which will perform such actions.

2 Setting up the communication

The USB is configured to appear as a virtual com-port on connection (USB
CDC). For Windows an inf-file is required for setup (found here) the first
time the device is connected. For Linux and Android the setup should be
automatic.

For communication over Bluetooth the device need to be paired with
the application platform. The device appears as a virtual com-port (SPP
profile). Possibly it will also appear as a headset. This interface can be
ignored. No special setup should be required. For Android, the module will
be enumerated with a long id-number. This name can be found on Windows
if you look at properties for your paired module.

3 Command and response structures

All the commands and responses start with a single byte header and end
with a two byte checksum. The header is different for different commands
and different responses. All data is in big-endian format. The structure of

http://www.openshoe.org/wp-content/uploads/2011/11/avr_cdc.zip

commands and responses and how to calculate the checksum is described in
the following subsections. The commands are described in hexadecimal.

3.1 Command structure

The commands start with a one byte command specific header followed by a
varying size payload and a two byte checksum. The payload can be different
for different commands but is fixed for a specific command. The command
structure is illustrated below. Each block correspond to one byte in the serial
command.

CH correspond to the single byte command header and the two CK to the
two checksum bytes. The payload in between contains the arguments of the
command and is indicated by ... bytes. A single argument may span multiple
bytes.

3.2 Response structure

The response to a command is of two types. A command acknowledgement
(ACK) or a data package. The acknowledgement to a command is a (data)
package with a single byte header 0xA0, a single byte payload corresponding
to the received command header and a two byte checksum. The acknowl-
edgement to the command 03 (ping) will look like

A0| 03|00 |A3

The data packages are transmitted at some even rate, as a result of pro-
cessing set up by some command or triggered by some configured condition.
All data packages have a common structure. The responses start with a one
byte header 0xAA followed by a two byte package number (N1 and N2), a
single byte payload size in bytes (SZ), the payload, and a two byte checksum.
The response structure is illustrated below.

AAINT|N2|SZ|---|--- |- |CK|CK

Note that the payload size is only a single byte and for large packages
this byte may overflow. However, currently the only sensible case during
which an overflow may occur is when raw IMU data from individual IMUs
are requested. Since such data will only be requested for testing, such an
overflow is acceptable and we have chosen to stay with a single byte payload
size.

3.3 Checksum

The checksum is a simple 16-bit modular addition of all proceeding bytes in
the command /response stored in big-endian format.

4 Reception and transmission logics

The communication logics implemented by the module is described in the
following subsections.

4.1 Command reception

When receiving a byte, the module will check if this byte corresponds to
a header. If not it will simply discard the byte and return to listen for a
header. If it is a header it will check how many bytes to expect and try to
read this number of bytes. If it cannot read the number of bytes within a
timeout limit, it will discard the bytes it has read and return to listen for
a new header. If the number of expected bytes are received, it will check
the checksum. If the checksum is valid, it will try to parse the payload. If
the payload is valid it will pass it to a response function connected to each
command. If the checksum is valid, the parsing succeeds, and the command
is not a package acknowledgement, and ACK will be prepared to be sent back
to the application platform. Following this the module will return to listen
for a new header.

Commands can be simultaneously received over both the USB and Blue-
tooth interfaces. The responses to the commands will be sent back over the
same interface as they were received. The exception is the debug functions
where the response interface may be chosen.

4.2 Response transmission

At each time instant the module will check if there is any ACK and states it
should output to the user. If the latter is the case, it will assemble the data
package in a buffer. An ACK is prepared by the command reception logics
and reside in a separate buffer. In the data package, the states will be added
in the order of their IDs. Once a package is assembled the package number
and the size is added and the package number counter incremented. The
buffer will then be pushed the ACK-buffer and the data package buffer to an
output buffer. If the output buffer is full, the packages will be dropped.

For the wireless interface there is two modes of communication, a lossy
mode and a lossless mode. In the lossy mode, which is identical to the USB,
the data will simply be transmitted and forgotten about. In the lossless
mode, the package will be added to a package que. The module will then
keep transmitting the oldest package until it get a corresponding package
acknowledgement back after which it will be removed from the que and the
second oldest package transmitted. If the modules receives no package ac-
knowledgements, the package que will fill up and packages will eventually be
dropped.

5 Commands

On the following pages, the different commands are detailed. The commands
comes in 4 groups: auxiliary, debugging, request data, request processing
and combined commands. The auxiliary commands are composed of all
"small“ commands. The debugging commands are used to test and debug
processing functions on the module. The request data commands will give
some type of output of the state of the module. The processing request
commands will make some processing being run on the module. This may
also trigger some output. The combined commands will request some output
and some processing. Typically, the combined commands are shortcuts to
achieve behaviour which could have been attained by a combination of other
commands.

The command header is given in the section title. The command argu-
ment and the command itself is described. Finally, examples of the command
itself and responses are given for each command.

5.1 Package acknowledgement (0x01)
5.1.1 Arguments

1. Package number (2 bytes)

5.1.2 Description

Acknowledgement of reception of package sent back to module to signal that
user has received the package indicated in the argument. This is necessary
when using the lossless communication mode for the wireless interface, or the
module will just keep sending the oldest package.

Being an acknowledgement in itself, this command will not be followed by
an acknowledgement from the module. The action from the module is that
the package (if the package indicated by the argument is the first package in
the que) is removed from the package que.

5.1.3 Example command

01 {00 |01 |00 |02

The above command will signal the the user has received package with num-
ber 0x0001.

5.1.4 Example response

No response is given by the module.

5.2 Ping (0x03)
5.2.1 Arguments

None.

5.2.2 Description

Pings the module which will respond with an ACK. The module will take no
further action.

5.2.3 Example command

03 {00 |03

This is the only form of the command.

5.2.4 Example response

a0 | 03|00 | a3

No further response to the command will be given.

10

5.3 Module ID (0x04)
5.3.1 Arguments

None.

5.3.2 Description

The module will output a unique 15 byte serial number of the microcontroller.
This may be used to identify the module. The response is subject to normal
header, package numbers and checksums.

5.3.3 Example command

04|00 | 04

This is the only form of the command.

5.3.4 Example response

Acknowledgement

a0 | 04| 00 | a4
followed by

aa |00 |01 [Of [dl|f5 | 6f|00 |51 |4b|32|34]|4e|20]|20

20| ff |11 {Oc | 05 | bb

11

5.4 Setup debug processing and output (0x10)
5.4.1 Arguments

1. 8 single byte process function IDs (zero means no function)
2. 8 state IDs which will be output (zero gives no output)

3. 1 byte determining the interface the debug output should be transmit-
ted over

5.4.2 Description

Configures and stores a process sequence of up to 8 process functions which
will be run every time raw IMU data is pushed to the microcontroller (com-
mand 0x11). The process functions are run in the order they are given.

Configures a set of states which will be output every time raw IMU data
is pushed to the microcontroller. If the first bit of the last argument is set,
the output will be given over the USB. If the second bit of the last argument
is set, the output will be given over Bluetooth. Both bits may be set.

5.4.3 Example command

The following command will setup process functions 0x10, 0x11, and 0x12
(the inertial frontend) to be run and the resulting combined inertial mea-
surement with state id 0x13 to be output every time raw IMU data is pushed
to the microcontroller.

10 {10 | 11|12 {00 | 00 | 00 [00 | 00 | 13 | 00 | 00 | OO | 00 | 00

00 [00 | 00 | ea

5.4.4 Example response

Acknowledgement

a0 | 10 | 00 | bO

The data output is described in the command 0x20.

12

5.5 Input raw IMU data (0x11)

5.5.1 Arguments
1. 4 byte time stamp

2. 6 byte data for each IMU (the amount of data will vary depending on
which board the code is compiled for)

5.5.2 Description

Input raw IMU data which is used to overwrite the data values read from the
IMUs. Following this the response function will restore the process sequence
set up by the setup-debug-processing command. This command is intended
for testing (debugging) processing functions on the board.

If the setup command has not been run before this command or if the
store_and_empty_process_sequence ()-function is run in between, the re-
store will not work and the command may give unintended behaviour.

5.5.3 Example command

Example command for 4 IMUs

11127 148 |4d (94|00 |62 |00 |8d |07 |57 | ff |e6| ff | £8

ft |d8| ff [6c| ff |92 | f7 |53 |00 19|00 11| ff | fd | 00

5e |00 (831079 (00|01 | ff |e8| ff 6| ff | 7Te | fI |8

f7 | 9c | ff | £ | ff | ef | | fl|1le]|60

5.5.4 Example response

Acknowledgement

a0 | 10 | 00 | bO

followed by output which is dependent on the setup command.

13

5.6 Set state (0x12-0x17)

5.6.1 Arguments

1. 1 byte state ID

2. 1-254 bytes with state values

5.6.2 Description

These commands will overwrite the value of the state, indicated by the first
argument, with the first bytes of the second argument, corresponding to the
size of the state. If the second argument is not sufficiently large, no overwrite
will take place.

The different commands take a different size of the second argument:

1. 0x12 — 1 byte

2.
3.

0x13 — 4 bytes

0x14 — 12 bytes

. 0x15 — 24 bytes

0x16 — 48 bytes

0x17 — 254 bytes

5.6.3 Example command

Setting the value of a single byte state (filter reset flag)

12

33 (01|00

46

Setting the value

of a

4-byte state (zero-velocity test statistics)

13

15102 |01

01

0100 |2d

Setting the value

of a

12-byte state (position)

14

200101

01

01{01(01{01]01|01|{01]|01]01]00

40

14

5.6.4 Example response

Acknowledgement for set state of a single byte state

a0 | Oc | 00 | ac

No further response to the command will be given.

15

5.7 Request output of state (0x20)
5.7.1 Arguments

e 1 byte state ID

e 1 byte output mode

5.7.2 Description

Requests the state connected to the state ID to be output. The output mode
byte controls how the state is output. The states are ordered according to
their IDs in the response.

If the 6th bit of the output mode byte is set, the state will be output
(pulled) a single time.

If the 6th bit of the mode selector is not set, the state will be output at
a rate equal to the full rate (nominally 1000Hz) divided by 2”7, where x is
the rate divider which is the 4 least significant bits of the mode selector. If
the state is already set to be output at some rate, the command will change
this rate. A rate divider of 0 will turn off the output.

If the request is sent over the wireless interface, the 5th bit of the output
mode byte will control if lossy (not set) or lossless (set) transmission is used.
This will apply to all subsequent output.

The output is automatically synchronized such that all output of lower
rate coincide with those of higher rates. When a state is pulled, the state
will be output immediately.

5.7.3 Example command

2010112000 |41

The IMU time stamp (ID 0x01) is polled a single time.

5.7.4 Example response

Acknowledgement

a0 | 20 | 00 | cO
followed by

16

aa

06

76

04

lc

65

d9

03

Tt

17

5.8 Request output of multiple states (0x21)
5.8.1 Arguments
e 8 byte state IDs

e 1 byte output mode

5.8.2 Description

Requests the states connected to the state IDs to be output. The output

mode byte controls how the state is output. The states are ordered according

to their IDs in the response. This command is the same as 0x20 just with

more IDs. If zeros are given instead of the IDs, no output will be given.

Consequently, the command may be used to request output of up to 8 states.
For more information about the mode byte, see the 0x20 command.

5.8.3 Example command

21 (10|11 (15|16 {00 |00 |00 |00 |04 00|71

The combined inertial readings 0x10 and 0x11 and test statistics 0x15 and
0x16 is requested with a rate of 125Hz (rate divider 0x04) (lossy if sent over
Bluetooth).

5.8.4 Example response

Acknowledgement

a0 | 21|00 |cl

followed by for example

aa | 05| af [38 00|18 |c4|00|00|0d|30|00]| fc|2f]|88

00 | ff | fe |88 |00 | ff | fc | b8 |00 | ff | fd | 94 | 00 | 00 | 1a

6810000 |[0b|80 00| fc |2 38|00 ff | ff|80]00]| ff

fa | b8 |00 | ff | fd {40 | 00|00 [02 |66 | a4 | 00 | 00 | O1 | 73

18

17

84

19

5.9 Turn off all output (0x22)
5.9.1 Arguments

None.

5.9.2 Description

Turns off all even rate output and output setup to be triggered by a flag. The
command also empties the package que of the Bluetooth interface. Output
which is triggered by processing functions may still appear.

5.9.3 Example command

22100 | 22

5.9.4 Example response

a0 [22100 | c2

No further response to the command will be given.

20

5.10 Conditional output setup (0x23)
5.10.1 Arguments
1. 1 byte state ID of triggering state

2. 1 byte output mode

3. 8 bytes state IDs to be output

5.10.2 Description

Configures the state indicated by argument 1 (the first byte of the state being
non-zero) to trigger the conditional output utility process function (0x03) to
set an output with a mode given by argument 2 and states given by argument
3.

5.10.3 Example command

Set up the zero-velocity flag to trigger an output of itself.

23117120 (17{00]00|00{00|00]|00]|00|O00]T71

5.10.4 Example response

a0 | 2300 | c3

No further response to the command will be given. This commands only
setup the conditions under which the output is triggered and what the output
is. To get the actual output, the process function 0x03 must be run and the
condition most be true.

21

5.11 Output raw IMU data (0x28)
5.11.1 Arguments

1. 4 byte bit-field indicating from which out of 32 IMUs the data should
be output

2. 1 byte output mode

5.11.2 Description

Tells the module to output the raw data read from the IMUs together with
a common time stamp (4 bytes). The 32 bits in the bit-field correspond
to the up to potentially 32 IMUs of the modules. A set bit will give the
data from the corresponding IMU. If a bit is set which corresponds to a non-
existing IMU, zeros will be output. (The states are still there but no data
is ever written to the states.) The time stamp (state 0x01) is a 32-bit clock
register read when the data is received from the IMUs. With a 64MHz clock
frequency, this time stamp will wrap every 67s.

The output mode byte works the same way as for the general state output
command but in addition to the rate divider (1st-4th bit), the lossy/lossless
bit (5th bit) and the single/even rate transmission bit (6th bit), the 7th and
8th bit indicate if the raw inertial and/or the temperature readings of the
IMUs should be output. The inertial data is 2 x 6 bytes per IMU and the
temperature is 2 bytes per IMU.

5.11.3 Example command

28100100 (00| Of | 41]00 |78

Request of the raw inertial data (not temperature) from the first 4 IMUs (the
IMUs of the MIMU22BT modules) at a rate of 125Hz. If sent over Bluetooth,
lossy transmission mode will be used.

5.11.4 Example response

Acknowledgement

a0 | 28 | 00 | 8

22

Followed by for example

aa

19

d6

34

3d

78

02

oe

00

7t

00

02

f7

ab

00

01

ft

ea

00

09

00

09

64

07

ac

£5

f0

ft

ef

ft

7

07

9d

00

11

00

01

00

26

00

95

f8

f7

d2

£5

£2

00

19

1b

82

23

5.12 Run processing function (0x30)
5.12.1 Arguments
1. 1 byte function ID

2. 1 byte array location

5.12.2 Description

Adds the process function indicated by the first argument to the array loca-
tion indicated by the second argument. The array location must be between
0 and 10. A larger value will give no effect. A non-existing (or zero) function
ID will remove any processing function in the array location.

5.12.3 Example command

30 {10 | 00 | 36

Turns on the inertial frontend preprocessing part (locate the processing func-
tion in the first processing sequence slot) which will combine the raw inertial
measurements from different IMUs to a single combined reading.

5.12.4 Example response

Acknowledgement

‘aO‘BO

OO‘dO‘

No further response will be given. However, some process function will trigger
further output.

24

5.13 Run multiple processing functions (0x31)
5.13.1 Arguments
1. 8 byte function IDs

5.13.2 Description

Adds the 8 process functions indicated by the first argument to the array
location 0-7. A non-existing (or zero) function ID will remove any processing
function in the array location.

5.13.3 Example command

3111011 (12|00 00|00 |00 |00]|O00|64

Turns on the inertial frontend.

5.13.4 Example response

Acknowledgement

a0 | 1f | 00 | bf

No further response will be given.

25

5.14 Stop all processing (0x32)
5.14.1 Arguments

None

5.14.2 Description

The command empties the processing sequence stopping all further process-
ing.

5.14.3 Example command

32100 | 32

This is the only form of the command.

5.14.4 Example response

Acknowledgement

a0 | 32|00 | d2

No further response will be given.

26

5.15 Reset ZUPT-aided INS (0x33)
5.15.1 Arguments

None

5.15.2 Description

Starts (resets) the indefinite ZUPT-aided INS. A short initial alignment (256
sufficiently stationary samples) is performed after which the processing start.
This can be combined with a request for the position state with some rate to
let the module track the user without any processing on his side. However,
in general, the step-wise version is preferable and this command is primarily
kept for completeness.

5.15.3 Example command

33100 |33

This is the only form of the command.

5.15.4 Example response

Acknowledgement

a0 | 33 | 00 | d3

No further response will be given.

27

5.16 Step-wise dead reckoning (0x34)
5.16.1 Arguments

None

5.16.2 Description

Starts (resets) step-wise dead reckoning which is just the ZUPT-aided INS
but with resets and triggered output at every step. First a short initial
alignment (256 sufficiently stationary samples) is performed after which the
processing start. The initial alignment period will also let all buffers fill up
and an initial bias estimate to be computed.

Once the processing is up and running, a displacement and heading
change estimate together with corresponding error covariance estimate is
pushed to the user every time the module becomes sufficiently stationary
and at an even rate if stationary for an extended period. These "steps“ can
be used to perform dead reckoning on an application platform. For further
details, see the article describing the OpenShoe modules.

5.16.3 Example command

34100 | 34

This is the only form of the command.

5.16.4 Example response

Acknowledgement

a0 | 34 | 00 | d4

Followed by step output like

aa (00| 2a|3a|3c|ae|fe |aT|3e|T7e|cb|be|bd]|49|8&1

7d |be |96 |59 | a7 |37 |f0 |24 |e3 |af |e0 |31 |de|31|1b

96 | e7 |32 | f0 |da |55 |37 |f0 19|49 |32 |da|48 |e2|bl

28

19

be

27

37

ef

bl

1b

ad

al

52

4a,

34

83

b8

df

00

Ob

le

cl

29

5.17 Start inertial frontend (0x35)
5.17.1 Arguments

None

5.17.2 Description

Places the inertial frontend processing function in location 0-2 in the process-
ing sequence. These functions will combine the raw inertial readings from
the different IMUs and compensate for the calibration (if available), calcu-
late the test zero-velocity statistics and perform on-line bias calibration and
conversion to floating point values with SI units. This command will enable
the user to request combined inertial readings.

5.17.3 Example command

3500 |35

This is the only form of the command.

5.17.4 Example response

Acknowledgement

a0 | 35| 00 [d5

No further response will be given.

30

5.18 Restore process sequence setup (0x36)
5.18.1 Arguments

1. 1 byte state ID of triggering state

5.18.2 Description

Configures the state indicated by argument 1 (the first byte of the state
being non-zero) to trigger the reset to a stored process sequence by the utility
process function 0x04. Setting up and storing a process sequence can be done
by adding the process functions to the process sequence and calling the store
and empty process sequence command (0x37).

5.18.3 Example command

Set up the zero-velocity flag to trigger the restoration of the process sequence.

36 | 17 1 00 | 4d

5.18.4 Example response

a0 | 36 | 00 | d6

No further response to the command will be given.

31

5.19 Store and empty process sequence (0x37)

5.19.1 Arguments

None.

5.19.2 Description

Saves the process sequence and empties the process sequence.

5.19.3 Example command

37

00

37

This is the only form of the command.

5.19.4 Example response

a0

37

00

d7

No further response to the command will be given.

32

5.20 Restore process sequence (0x38)
5.20.1 Arguments

None.

5.20.2 Description

Restore saved process sequence.

5.20.3 Example command

38 100 | 38

This is the only form of the command.

5.20.4 Example response

a0 | 38 | 00 | d8

No further response to the command will be given.

33

5.21 Use as normal IMU (0x40)
5.21.1 Arguments

1. 1 byte output mode

5.21.2 Description

This command will configure the module to work as a normal IMU. The
readings from the different IMUs will be combined and floating point readings
(0x13) will be output according to the output mode byte.

For more information about the output mode byte, see command 0x20.

5.21.3 Example command

40 1 03 | 00 | 43

Request of combined inertial reading at full rate.

5.21.4 Example response

Acknowledgement

a0 [40 [00 | €0

followed by output like

aa | 00 |01 [1c |17 |dd|3a|bd | 3f|02|a2|4b| 3c | cf | 3c

Tb|cl | 15| 8 |d2|bb |87 |21 |8 |bc|16|63]|45|bb]|ae

oc | d6 | 0d | 7d

34

5.22 Use as normal IMU with online bias estimation
(0x41)

5.22.1 Arguments

1. 1 byte output mode

5.22.2 Description

This command will configure the module to work as a normal IMU with
online gyro bias estimation and compensation. Gyro biases are estimated
based on time instants where the inertial readings in a time window shows
a noise floor characteristics. The bias estimates will be subtracted from the
combined inertial readings. Since the biases are estimated online there is a
127 sample delay (approximately 0.127s) in the received readings.

For more information about the output mode byte, see command 0x20.

5.22.3 Example command

41 1 03| 00 | 44

Request of combined inertial reading at full rate.

5.22.4 Example response

Acknowledgement

a0 [41] 00 | el

The output will be the same as for 0x40 but the gyro bias should return
to zero swiftly as the IMU becomes stationary.

35

6 States

The states are variables which can be accessed by the user. The states are
also used by the processing functions to communicate so they represent, to a
large extent, the information which is propagated through the processing. Of
course, the complete state of the module is much larger but will be inacces-
sible without a debugger. Each state is identified by a single byte state ID.
The states are declared extern in the header file belonging to the place where
they are used. These header files are included in the file system_state.c
which keeps a table of all states which is used by the system.

6.1 IMU time stamp (0x01)

State ID: 0x01
Type: uint32_t
Size: 4 bytes

Time stamp taken before each read operation to the IMU.

6.2 Interrupt counter (0x02)

State ID: 0x02
Type: uint32_t
Size: 4 bytes

A counter which is incremented by one each time the driving interrupt is set
off.

6.3 Main loop time differential (0x03)

State ID: 0x03
Type: uint32_t
Size: 4 bytes

Time differential indicating the execution time of the last main-loop.

36

6.4 Module ID (0x04)

State ID: 0x04
Type: char[15] (see description below)
Size: 15 bytes

15 byte serial number of the module (of the microcontroller).
This state is not manifested by a proper variable but rather a pointer to
an address in a write protected memory. Therefore the state cannot be set.

6.5 General purpose ID (0x05)

State ID: 0x05
Type: uint8_t
Size: 1 bytes

General purpose ID state which can be set.

6.6 Combined inertial readings — preproc (0x10)

State ID: 0x10
Type: inert_int32 (struct)
Size: 24 bytes

Combined inertial readings provided directly by the inertial frontend prepro-
cessing. The state contains 6 chunks of 4 bytes (int32_t). First 3 chunks
of 4 bytes giving the combined specific force reading and then 3 chunks of 4
bytes giving the combined angular rate readings.

6.7 Combined inertial readings — statdet (0x11)

State ID: 0x11
Type: inert_int32 (struct)
Size: 24 bytes

Combined inertial readings provided by the inertial frontend statistics cal-
culations. These readings are synchronized the provided test statistics and
should be used in combination with these. The readings are used by the
inertial frontend postporcessing function. The readings exhibits a delay of
half the number of samples of the longest test statistics window. The state
contains 6 chunks of 4 bytes (int32_t). First 3 chunks of 4 bytes giving

37

the combined specific force reading and then 3 chunks of 4 bytes giving the
combined angular rate readings.

6.8 Time stamp of 0x11 (0x12)

State ID: 0x12

Type: uint32_t

Size: 4 bytes
Time stamp of the combined inertial readings Ox11. The source of these time
stamps are 0x01. Compared with 0x01 this will show the delay of 0x12.

6.9 Combined inertial readings — floats (0x13)

State ID: 0x13
Type: inert_float (struct)
Size: 24 bytes

Combined inertial readings converted to floating point. If only the frontend
preprocessing is run, these readings will originate from 0x10. If the complete
frontend is run, these readings will originate from 0x11 and exhibit the same
delay. The state contains 6 chunks of 4 bytes (single precision floats). First
floats giving the combined specific force reading and then 3 floats giving the
combined angular rate readings.

6.10 Time differential (0x14)

State ID: 0x14
Type: float
Size: 4 bytes

Time differential of the combined inertial readings 0x11. These time differ-
entials are used in the mechanization.

6.11 Gaussian error model test statistics (0x15)

State ID: 0x15
Type: uint32_t
Size: 4 bytes

Stationarity test statistics calculated based on an Gaussian error model.

38

6.12 Gaussian and bias error model test statistics (0x16)

State ID: 0x16
Type: uint32_t
Size: 4 bytes

Stationarity test statistics calculated based on Gaussian plus bias error model.

6.13 Stationarity detection based on 0x15 (0x17)

State ID: 0x17
Type: bool
Size: 1 bytes

Thresholded test statistics 0x15.

6.14 Stationarity detection based on 0x16 (0x18)

State ID: 0x18
Type: bool
Size: 1 bytes

Thresholded test statistics 0x16.

6.15 Position (0x20)

State ID: 0x20
Type: float [3]
Size: 12 bytes

Position state.

6.16 Velocity (0x21)

State ID: 0x21
Type: float [3]
Size: 12 bytes

Velocity state.

39

6.17 Orientation (0x22)

State ID: 0x22
Type: float[4]
Size: 16 bytes

Platform orientation in quaternion representation.

6.18 Filter error covariance (0x23)

State ID: 0x23
Type: float [45]
Size: 180 bytes

Symmetric error covariance of the 9 states position, velocity, and orientation
(euler angle representation). Since the matrix is symmetric only 45 values
are stored.

6.19 Initialization-done flag (0x24)

State ID: 0x24
Type: bool
Size: 1 bytes

Flag signaling when initialization (coarse initial alignment) is done.

6.20 Step (0x30)

State ID: 0x30
Type: float [4]
Size: 16 bytes

Displacement and heading change extracted at filter reset.

6.21 Step error covariance (0x31)

State ID: 0x31
Type: float[10]
Size: 40 bytes

Error covariance of 0x30.

40

6.22 Step counter (0x32)

State ID: 0x32
Type: uintl6_t
Size: 2 bytes

Counter counting the resets (steps) since power-up.

6.23 Filter-reset flag (0x33)

State ID: 0x25

Type: bool

Size: 1 bytes
Flag signaling when the filtering has been reset (for step-wise dead reckon-
ing).

6.24 Raw inertial readings from IMUs (0x40-0x5F)

State ID: 0x40-0x5F

Type: int16_t [6]

Size: 12 bytes
Inertial readings, 3 specific force and 3 angular rate readings, from individual
IMUs. Only the states corresponding to IMUs on the respective board will
be filled up. The other states will remain zero. States of unmounted IMUs
will be filled up with ones (due to pull-up resistors).

6.25 Raw temperature readings from IMUs (0x60-0x7F)

State ID: 0x60-0x7F
Type: int16_t
Size: 2 bytes

Temperature readings from individual IMUs.

41

7 Processing functions

The processing functions are functions which the user can ask the module ro
run in a specific order. The functions may employ other functions to complete
its tasks and command response functions may also make the module run
other functions. However, the process functions are the functions visible
to the user. Each process function is identified by a single byte ID. The
processing functions are briefly described below.

7.1 Store and empty process sequence (0x01)

Temporarily stores (for later restoration) and empties the process sequence.

7.2 Restore process sequence (0x02)

Restores the process sequence stored by the command 0x01. If no process
sequence has been stored, the process sequence will be overwritten by an
empty process sequence.

7.3 Empty process sequence (0x03)

Empties the process sequence, consequently also removing itself.

7.4 Conditional restore of process sequence (0x04)

Restores the process sequence given that a related state (flag) is true. For
further information see command 0x36.

7.5 Conditional state output (0x05)

Flags one or more states for output given that a related state (flag) is true.
For further information see command 0x23.

7.6 Single conditional state output (0x06)

Flags one or more states for output a single time given that a related state
(flag) is true. For further information see command 0x23.

42

7.7 Conditional state output — counter (0x07)

Flags one or more states for output given that a related counter has surpassed
a value. For further information see command 0x23.

7.8 Frontend preprocessing (0x10)

Preprocessing part to the inertial frontend. This function combines the raw
inertial reading (0x40-0x5F) and performs the calibration compensation writ-
ing the results to 0x10. Finally, the combined inertial readings are converted
to float values in 0x13.

7.9 Frontend statistics calculation (0x11)

Inertial data buffering and recursive zero-velocity statistics calculation. The
functions has internal buffers in which the combined inertial reading 0x10 are
buffered in order to calculate the statistics 0x15 and 0x16 and the related
states 0x17 and 0x18. From the buffers, the function provides 0x11 and 0x12.

7.10 Frontend postprocessing (0x12)

Online bias estimation based on the calculated statistic 0x16, compensation
applied to the values 0x11 and conversions of the results to floats 0x13. The
function also calculates the time differential 0x14.

7.11 Mechanization (0x20)

Basic inertial mechanization.

7.12 Time update (0x21)
Time update of the Kalman filter.

7.13 Zero-velocity update (0x22)
Zero-velocity update of the Kalman filter.

43

7.14 Initial alignment (0x23)

Initial alignment for the aided inertial navigation. Rely on 0x17 and provided
inertial reading in 0x13 to perform the initial alignment. Signal that the
alignment is done by setting the flag 0x24.

7.15 Stepwise system reset (0x24)

Checks if the ZUPT-aided INS should be reset, saves the state, performs the
reset and signal that a new step is available.

44

	Introduction
	Setting up the communication
	Command and response structures
	Command structure
	Response structure
	Checksum

	Reception and transmission logics
	Command reception
	Response transmission

	Commands
	Package acknowledgement (0x01)
	Ping (0x03)
	Module ID (0x04)
	Setup debug processing and output (0x10)
	Input raw IMU data (0x11)
	Set state (0x12-0x17)
	Request output of state (0x20)
	Request output of multiple states (0x21)
	Turn off all output (0x22)
	Conditional output setup (0x23)
	Output raw IMU data (0x28)
	Run processing function (0x30)
	Run multiple processing functions (0x31)
	Stop all processing (0x32)
	Reset ZUPT-aided INS (0x33)
	Step-wise dead reckoning (0x34)
	Start inertial frontend (0x35)
	Restore process sequence setup (0x36)
	Store and empty process sequence (0x37)
	Restore process sequence (0x38)
	Use as normal IMU (0x40)
	Use as normal IMU with online bias estimation (0x41)

	States
	IMU time stamp (0x01)
	Interrupt counter (0x02)
	Main loop time differential (0x03)
	Module ID (0x04)
	General purpose ID (0x05)
	Combined inertial readings – preproc (0x10)
	Combined inertial readings – statdet (0x11)
	Time stamp of 0x11 (0x12)
	Combined inertial readings – floats (0x13)
	Time differential (0x14)
	Gaussian error model test statistics (0x15)
	Gaussian and bias error model test statistics (0x16)
	Stationarity detection based on 0x15 (0x17)
	Stationarity detection based on 0x16 (0x18)
	Position (0x20)
	Velocity (0x21)
	Orientation (0x22)
	Filter error covariance (0x23)
	Initialization-done flag (0x24)
	Step (0x30)
	Step error covariance (0x31)
	Step counter (0x32)
	Filter-reset flag (0x33)
	Raw inertial readings from IMUs (0x40-0x5F)
	Raw temperature readings from IMUs (0x60-0x7F)

	Processing functions
	Store and empty process sequence (0x01)
	Restore process sequence (0x02)
	Empty process sequence (0x03)
	Conditional restore of process sequence (0x04)
	Conditional state output (0x05)
	Single conditional state output (0x06)
	Conditional state output – counter (0x07)
	Frontend preprocessing (0x10)
	Frontend statistics calculation (0x11)
	Frontend postprocessing (0x12)
	Mechanization (0x20)
	Time update (0x21)
	Zero-velocity update (0x22)
	Initial alignment (0x23)
	Stepwise system reset (0x24)

