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ABSTRACT

We propose and evaluate novel sampling policies for a Bayesian ranking and selection problem with pairwise
comparisons. We introduce the lookahead contraction principle and apply it to three types of value factors
for lookahead policies. The resulting lookahead contraction policies are analyzed both with the minimal
number of lookahead steps required for obtaining informative value factors, and with fixed number of
lookahead steps. We show that lookahead contraction reduces the minimal number of required lookahead
steps, and that contraction guarantees finiteness of the minimal lookahead. For minimal lookahead we
demonstrate empirically that lookahead contraction never leads to worse performance, and that lookahead
contraction policies based on expected value of improvement perform best. For fixed lookahead, we show
that all lookahead contraction policies eventually outperform their counterparts without contraction, and
that contraction results in a performance boost for policies based on predictive probability of improvement.

1 INTRODUCTION

In this work we propose and evaluate novel sampling policies for a Bayesian ranking and selection (R&S)
problem with pairwise comparisons. In particular, we focus on lookahead policies for this problem, i.e.,
on policies that make sampling decisions based on the hypothetical assumption that a number of pairwise
comparisons of any two alternatives can be observed in the next sampling stage. For such policies,
we introduce the principle of lookahead contraction, which concentrates the predicted effect of several
consecutive pairwise comparisons of one pair to a single pairwise comparison. In the considered R&S
problem we have a finite set of alternatives, where the quality of each alternative is unknown initially, but
can be estimated by collecting information through pairwise comparisons with any other alternative. We
define an alternative’s quality by its average probability of winning against all other alternatives in the
considered set of alternatives. This quality measure is equivalent to the well-known Borda score (de Borda
1784), and does not impose any assumptions on the winning probabilities. Our goal is to determine the best
alternative by efficiently allocating a limited sampling budget across the pairs in a sequential procedure.

Pairwise comparisons provide a straightforward assessment approach, if on the one hand it is difficult
to elicit an absolute scale of the alternatives’ qualities, and if on the other hand relative judgments or
preferences (“A is better than B”) are available. The research interest on utilization of information from
pairwise comparisons was initially driven by applications in social sciences (David 1988) and sports (Elo
1978). More recently, online gaming (Herbrich et al. 2007), as well as applications regarding information
retrieval, such as crowdsourcing, or web search and recommender systems (Radlinski et al. 2008) have
become of interest. In addition, pairwise comparisons arise in emerging fields such as use of batteries on
energy markets. In the literature, the main focus concerning sequential sampling with pairwise comparisons
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lies on finding a complete ranking or on finding the top k alternatives (see, e.g., Heckel et al. (2018)), as
well as on the so called dueling bandit problem, which is an extension of the multi-armed bandit problem
to the case of preference-based feedback (Busa-Fekete and Hüllermeier 2014). However, the problem of
finding the best alternative via R&S with pairwise comparisons has received far less attention.

In our R&S problem a pairwise comparison between two alternatives generates information in terms
of a sample from a Bernoulli distribution. Under this assumption, however, a single pairwise comparison
does often not yield enough information to derive good sampling decisions. As a consequence, especially
sampling policies with a one-step lookahead may become ineffective, i.e., the policies may frequently
not be able to allocate a sample deliberately. Kamiński (2015) discusses this issue for the knowledge
gradient (KG) policy (Gupta and Miescke 1996; Frazier et al. 2008) in the context of a standard R&S
problem (without pairwise comparisons) with Bernoulli samples. To mitigate the issue, he proposes to use
a multi-step lookahead policy and minimizes the lookahead steps needed to acquire a sufficient amount of
information. The proposed policy is based on an approximation of the predictive probability of a change
of the alternative that is considered best, and is shown to outperform KG with one-step lookahead.

Groves and Branke (2019) encounters the issue of too little information in the context of solving a
top-k selection problem with pairwise comparisons. The authors propose a one-step lookahead policy that
is based on the predictive probability of a change of the k alternatives that are considered best. Whenever
the proposed policy is unable to make a sampling decision, it is replaced by a pure exploration policy. The
policy is shown to outperform state-of-the-art policies for top-k selection problems.

Priekule and Meisel (2017) considers a R&S problem with pairwise comparisons that is closely related
to our problem. In order to mitigate negative impact of the lack of information from a single observation,
the authors propose a variant of the KG* policy. KG* (Frazier and Powell 2010) is a multi-step lookahead
policy based on the average expected value of information per step. The proposed policy is shown to
perform better than the one-step lookahead KG policy, but becomes computationally demanding even for
a relatively small number of alternatives, and falls back to pure exploration repeatedly.

In this work, we propose the principle of lookahead contraction for R&S with pairwise comparisons.
We apply lookahead contraction to three different classes of multistep lookahead policies, which we refer
to as predictive probability of improvement, predictive probability of identity change, and expected value
of improvement. We show analytically that lookahead policies with contraction are never worse than their
counterparts without contraction in terms of probability of not being able to make a deliberate sampling
decision. Additionally, we propose lookahead contraction policies where this probability equals zero, and
we show empirically that lookahead contraction improves the ability of Bayesian lookahead policies to
cope with the sparse information coming from binary pairwise comparisons.

The remainder of this paper is structured as follows: In Section 2 we introduce the sampling model
of our R&S problem with pairwise comparisons, and we propose to use lookahead policies for making
sampling decisions. In Section 3 we introduce the principle of lookahead contraction and derive value
factors for three classes of lookahead policies, both with and without contraction. In Section 4 we first
derive the minimal number of lookahead steps that our policies without contraction require to minimize
the probability of being unable to calculate a deliberate sampling decision, and we then derive the minimal
number of lookahead steps that our policies with contraction require to guarantee the ability to calculate
deliberate sampling decisions. In Section 5 we compare the performances of the policies with and without
lookahead contraction empirically. Section 6 concludes the paper.

2 PROBLEM FORMULATION

In Section 2.1, we define the considered sampling model for pairwise comparisons, and in Section 2.2 we
introduce the notion of lookahead policies for making sampling decisions.
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2.1 Sampling Model for Pairwise Comparisons

Suppose that there are M alternatives. We adopt the multibinomial model, i.e., for each alternative i= 1, . . . ,M
we define a vector pi = (pi1, pi2, . . . , piM) of unknown winning probabilities, such that for any pair (i, j)
with i, j = 1, . . . ,M we may observe pairwise comparisons in terms of random variables W 1

i j,W
2
i j, . . . , whose

realizations are drawn independently from a Bernoulli distribution with success probability pi j. We require
that each pairwise comparison results in a winner, and thus pi j + p ji = 1 is always satisfied. For the sake of
notational simplicity and without loss of generality, we set pii = 0.5. We measure the quality of alternative
i in terms of its average winning probability

p̄i =
1
M

M

∑
j=1

pi j,

which is equivalent to the Borda score (de Borda 1784). The best alternative i∗ is defined as the alternative
with the largest average winning probability, i.e., i∗ ∈ argmaxi∈M p̄i.

We learn about the unknown winning probabilities (and thus about the average winning probabilities) by
making a sequence of N pairwise comparisons, i.e., at each stage n = 1, . . . ,N−1, we sample a pair (i, j)n

and observe W n+1
(i, j)n , which equals 1 if i wins over j and 0 otherwise. Adopting a Bayesian framework, we

use the information collected from the sampling process (i, j)0,W 1
(i, j)0 ,(i, j)1,W 2

(i, j)1 , . . . ,(i, j)n−1,W n
(i, j)n−1

to form the stage n beliefs about our values of interest in terms of probability distributions. In particular,
our beliefs about the winning probabilities pi j at stage n are beta distributed, i.e., pi j ∼ Beta(αn

i j,β
n
i j) and

the symmetry yields p ji ∼ Beta(β n
i j,α

n
i j). Without loss of generality, we let αn

ii = β n
ii = 1 for all i ∈M. At

stage n+1, our beliefs are updated according to the Bayesian equations

α
n+1
i j =

{
αn

i j +W n+1
i j if (i, j)n = (i, j)

αn
i j otherwise,

β
n+1
i j =

{
β n

i j +(1−W n+1
i j ) if (i, j)n = (i, j)

β n
i j otherwise.

Note that without loss of generality, we assume that the set of pairs considered for sampling is defined as
M̃ = {(i, j) | 1≤ i < j≤M}, with |M̃|= (M2−M)/2. As a consequence the updating equations apply to all
pairs (i, j) satisfying j > i, and the beliefs regarding the remaining pairs are updated using the symmetry.

Throughout this work, we follow the convention that any quantity indexed by n becomes known or
can be computed at stage n. Furthermore, we write Pn and En to indicate probabilities and expectations
with respect to distributions induced by the beliefs at stage n. Let pn

i j = En[pi j] be the posterior mean
of the winning probability of pair (i, j) after n pairwise comparisons. And let nn

i j = αn
i j +β n

i j, such that
pn

i j = αn
i j/nn

i j. Then the expected average winning probability of an alternative i after n comparisons can
be calculated with respect to the posterior distribution as

p̄n
i := En[p̄i] =

1
M

M

∑
j=1

pn
i j =

1
M

M

∑
j=1

αn
i j

nn
i j
.

We denote the estimated value of the best alternative according to our beliefs at stage n as p̄n
∗ = maxi∈M p̄n

i .
And, we suppose that after exhausting the budget of N samples, a risk-neutral decision maker selects
alternative iN = argmaxi∈M p̄N

i .

2.2 Lookahead Policies

Let Sn := (αn,β n) denote the beliefs at stage n, where αn = (αn
i j)M×M and β n = (β n

i j)M×M. We assume
that our sampling decisions are controlled by a policy Xπ mapping the beliefs Sn to a pair Xπ(Sn) ∈ M̃.
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Following a policy Xπ implies that, at each sampling stage n < N, a value factor ν
π,n
i j is assigned to each

considered pair (i, j), and that the sampling decision proposed by the policy is then given by

Xπ(Sn) = argmax
(i, j)∈M̃

ν
π,n
i j .

The explicit definition of value factors associates a policy a unique assessment of the potential of each pair
(i, j) to improve the current estimate p̄n

∗. The aim generally is to choose a policy that helps to identify the
truly best alternative in an efficient manner.

Lookahead policies use value factors that are defined based on the hypothetical assumption that a
number τn ≥ 1 of pairwise comparisons of the chosen pair (i, j) can be observed in the next stage n+1,
where we refer to τn as the lookahead at stage n. Note that in case of pairwise comparisons an advantage
of lookahead policies over policies such as probability of improvement (Kushner 1964) and expected
improvement (Jones et al. 1998) is that the calculations of value factors are more easily manageable. In
the following sections we consider lookahead policies with value factors that are defined in terms of either
probabilities or expectations.

3 VALUE FACTORS FOR LOOKAHEAD POLICIES

In Section 3.1 we introduce the principle of lookahead contraction, and in Section 3.2 we define three
different types of value factors for lookahead policies. In Section 3.3 we combine these two steps by
proposing three different types of value factors with lookahead contraction.

3.1 Lookahead Contraction

We introduce lookahead contraction as a modification of the change we predict at stage n for the expected
average winning probabilities. Using a lookahead policy we have at stage n a predictive distribution for
the estimates p̄n+1 under the hypothetical assumption that we observe τn ≥ 1 pairwise comparisons of
alternatives i and j in the next stage n+1. In particular, the posterior distribution at n induces a predictive
distribution for W n+1

i j , which is Beta-binomial, i.e.,

Pn(W n+1
i j = k) =

(
τn

k

)B(αn
i j + k,β n

i j + τn− k)

B(αn
i j,β

n
i j)

,

where B(·, ·) is the beta function. Furthermore, τn pairwise comparisons of i and j imply predicted changes
of the expected average winning probabilities p̄i and p̄ j. These changes are given by

p̂i j(W n+1
i j ,τn) =

W n+1
i j − pn

i jτn

M(nn
i j + τn)

, (1)

such that p̄n+1
i = p̄n

i + p̂i j(W n+1
i j ,τn) and p̄n+1

j = p̄n
j − p̂i j(W n+1

i j ,τn). The predicted change p̂i j(W n+1
i j ,τn)

is a discrete random variable with zero expectation. In addition, the function p̂i j(k,τn) is monotonically
increasing in k, and thus, for fixed τn, the change p̂i j is bounded by p̂n

i j(0,τn) and by p̂i j(τn,τn). These
bounds define the range of observable values of the predicted change, which we denote as the effect range
of our τn pairwise comparisons. The effect range is growing as τn increases, but is bounded by the limits
limτn→∞ p̂i j(0,τn) =−pn

i j/M and limτn→∞ p̂i j(τn,τn) = pn
ji/M.

Note that lookahead policies make sampling decisions based on the two contradicting principles of (a)
the assumption that several consecutive pairwise comparisons of a pair are made at one stage, and (b) the
fact that only one single pairwise comparison is actually made at one stage. Against this background we
propose to transform the predicted change given by Equation (1) into the modified predicted change

p̂C
i j(W

n+1
i j ,τn) =

nn
i j + τn

nn
i j +1

p̂i j(W n+1
i j ,τn) =

W n+1
i j − pn

i jτn

M(nn
i j +1)

. (2)
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The modified predictive change p̂C
i j allows for the following interpretation: The numerator of the fraction

in Equation (2) accounts for the assumption of making τn pairwise comparisons and complies with the
numerator of the original p̂i j for lookahead policies. The denominator, however, differs from the original
by reckoning only the number nn

i j of pairwise comparisons of i and j “made so far” plus the single pairwise
comparison that will be made in the next sampling step. Hence, we may think of a contraction of the
impacts of τn sequential comparisons into the impact of one comparison. We refer to lookahead policies
with value factors using the modified predicted change as lookahead contraction policies.

3.2 Value Factors without Lookahead Contraction

The value of a possible future sampling decision is typically derived either from (a) the decision’s potential
to increase the expected performance of the alternative that is considered best, i.e., the potential to lead to
positive ∆n+1

∗ = p̄n+1
∗ − p̄n

∗, or from (b) the decision’s potential to lead to a change of the identity of the
alternative that is considered best (which obviously depends on ∆n+1

∗ ). We consider the following three
types of factors for calculating the value of a sampling decision (i, j)n at stage n with lookahead τn:

• The predictive probability of improvement (PPI) represents the value factor for a pair (i, j) in terms
of the probability of an increase in the value of the alternative that is considered best, i.e.,

ν
PPI,n
i j (τn) = Pn (

∆
n+1
∗ > 0

∣∣(i, j)n = (i, j),τn
)
.

• The predictive probability of identity change (PIC) represents a value factor in terms of the probability
that the identity of the alternative that is considered best will change, and is given by

ν
PIC,n
i j (τn) = Pn (in+1

∗ 6= in∗
∣∣(i, j)n = (i, j),τn

)
.

• The expected value of improvement (EVI), represents a value factor in terms of the expected change
in the value of the alternative that is considered best, and is given by

ν
EV I,n
i j (τn) = En[∆n+1

∗ |(i, j)n = (i, j),τn]. (3)

Note that in case of τn = 1 for all stages n, the EVI-policy is equivalent to Knowledge Gradient
policy proposed by Frazier et al. (2008), and by Gupta and Miescke (1996).

We discuss similarities and differences of PPI, PIC, and EVI by reformulating the value factors with
the predicted change p̂i j(W n

i j,τn), as given in Equation (1). First, we rewrite ∆n+1
∗ as

∆
n+1
∗ (p̂i j(W n+1

i j ,τn)) = max
{

Cn
i j , p̄n

i + p̂i j(W n+1
i j ,τn) , p̄ j− p̂i j(W n+1

i j ,τn)
}
−p̄n
∗, (4)

where Cn
i j = maxl 6=i, j p̄n

l . This allows us to derive the value factors of PPI and PIC as follows:

Lemma 1 Define the constants ∆n
i = p̄n

∗− p̄n
i . Then, for each pair (i, j) ∈ M̃

ν
PPI,n
i j (τn) = 1−Pn(−∆

n
j ≤ p̂i j(W n+1

i j ,τn)≤ ∆
n
i
)
.

Lemma 2 Let ∆n
i j = p̄∗n−Cn

i j. Then for each pair (i, j) ∈ M̃

ν
PIC,n
i j (τn) =


Pn
(

p̂i j(W n+1
i j ,τn)<−min{∆n

j
2 ,∆n

i j}
)

if in∗ = i,
Pn
(

p̂i j(W n+1
i j ,τn)> min{∆n

i
2 ,∆n

i j}
)

if in∗ = j,
1−Pn

(
−∆n

j ≤ p̂i j(W n+1
i j ,τn)≤ ∆n

i
)

otherwise.
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Lemmas 1 and 2 show that the value factors of PPI and PIC are equal whenever neither of the two
alternatives of the pair being assessed is currently identified as best. Note that in this case positive ∆n+1

∗
can only be achieved if the predicted change exceeds one of the constants, −∆n

j and ∆n
i , which we denote

as lower and upper impact bound. In case of in∗ ∈ {i, j}, PPI and PIC differ in terms of the impact bounds.
The PIC factor involves only one single impact bound (lower or upper, depending on which of i or j is
currently considered as the best), as only a sufficiently large negative change of the expected performance
of the alternative that is considered best is of significance. Furthermore, PIC has the same impact bounds
as EVI. We show this by using Equations (3) and (4) to write the EVI factors as

ν
EV I,n
i j (τn) = En[∆n+1

∗ (p̂i j(W n+1
i j ,τn))],

and by reformulating the EVI factors as stated in the following Lemma 3.
Lemma 3 For each pair (i, j) ∈ M̃

• If in∗ = i, then

ν
EV I,n
i j (τn) =En

[
1{ p̂i j(W n+1

i j ,τn)<−min{∆n
j/2,∆n

i j},p̂i j(W n+1
i j ,τn)<p̄n

j−Cn
i j}
(−2p̂i j(W n+1

i j ,τn)−∆
n
j)
]

+En
[
1{ p̄n

j−Cn
i j≤p̂i j(W n+1

i j ,τn)<−min{∆n
j/2,∆n

i j}}
(−p̂i j(W n+1

i j ,τn)−∆
n
i j)
]
.

• If in∗ = j, then

ν
EV I,n
i j (τn) =En

[
1{ p̂i j(W n+1

i j ,τn)>min{∆n
i /2,∆n

i j},p̂i j(W n+1
i j ,τn)>p̄n

i−Cn
i j}
(2 p̂i j(W n+1

i j ,τn)−∆
n
i )
]

+En
[
1{ p̄n

i−Cn
i j≥p̂i j(W n+1

i j ,τn)>min{∆n
i /2,∆n

i j}}
(p̂n

i j(W
n+1
i j ,τn)−∆

n
i j)
]
.

• Otherwise,

ν
EV I,n
i j (τn) =En

[
1{ p̂i j(W n+1

i j ,τn)<−∆n
j}
(−p̂i j(W n+1

i j ,τn)−∆
n
j)
]

+En
[
1{ p̂i j(W n+1

i j ,τn)>∆n
i }
(p̂i j(W n+1

i j ,τn)−∆
n
i )
]
.

Note that Lemma 3 also shows that 0≤ ν
EV I,n
i j (τn)≤ ν

PIC,n
i j (τn), where equality is the case if and only if

ν
PIC,n
i j (τn) = 0.

3.3 Value Factors with Lookahead Contraction

Given the formulations of value factors in Lemmas 1–3, it is now straightforward to derive value factors
with lookahead contraction. We substitute the predicted change with the modified predicted change as
given in Equation (2), and define the cPPI, cPIC, and cEVI value factors with lookahead contraction as

ν
cPPI(τn),n
i j = 1−Pn(−∆

n
j ≤ p̂C

i j(W
n+1
i j ,τn)≤ ∆

n
i
)
,

ν
cPIC(τn),n
i j =


Pn
(

p̂C
i j(W

n+1
i j ,τn)<−min{∆n

j
2 ,∆n

i j}
)

if in∗ = i,
Pn
(

p̂C
i j(W

n+1
i j ,τn)> min{∆n

i
2 ,∆n

i j}
)

if in∗ = j,
1−Pn

(
−∆n

j ≤ p̂C
i j(W

n+1
i j ,τn)≤ ∆n

i
)

otherwise.

,

ν
cEV I(τn),n
i j = En[∆n+1

∗ (p̂C
i j(W

n+1
i j ,τn))].

The value factors with lookahead contraction differ from the corresponding value factors without
contraction in terms of their capacity to gain information from the (hypothetical) lookahead observations.
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In particular, it can be shown easily that, for fixed τn and (i, j), the value factor with contraction is always
greater than or equal to the corresponding value factor without contraction. Note that this results directly
from the fact that |p̂C

i j(k,τn)| ≥ |p̂i j(k,τn)|, where equality is the case if and only if k = pn
i jτn. Hence,

the lookahead contraction essentially leads to an expansion of the effect range (cf. Section 3.1) of the
pairwise comparisons. Moreover, the effect range expands as τn increases (as in the case without lookahead
contraction) and is unbounded (in contrast to the case without lookahead contraction).

4 INFORMATIVE VALUE FACTORS FOR LOOKAHEAD POLICIES

The binary nature of the observations in our sampling process with pairwise comparisons may lead to
situations where too little information is revealed in a stage of the process, i.e., where the value factors
of our sampling policy equal zero. We refer to a value factor that equals zero as uninformative, and to
a value factor that is greater than zero as informative. If in a stage n all value factors of our policy are
uninformative, the policy looses its ability to deliberately allocate sampling decisions. In such a situation
a common approach is to temporarily switch to a purely random exploration policy for the current stage n.

For each of the value factors introduced in Section 3 the chance of being informative depends directly
on whether or not the factor’s impact bounds lie within the effect range. Since the effect range expands as
the lookahead τn increases, there is, for each value factor, a minimal lookahead required such that the factor
becomes informative. We derive the minimal lookahead for value factors without lookahead contraction
in Section 4.1, and for value factors with contraction in Section 4.2.

4.1 Minimal Lookahead without Contraction

For π ∈ {PPI,PIC,EV I} the minimal lookahead for pair (i, j) is defined as

τ
i j,π
n = min{τ ∈ N|νπ,n

i j (τ)> 0},

which implies that for each τ ≥ τ
i j,π
n the corresponding value factor ν

π,n
i j (τ) is informative. We can derive

the minimal lookahead for PPI and PIC as given by the following two lemmas.
Lemma 4 For each pair (i, j) ∈ M̃, we have

τ
i j,PPI
n =



1 if ∆n
j = 0 or ∆n

i = 0,

dδ−i j e if p̄n
∗ =Cn

i j, ∆n
j <

pn
i j

M and ∆n
i ≥

pn
ji

M ,

dδ+
i j e if p̄n

∗ =Cn
i j, ∆n

j ≥
pn

i j
M and ∆n

i <
pn

ji
M ,

min{dδ−i j e,dδ
+
i j e} if p̄n

∗ =Cn
i j and ∆n

j <
pn

i j
M or ∆n

i <
pn

ji
M ,

∞ otherwise,

where δ
−
i j = nn

i j[(pn
i j/M)(∆n

j)
−1−1]−1, and δ

+
i j = nn

i j[(pn
ji/M)(∆n

i )
−1−1]−1.

Lemma 5 For each pair (i, j) ∈ M̃, we have

τ
i j,PIC
n =



τ
i j,PPI
n if in∗ 6= i, j,

1 if in∗ = i and min{∆n
j ,∆

n
i j}= 0, or in∗ = j and min{∆n

i ,∆
n
i j}= 0,

dδie if in∗ = i and
pn

i j
M > min{∆n

j/2,∆n
i j}> 0,

dδ je if in∗ = j and
pn

ji
M > min{∆n

i /2,∆n
i j}> 0,

∞ otherwise,

where δi = nn
i j[(pn

i j/M)(min{∆n
j/2,∆n

i j})−1−1]−1, and δ j = nn
i j[(pn

ji/M)(min{∆n
i /2,∆n

i j})−1−1]−1.
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Lemmas 4 and 5 show that the minimal lookaheads of PPI and PIC are equal, if none of the two
alternatives i and j is currently considered best, or if argmax{ p̄n

i , p̄n
j ,C

n
i j} contains more than one index. In

all other cases, the minimal lookahead of PPI always equals one, whereas the minimal lookahead of PIC
tends to grow with increasing nn

i j and may even get infinite.
The fact that the PIC value factors and the corresponding EVI value factors have the same impact

bounds implies that the minimal lookahead of EVI is the same as the minimal lookahead of PIC, i.e.,

∀(i, j) : τ
i j,EV I
n = τ

i j,PIC
n .

Hence, Lemmas 4 and 5 reveal that all three types of value factors may require an infinite lookahead in
order to become informative. With PIC and EVI this may even happen for all pairs. Note that the possible
occurrence of an infinite minimal lookahead results from the fact, that the effect range of the predictive
change p̂i j is bounded by the limiting effect range (−pn

i j/M, pn
ji/M). An infinite minimal lookahead

occurs whenever the impact bounds lie outside of the limiting effect range. We conclude with the general
observation that the main driving force behind very large minimal lookaheads is given in terms of small
ratios between the upper (lower) bound of the limiting effect range and the upper (lower) impact bound.

4.2 Minimal Lookahead with Contraction

Lookahead contraction implies that the impact bounds of the value factors for PPI, PIC and EVI (as
given in Lemmas 1, 2, and 3) are multiplied with (nn

i j + 1)/(nn
i j + τn). One consequence of this impact

bound reduction is that the minimal lookahead becomes smaller if it was larger than 1 without lookahead
contraction, and that it remains 1 otherwise. As in the case without lookahead contraction, the minimal
lookaheads of EVI and of PIC with contraction are the same, i.e.,

∀(i, j) : τ
i j,cEV I
n = τ

i j,cPIC
n .

We can derive the minimal lookaheads for cPPI and cPIC as given by the following two lemmas.
Lemma 6 For each pair (i, j) ∈ M̃, we have

τ
i j,cPPI
n =

1 if ∆i = 0 or ∆ j = 0,

min
{

ceil
(
(nn

i j+1)∆n
j

pn
i j/M

)
,ceil

(
(nn

i j+1)∆n
i

pn
ji/M

)}
otherwise,

Lemma 7 For each pair (i, j) ∈ M̃, we have

τ
i j,cPIC
n =


ceil
(
(nn

i j+1)min{∆n
j/2,∆n

i j}
pn

i j/M

)
if in∗ = i,

ceil
(
(nn

i j+1)min{∆n
j/2,∆n

i j}
pn

ji/M

)
if in∗ = j,

τ
i j,cPPI
n otherwise.

By comparing Lemmas 4 and 5 with the corresponding Lemmas 6 and 7, we observe that lookahead
contraction guarantees finiteness of the minimal lookahead. This means that lookahead contraction policies
with minimal lookahead are always able to deliberately select a pair. In addition, it can be shown that
lookahead contraction reduces the probability of uninformative value factors for all τn > 1.

5 COMPUTATIONAL EXPERIMENTS

In this section we demonstrate by computational experiments the impact of lookahead contraction on the
performance of lookahead policies. We describe our experimental setup in Section 5.1, and show numerical
results in Section 5.2.
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5.1 Experimental Setup

We report on two main experiments. First we consider problems with 10, 15 and 20 alternatives to illustrate
the impact of lookahead contraction on the performances of policies with minimal lookahead. Second we
use the case with 20 alternatives to demonstrate the impact of lookahead contraction on the performances
of policies with fixed lookahead. For the first main experiment we define the lookahead policies PPI(min),
PIC(min) and EVI(min), and their lookahead contraction counterparts cPPI(min), cPIC(min) and cEVI(min)
as follows. For π ∈ {PPI,PIC,EV I,cPPI,cPIC,cEV I} we let

Xπ(min)(Sn) = argmax
(i, j)∈M̃

ν
π,n
i j (τ i j,π

n )

τ
i j,π
n

. (5)

For the second experiment, we define policies with fixed lookaheads τ ∈ {10,40,160} for all n. We again
consider π ∈ {PPI,PIC,EV I,cPPI,cPIC,cEV I} and let

Xπ(τ)(Sn) = argmax
(i, j)∈M̃

ν
π,n
i j (τ). (6)

If at a stage n all value factors of a policy equal zero, we temporarily substitute the policy with a
purely random exploration policy. For each M ∈ {10,15,20} we consider both a set of problems with
weakly informative priors, and a set of problems with strongly informative priors. For each problem set
we generate 10 initial priors by randomly choosing α0

i j and β 0
i j (except for α0

ii and β 0
ii ) from the sets

A5 = {k|k≤ 5,k ∈N} and A10 = {k|k≤ 10,k ∈N}. Subsequently, we randomly sample 10 different truths
with pi j ∼ B(α0

i j,β
0
i j) per initial prior beliefs. Hence, each of the two considered problem sets consists of

102 randomly generated problem instances. In all our experiments we work with a sampling budget of
N = 1000 pairwise comparisons. We measure the performance of a policy at stage n in terms of the true
rank of the alternative that is considered best according to the beliefs at n. We adopt the convention that
the alternative with the highest true average winning probability has rank one.

5.2 Results

Figure 1 displays the results of our first main experiment. For each of the policies defined in Equation (5)
the figure shows the expected true rank of the alternative that is considered best according to the beliefs
at stage n of the sampling process. The results of the pure exploration policy (“EXPL”) are shown as
benchmark. Figures 1a–1c show results for weakly informative initial priors (α0,β 0 ∈ A5), and Figures
1d–1f show results for strongly informative priors (α0,β 0 ∈ A10). In all cases the expected true rank is
calculated as average over 102×100 replications of the sampling process.

Figure 1 shows that in terms of the finally reached expected true rank none of the policies with lookahead
contraction performs worse than its counterpart without contraction. In particular both cPIC(min) and
cEVI(min) lead in most cases to significant performance gains compared with their counterparts without
lookahead contraction, and, most prominently, we observe that cEVI(min) outperforms all other policies
in each case. Figure 1 also reveals that the performance gains of cPIC(min) and cEVI(min) with respect
to the counterparts PIC(min) and EVI(min) is larger in the presence of weakly informative initial priors.

We observe that the performances of PPI(min) and cPPI(min) are identical in each of the considered
cases, and that the performance of these policies is always significantly worse than the performances
of the other policies. We suppose that the fact that the performances are identical is a result of both
policies choosing pairs with a minimal lookahead of 1, i.e., pairs containing the alternative that is currently
considered best, which is the case where the value factors with and without contraction are equal.

Finally, Figure 1 shows that for minimal lookahead the three considered value factor types always lead
to the same order of both the policies with contraction and the policies without contraction, i.e., in terms
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(a) 10 alternatives, α0, β 0 ∈ A5
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(b) 15 alternatives, α0, β 0 ∈ A5
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(c) 20 alternatives, α0, β 0 ∈ A5
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(d) 10 alternatives, α0, β 0 ∈ A10
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(e) 15 alternatives, α0, β 0 ∈ A10
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(f) 20 alternatives, α0, β 0 ∈ A10

Figure 1: Expected true rank of the alternative considered best according to the beliefs at stage n, for
experiments with 10, 15 and 20 alternatives, and with weakly and strongly informative initial priors.

of expected true rank we consistently observe EVI ≺ PIC ≺ PPI, and cEVI ≺ cPIC ≺ cPPI. Our second
experiment reveals that these orders may change if value factors are calculated with a fixed lookahead.

In our second main experiment, we focus on the case of M = 20 alternatives with weakly informative
priors. For each of the policies defined in Equation (6), Figure 2 displays the expected true rank of the
alternative that is considered best according to the beliefs at stage n of the sampling process. Figures 2a–2c
show results for τ ∈ {10,40,160}, and Figures 2d–2f represent magnifications of these results. In all cases
the expected true rank is calculated as average over 102×103 replications of the sampling process.

The most prominent difference between the results of Figure 2, and the corresponding results with
minimal lookahead (shown in Figure 1c) is that fixing the lookahead improves both PPI and cPPI significantly,
and that the improvement of cPPI is larger than the improvement of its counterpart without lookahead
contraction. The magnifications in Figures 2d–2f highlight that cPIC(τ) and cEVI(τ) outperform their
counterparts without contraction for τ = 10 and τ = 40. Moreover, for large lookahead (τ = 160), (i) the
advantage of cPPI(τ) over PPI(τ) is particularly large, and (ii) cPIC(τ) and cEVI(τ) improve over PIC(τ)
and EVI(τ) only towards the end of the sampling process. However, the slopes of cPIC(τ) and cEVI(τ)
seem to indicate that the two policies have a significant advantage over PIC(τ) and EVI(τ) on the long run.

Note that in contrast to all lookahead contraction policies with minimal lookahead, both cPIC(τ), and
cEVI(τ) are not guaranteed to avoid temporarily falling back to pure random exploration. Figure 3 illustrates
the impact of the lookahead contraction on the according exploration rates and highlights that lookahead
contraction reduces the exploration rate in all of the cases.

Preliminary experiments seem to indicate that, as the number of alternatives grows, the cPIC(τ) policy
shows an increasing advantage also over other policies, such as the computationally intense KG* policy.
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(a) τ = 10
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(b) τ = 40
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(c) τ = 160
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(d) Magnification of Figure (2a)
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(e) Magnification of Figure (2b)
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(f) Magnification of Figure (2c)

Figure 2: Expected true rank of the best believed alternative, with 20 alternatives, α0, β 0 ∈ A5 and fixed τ
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(b) τ = 40
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Figure 3: Exploration rates at each stage of the sampling process, with 20 alternatives and α0, β 0 ∈ A5.

6 CONCLUSIONS

We introduce the lookahead contraction principle and propose a new class of lookahead policies for
Bayesian ranking and selection with pairwise comparisons. Lookahead contraction improves the ability
of lookahead policies to utilize the sparse information coming from binary observations by contracting
the effects of several consecutive pairwise comparisons into one single pairwise comparison. We apply
lookahead contraction to three different types of value factors for sampling policies: predictive probability
of improvement, predictive probability of identity change, and expected value of improvement. We show
that lookahead contraction reduces the minimum number of lookahead steps required to attain informative
value factors, and that contraction guarantees finiteness of the minimal lookahead.
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Our computational results demonstrate the advantage of lookahead contraction. For the case of policies
using the minimal lookahead required for informative value factors, we show empirically that applying
lookahead contraction never leads to worse performance, and that lookahead contraction policies based on
expected value of improvement are best. For the case of fixed lookahead, our empirical results show that
lookahead contraction results in a significant performance boost in particular for policies based on predictive
probability of improvement. Avenues for future work are the study of lookahead contraction policies within
different application contexts, and development of formal proofs of the advantage of lookahead contraction.

ACKNOWLEDGMENTS

The work of the authors was supported by the German Federal Ministry for Economic Affairs and Energy
under grant 03ET6152 within the 6th Energy Research Programme of the Federal Government of Germany.

REFERENCES
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