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Cutting edge: Derivatives pricing

Path-dependent volatility
So far, path-dependent volatility models have drawn little attention compared with local volatility and stochastic volatility
models. In this article, Julien Guyon shows they combine benefits from both and can also capture prominent historical
patterns of volatility

T
hree main volatility models have been used so far in the finance
industry: constant volatility, local volatility (LV) and stochas-
tic volatility (SV). The first two models are complete: since

the asset price is driven by a single Brownian motion, every payoff
admits a unique self-financing replicating portfolio consisting of cash
and the underlying asset. Therefore, its price is uniquely defined as
the initial value of the replicating portfolio, independent of utilities
or preferences. Unlike the constant volatility models, the LV model is
flexible enough to fit any arbitrage-free surface of implied volatilities
(henceforth, ‘smile’), but then no more flexibility is left. Calibrating to
the market smile is useful when one sells an exotic option whose risk
is well mitigated by trading vanilla options – then the model correctly
prices the hedging instruments at inception.

For their part, SV models are incomplete: the volatility is driven
by one of several extra Brownian motions, and as a result perfect
replication and price uniqueness are lost. Modifying the drift of the
SV leaves the model arbitrage-free, but changes option prices.

Using SV models allows us to gain control of key risk factors such
as volatility of volatility (vol-of-vol), forward skew and spot-vol corre-
lation. SV models generate joint dynamics of the asset and its implied
volatilities (henceforth, spot-vol dynamics) that are much richer than
the LV ones. For instance, using a very large mean reversion together
with a large vol-of-vol and a very negative spot-vol correlation, one
can generate an almost flat implied-volatility surface, together with
very negative short-term forward skews. If an LV model were used to
match this smile, the LV surface would be almost flat as well, produc-
ing vanishing forward skew. As a result, cliquets of forward-starting
call spreads would be much cheaper in the LV model. This is still true
even if the smile is not flat: the LV model typically underprices these
options. Using SV models prevents possible mispricings.

To allow SV models to perfectly calibrate to the market smile, one
can use stochastic local volatility (SLV) models; ie, multiply the SV
by an LV (the so-called leverage function), which is fitted to the smile
using the particle method (see Guyon & Henry-Labordère 2012). This
modifies the spot-vol dynamics, but only slightly: usually the leverage
function, seen as a function of the asset price, becomes flatter and
flatter as time t grows, so the SLV dynamics become closer and closer
to pure SV ones (Henry-Labordère 2009).

At this point, a question naturally arises: can we build complete
models that have all the useful properties of SLV models, namely, rich
spot-vol dynamics and calibration to the market smile? For instance,
can we build a complete model that fits a flat smile and yet produces
very negative short-term forward skews? It is tempting but wrong to
quickly answer ‘no’by arguing that the only complete model calibrated
to the smile is the LV model.This is not true: in this article, we will show
that path-dependent volatility (PDV) models, which are complete, can
produce rich spot-vol dynamics and, furthermore, can perfectly fit
the market smile. The two main benefits of model completeness are

price uniqueness and parsimony: it is remarkable that so many popular
properties of SLV models can be captured using a single Brownian
motion. Although perfect delta-hedging is unrealistic, incorporating
the path-dependency of volatility into the delta is likely to improve
the delta-hedge. Not only that, we will see that, thanks to their huge
flexibility, PDV models can generate spot-vol dynamics that are not
attainable using SLV models.

Below, we first introduce the class of PDV models and then explain
how we calibrate them to the market smile. Subsequently, we investi-
gate how to pick a particular PDV.

Path-dependent volatility models
PDV models are those models where the instantaneous volatility �t

depends on the path followed by the asset price so far:

dSt

St

D �.t; .Su; u 6 t // dWt

where, for simplicity, we have taken zero interest rates, repo and
dividends. In practice, the volatility �t � �.t; St ; Xt / will often be
assumed to depend on the path only through the current value St and
a finite set Xt of path-dependent variables, which may include, for
example, running or moving averages, maximums/minimums, realised
variances, etc.

PDV models have been widely overlooked, compared with LV and
SV. The most famous PDV models are probably the Arch model by
Engle (1982) and its descendants Garch (Bollerslev 1986), Ngarch,
Igarch, etc. But these are discrete-time models that are hardly used in
the derivatives industry. The two other main contributions so far are
from Hobson & Rogers (1998) and Bergomi (2005). In its discrete
setting version, Bergomi’s SV model is actually a mixed SV-PDV
model in which, given a realisation of the variance swap volatility
at time Ti D i� for maturity TiC1,

q
�i

Ti
, the (continuous-time)

volatility of the underlying on ŒTi ; TiC1� is path-dependent: it reads
�.St =STi

/, where � is calibrated to both �i
Ti

and a desired value of
the forward at-the-money (ATM) skew for maturity �. By restriking
S at Ti , the distribution of STiC1

=STi
is made independent of STi

,
which allows us to decouple the short-term forward skew and the
spot/volatility correlation.

By contrast, the Hobson-Rogers model is a pure PDV model in
which the volatility �t D �.Xt / is a deterministic function of Xt D
.X1

t ; : : : ; Xn
t /, where:

Xm
t D

Z t

�1

�e��.t�u/

�
ln

St

Su

�m

du

When n D 1, the volatility depends only on the offset:

X1
t D ln St �

Z t

�1

�e��.t�u/ ln Su du
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Why study and use path-dependent volatility?

Path-dependent volatility (PDV) models have drawn little attention
compared with local volatility (LV) and stochastic volatility (SV) models

This is unfair: PDV models combine benefits from both LV and SV, and
even go beyond

Like LV: complete and can fit exactly the market smile

Like SV: produce a wide variety of joint spot-vol dynamics

Not only that:
1 Can generate spot-vol dynamics that are not attainable using SV models
2 Can also capture prominent historical patterns of volatility
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Outline

A short recap on volatility modeling

PDV models: a (necessarily) brief history, and what we want from them

Smile calibration of PDV models

Choose a particular PDV to generate desired spot-vol dynamics

Choose a particular PDV to capture historical patterns of volatility

Concluding remarks

Discussion
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A short recap on volatility modeling

Constant volatility (Bachelier, 1905; Black and Scholes, 1973) and LV
(Dupire, 1994) are complete models: every payoff admits a unique
self-financing replicating portfolio consisting of cash and the underlying
asset =⇒ unique price

LV flexible enough to fit exactly any arbitrage-free smile—but no more
flexibility is left

SV models are incomplete =⇒ no unique price. But they give control on
key risk factors such as vol of vol, forward skew, and spot-vol correlation.
Unlike LV, they generate rich joint dynamics of the asset and its implied
volatilities

To allow SV models to perfectly calibrate to the market smile, one can use
SLV models + particle method. Modifies spot-vol dynamics, but only
slightly (except maybe for small times t): usually the LV component
(leverage function) flattens as t grows
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Can we combine benefits from both LV and SV?

Can we build complete models that have all the nice properties of SLV
models, namely, rich spot-vol dynamics, and calibration to market smile?

For instance, can we build a complete model that is calibrated to a flat
smile, and yet produces very negative short term forward skews?

Tempting but wrong to quickly answer ‘no’, by arguing that the only
complete model calibrated to the smile is the LV model.

This is not true: we will show that PDV models, which are complete, can
produce rich spot-vol dynamics and, on top of that, can be perfectly
calibrated to the market smile

Benefits of model completeness: price uniqueness and parsimony. All
properties of SLV models can be captured using a single Brownian motion.
Although perfect delta-hedging is unrealistic, incorporating the
path-dependency of volatility into the delta is likely to improve the
delta-hedge.

PDV models actually go beyond SLV models: they can generate spot-vol
dynamics that are not attainable using SLV models.
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PDV models

PDV models are those models where the instantaneous volatility σt
depends on the path followed by the asset price so far:

dSt
St

= σ(t, (Su, u ≤ t)) dWt

In practice, σt ≡ σ(t, St, Xt) where Xt = finite set of path-dependent
variables: running or moving averages, maximums or minimums, realized
variances, etc.

Most famous examples: ARCH/GARCH models. Discrete-time and hardly
used in the derivatives industry
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The Hobson-Rogers model (1998)

σt = σ(Xt); Xt = (X1
t , . . . , X

n
t ) where the Xm

t are exponentially
weighted moments of all the past log increments of the asset price:

Xm
t =

∫ t

−∞
λe−λ(t−u)

(
ln
St
Su

)m
du

n = 1: σt depends only on X1
t = lnSt −

∫ t
−∞ λe

−λ(t−u) lnSu du = the
difference between current log price and a weighted average of past log
prices =⇒ vol determined by local trend of the asset price over a period of
order 1/λ years (e.g., 1 month if λ = 12)

Supported by empirical studies (see later)

Choice of an infinite time window and exponential weights only guided by
computational convenience: ensures that (St, Xt) is a Markov process =⇒
price of a vanilla option reads u(t, St, Xt) where u is the solution to a
second order parabolic PDE

Implied vols at time 0 in the model depend not only on the strike,
maturity, and S0, but also on all the past asset prices through X0
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Four natural and important questions arise

1 Can we specify σ(·) and λ so that the model fits exactly the market smile?
Platania & Rogers, Figà-Talamanca & Guerra only gave approximate
calibration results

2 Does the calibrated model have desired dynamics of implied volatility, such
as large negative short term forward skew for instance?

3 In the definition of Xt, can we use general weights and a finite time
window [t−∆, t] instead of (−∞, t], so that the vol truly depends only a
limited portion of the past? The generalization in Foschi & Pascucci is
partial as it requires positive weights on [0, t].

4 Much more importantly: how do we generalize to other choices of Xt?
The generalization in Hubalek et al., where the vol depends on a particular
modified version of the offset X1

t , is also very partial

Julien Guyon Bloomberg L.P.
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Our approach will solve these four questions all at once

First we choose any set of path-dependent variables Xt and any function
σ(t, S,X) so that the PDV model with σt = σ(t, St, Xt) has desired
spot-vol dynamics and/or captures historical patterns of volatility

Then we define a new model by multiplying σ(t, St, Xt) by a leverage
function l(t, St) and we perfectly calibrate l to the market smile of S using
the particle method (Guyon and Henry-Labordère, 2011)

Usually, multiplying σ(t, St, Xt) by the calibrated leverage function
distorts only slightly the spot-vol dynamics

This way we mimic SLV models, with the ‘pure’ PDV σ(t, St, Xt) playing
the role of SV, but we stay in the world of complete models

Not only that: thanks to their huge flexibility, PDV models can generate
spot-vol dynamics that are not attainable using SLV models

Same program can be run by choosing two functions a(t, S,X) and
b(t, S,X) instead of only one function σ(t, S,X), and then defining
σ2
t = a(t, St, Xt) + b(t, St, Xt)l(t, St)
b ≡ 1: complete analogue of incomplete additive SLV models

Julien Guyon Bloomberg L.P.
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Smile calibration of PDV models: Particle method

Given a PDV σ(t, S,X), we can uniquely build the leverage function
function l(t, S) such that the PDV model

dSt
St

= σ(t, St, Xt)l(t, St) dWt (1)

fits exactly the market smile of S
From Itô-Tanaka’s formula, Model (1) is exactly calibrated to the market
smile of S if and only if

EQ [σ(t, St, Xt)
2
∣∣St] l(t, St)2 = σ2

Dup(t, St)

where Q denotes the unique risk-neutral measure and σDup the Dupire LV
=⇒ calibrated model satisfies the nonlinear McKean stochastic differential
equation

dSt
St

=
σ(t, St, Xt)√

EQ[σ(t, St, Xt)2|St]
σDup(t, St) dWt

The particle method (Guyon & Henry-Labordère, 2011) computes the
above conditional expectation, hence the leverage function
l(t, S) = σDup(t, S) /

√
EQ[σ(t, St, Xt)2|St = S], on the fly while

simulating the paths
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Smile calibration of PDV models

Brunick and Shreve (2013): Given a general Itô process dSt = σtSt dWt

and a special type of path-dependent variable X, there exists a PDV
σ(t, St, Xt) such that, for each t, the joint distribution of (St, Xt) is the
same in both models:

σ(t, St, Xt)
2 = EQ[σ2

t |St, Xt]

Only X’s satisfying a type of Markov property are admissible though:
running averages are admissible, but moving averages are not; instead, one
must pick Xt = (Su, t−∆ ≤ u ≤ t)
Take Xt = (Su, 0 ≤ u ≤ t): Brunick-Shreve =⇒ the price process
produced by any SV/SLV model has the same distribution, as a process, as
a PDV model (not only the marginal distributions) =⇒ There always
exists a PDV model that produces exactly the same prices of, not only
vanilla options, but all options, including path-dependent, exotic options
=⇒ No surprise that PDV models can reproduce popular SLV spot-vol
dynamics (see below)
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How to choose a particular path-dependent volatility?

Now the crucial question is:

How to choose a particular PDV?

Two main possible goals:

1 Generate desired spot-vol dynamics

2 Capture historical features of volatility

These two goals are not mutually exclusive: it might very well happen, and it is
desirable, that a given choice of a PDV fulfills both objectives at a time

Julien Guyon Bloomberg L.P.
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Choose a particular PDV
to generate desired spot-vol dynamics
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Choose a particular PDV to generate desired spot-vol dynamics

Can we choose a PDV σ(t, S,X) that, for instance, generates large
negative short term forward skews, even when it is calibrated to a flat
smile?

LV/SLV analogy =⇒ We need σ(t, St, Xt) to be negatively correlated with
St
May be achieved by picking a decreasing function σ of S alone, but smile
calibration would bring us back to pure LV model:

dSt
St

=
σ(t, St, Xt)√

EQ[σ(t, St, Xt)2|St]
σDup(t, St) dWt (2)

What we actually need is
√
η(t, St, Xt) to be negatively correlated with

St, where

η(t, S,X) ≡ σ(t, S,X)2

EQ[σ(t, St, Xt)2|St = S]

η(t, S,X) = PDLVR = ‘path-dependent to local variance ratio’

The PDLVR or alternatively
D(t, S) = Var(η(t, St, Xt)|St = S) = E[(η(t, St, Xt)− 1)2|St = S]
measures deviation from LV: LV ⇐⇒ η ≡ 1⇐⇒ D ≡ 0

Julien Guyon Bloomberg L.P.
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Choose a particular PDV to generate desired spot-vol dynamics

Recall that we want√
η(t, S,X) ≡ σ(t, S,X)√

EQ[σ(t, St, Xt)2|St = S]

to tend to be large when S is small, and conversely

=⇒ σ(t, S,X) must be negatively linked to S, but not perfectly: target
correl of the levels of spot and vol is more around, say, −50% than around
−1% or −99%. Moderate correlation property

Usual SLV models: Mean reversion in the SV =⇒ Moderate correlation,
even if increments of spot and vol are extremely negatively correlated

Julien Guyon Bloomberg L.P.
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Example 1

Ex. Xt σ(S,X) producing large forward skew

1 St−∆ σ1{ S
X
≤1} + σ1{ S

X
>1}

Comparing with SV models:

σ − σ ←→ vol of vol: we need it to be large enough to generate large
negative short term forward skew

∆←→ spot-vol correlation:
St small =⇒ more likely that St be smaller than St−∆ =⇒ more likely that
σt be large
The larger ∆, the larger the correlation

∆←→ mean reversion too: the smaller ∆, the more ergodic the volatility,
hence the flatter the forward smile (cf. Fouque-Papanicolaou-Sircar, 2000)

Julien Guyon Bloomberg L.P.
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Examples 2 and 3

Ex. Xt σ(S,X) producing large forward skew

1 St−∆ σ1{ S
X
≤1} + σ1{ S

X
>1}

2 S
∆
t as above

3 (m∆
t ,M

∆
t ) σ1{ S−m

M−m
≤ 1

2} + σ1{ S−m
M−m

> 1
2}

S
∆
t =

∫∆

0
wτSt−τ dτ∫∆

0
wτ dτ

, m∆
t = inf

t−∆≤u≤t
Su, and M∆

t = sup
t−∆≤u≤t

Su

Ex. 2: St−∆ replaced by moving average S
∆
t . Makes more financial sense:

why put all the weight wτ on τ = ∆?

Ex. 3 uses that
St−m∆

t

M∆
t −m

∆
t

is positively correlated with St. The larger ∆,

the larger the correlation
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Forward starting 1M call spread 95%-105%
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Price in vol points of forward starting one month call spread 95%−105%
low vol = 8%, high vol = 32%, Delta = 1 month, smile is flat at 20%
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pure PDV, example 3
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Forward starting 1M ATM digital call
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Price in % of forward starting one month digital ATM call
low vol = 8%, high vol = 32%, Delta = 1 month, smile is flat at 20%
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Smiles of pure PDV models
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Example 3: Leverage function l(t, S)
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Leverage function l(t,S): Example 3
low vol = 8%, high vol = 32%, Delta = 1 month, smile is flat at 20%

S
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Short term forward skew: comparison with SLV models

Consider the SLV model where the SV = exponential O-U process

To reproduce Example 2 prices, a huge positive return in volatility is
needed when asset returns are negative =⇒ one must use a very large vol
of vol, beyond 550%, together with an extreme spot-vol correlation (say,
−99%)

=⇒ A very large mean reversion above 20 is then somehow artificially
needed to keep volatility within a reasonable range

By comparison PDV models, which can directly relate the asset returns to
the volatility levels, look much more handy and can more naturally
generate large forward skews

Large positive short term forward skew: exchange σ and σ

One may use smoothed versions of the PDV by replacing the Heaviside
function by 1

2
(1 + tanh(λx)) for instance

Julien Guyon Bloomberg L.P.
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U-shaped short term forward smile

What if we want a PDV model calibrated to a flat smile and yet that
generates a pronounced U-shaped short term (τ = 1M) forward smile?

=⇒ We need √
η(t, S,X) ≡ σ(t, S,X)√

EQ[σ(t, St, Xt)2|St = S]

to be highly volatile and uncorrelated with S
Examples 1–3 cannot capture this:

∆� τ =⇒ ergodic vol =⇒ flat forward smile

∆ ≈ τ =⇒
√
η(t, S,X) correlated with S

∆� τ =⇒
√
η(t, S,X) almost constant

Examples 4–6 are natural candidates: vol is large if and only if recent asset
returns (up or down) are as well. Produce vanishing ATM forward skew

Ex. Xt σ(S,X) producing U-shaped forward smile

4 St−∆ σ1{| SX−1|>κσ0
√

∆} + σ1{| SX−1|≤κσ0
√

∆}
5 S

∆
t as above

6 (m∆
t ,M

∆
t ) σ1{M

m
−1>κσ0

√
∆} + σ1{M

m
−1≤κσ0

√
∆}
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Forward starting 1M butterfly spread 95%-100%-105%
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Price in vol points of forward starting one month butterfly spread 95%−100%−105%
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 = 20%, Delta = 1 month, smile is flat at 20%
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Smiles of pure PDV models
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Example 6: Leverage function l(t, S)
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Leverage function l(t,S): Example 6, low vol = 8%, high vol = 40%
Delta = 1 month, sigma0 = 20%, kappa = 1.2, smile is flat at 20%

S
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Spot-vol dynamics beyond what SLV models can attain

PDV models have so many degrees of freedom—the path-dependent
variables X, and the function σ(t, S,X)—that they can generate spot-vol
dynamics that are not attainable using SLV models

Example: imagine that a sophisticated client asks a quote on the
conditional variance swap with payoff

HT =

n−1∑
i=1

r2
i+11{ri≤0} ≈

∫ T

0

σ2
t 1{

St
St−∆

≤1

} dt, ri =
Sti − Sti−1

Sti−1

, ∆ = ti−ti−1 = 1 day

SLV model: for a given risk-neutral probability Q,

EQ

[
σ2
t 1{

St
St−∆

≤1

}
∣∣∣∣∣St
]
≈ EQ [σ2

t

∣∣St]EQ

[
1{

St
St−∆

≤1

}
∣∣∣∣∣St
]
≈ 1

2
σ2

Dup(t, St)

=⇒ Both the SLV price and the LV price are very close to the variance
swap price halved:

SLV price ≈ LV price ≈ 1

2

∫ T

0

EQ [σ2
Dup(t, St)

]
dt =

1

2
var swap price

whatever the choice of Q
Julien Guyon Bloomberg L.P.
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Spot-vol dynamics beyond what SLV models can attain

However, if client requests such quote, it is probably because they
observed that for this asset r2

i+1 is large when ri ≤ 0, and small otherwise,
expect this to continue, and try to statistically arbitrage a counterparty

All the models commonly used in the industry today would fail to capture
this risk but the PDV model of Ex. 1, with ∆ = ti − ti−1 = 1 day, grasps
it very well

∆ small =⇒ EQ [σ(ti, Sti , Sti−1)2 |Sti
]
≈ σ2+σ2

2
is almost constant =⇒

PDV price ≈
∫ T

0

EQ

[
σ2

σ2+σ2

2

σ2
Dup(t, St)1{

St
St−∆

≤1

}
]
dt ≈ σ2

σ2 + σ2
var swap price

For reasonable values of (σ, σ), e.g., (10%, 40%), this is close to the
(unconditional) var swap price = twice the SLV price and twice the LV
price. In such a case, an investment bank equipped with PDV may avoid a
large mispricing
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Choose a particular PDV
to capture historical patterns of volatility
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Choose a particular PDV to capture historical patterns of volatility

Like the local correlation models presented in Guyon (2013), PDV models
are flexible enough to reconcile implied calibration (e.g., calibration to the
market smile) with historical calibration (calibration from historical time
series of asset prices):

1 one chooses a PDV σ(t, S,X) from the observation of the time series, e.g.,

the short term ATM volatility is a certain function of St/S
∆
t

2 one then multiplies it by a leverage function l and eventually calibrates l to
the market smile using the particle method

By construction, PDV models are flexible enough to capture any
path-dependency of the volatility. For a given choice of PDV, what
remains to be numerically checked is

1 how much and how long the smile calibration distorts the link between past
prices and current instantaneous volatility

2 whether the model produces suitable dynamics of implied volatility
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Choose a particular PDV to capture historical patterns of volatility

For the S&P 500, the volatility level is not determined by the asset price
level, but by the recent changes in the asset price

Examples 1–3, which relate volatility levels to recent asset price returns,
easily capture this

Actually, the two basic quantities that possess a natural scale are the
volatility levels and the asset returns so we believe that a good model
should relate these two quantities

LV model links the volatility level to the asset level, does not make much
financial sense: well designed PDV models need not be recalibrated as
often as the LV model

SV models connect the change in volatility to the relative change in the
asset price. Has limitations:

Only unreasonable levels of vol of vol allow large movements (e.g., a 70%
return in 2 weeks) of instantaneous volatility
Therefore a large mean-reversion needs to be artificially added to keep
volatility within its natural range

By contrast PDV models can easily capture such large changes in volatility
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Example 2: σ = 10%, σ = 22%, ∆ = 1 month

The implied volatility varies continuously (with spikes when the market is
locally bearish) =⇒ Modeling instantaneous volatility as a pure jump
process is not problematic: no one has ever seen such quantity—it may
actually not exist

With such parameter values, the PDV model of Example 2 captures what
we believe is a major pattern of the historical joint behaviour of the S&P
500 and its short term implied volatilities

What about pricing? As the volatility interval [σ, σ] is not as wide as
[8%, 32%], the forward skew is not as expensive. However, still sizeably
larger than the LV forward skew
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Generalized local ARCH/GARCH models

That volatility depends on recent asset returns was also supported by
other statistical analyses (Platania-Rogers, 2003; Foschi-Pascucci, 2007)

Some empirical studies show that vol may depend on recent realized
volatility. So far, only the ARCH (Engle, 1982) and GARCH (Bollersev,
1986) models, and their descendants, could capture this

ARCH/GARCH capture tail heaviness, volatility clustering and dependence
without correlation, like Examples 1–6 above

Our approach generalizes them by defining local ARCH models, in which
the ARCH volatility is multiplied by a leverage function in order to fit a
smile and the function σ(X) is arbitrary:

dSt
St

= σ(Xt)l(t, St) dWt, Xt =
∑

t−∆<ti≤t

r2
i , ri =

Sti − Sti−1

Sti−1

Julien Guyon Bloomberg L.P.

Path-dependent volatility



Vol modeling PDV models Smile calibration Generate desired spot-vol dynamics Capture historical patterns of volatility Conclusion

Generalized local ARCH/GARCH models

dSt
St

= σ(Xt)l(t, St) dWt, Xt =
∑

t−∆<ti≤t

r2
i , ri =

Sti − Sti−1

Sti−1

Ex. 7: σ(t,X) = σ if X ≤ σ0 and σ otherwise. Vanishing ATM forward
skew. Forward starting butterfly spreads cost around 2.4 points of volatility

Ex. 8 (to mimic ARCH models): σ(X)2 = α+ βX with α > 0, β < 1.
Much flatter pure PDV smile and a much flatter leverage function l.
Vanishing ATM forward skew. Forward starting butterfly spreads around
0.7 point of volatility
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Smiles of pure PDV models

60 80 100 120 140
10

15

20

25

30
Implied volatility of pure PDV models (Examples 1−−8): T = 1

Moneyness

 

 
LV
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8

Julien Guyon Bloomberg L.P.

Path-dependent volatility



Vol modeling PDV models Smile calibration Generate desired spot-vol dynamics Capture historical patterns of volatility Conclusion

Example 7: Leverage function l(t, S)
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Example 8: Leverage function l(t, S)
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Conclusion

PDV models are excellent candidates to challenge the duopoly of LV and
SV which has dominated option pricing for 20 years

Like the LV model: complete and can be calibrated to the market smile
=⇒ all derivatives have a unique price which is consistent with today’s
prices of vanilla options

Like SV models: can produce rich spot-vol dynamics, such as large
negative short term forward skews or large forward smile curvatures

Huge flexibility: one can choose any set of path-dependent variables X
and any PDV σ(t, S,X) =⇒ PDV models actually span a much broader
range of spot-vol dynamics than SV models, and can also capture
important historical features of asset returns, such as volatility levels
depending on recent asset returns, tail heaviness, volatility clustering, and
dependence without correlation
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Conclusion

All SV/LSV models can be mimicked by PDV models: There exists a PDV
model that has the same distribution as a process – ALL options (not only
vanilla options) have the same price in both models!

In practice, the particle method is so simple and efficient that the smile
calibration is not a problem =⇒ Efforts can be concentrated on the choice
of a convenient PDV, depending on the market and derivative under
consideration
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Cutting edge: Derivatives pricing

Path-dependent volatility
So far, path-dependent volatility models have drawn little attention compared with local volatility and stochastic volatility
models. In this article, Julien Guyon shows they combine benefits from both and can also capture prominent historical
patterns of volatility

T
hree main volatility models have been used so far in the finance
industry: constant volatility, local volatility (LV) and stochas-
tic volatility (SV). The first two models are complete: since

the asset price is driven by a single Brownian motion, every payoff
admits a unique self-financing replicating portfolio consisting of cash
and the underlying asset. Therefore, its price is uniquely defined as
the initial value of the replicating portfolio, independent of utilities
or preferences. Unlike the constant volatility models, the LV model is
flexible enough to fit any arbitrage-free surface of implied volatilities
(henceforth, ‘smile’), but then no more flexibility is left. Calibrating to
the market smile is useful when one sells an exotic option whose risk
is well mitigated by trading vanilla options – then the model correctly
prices the hedging instruments at inception.

For their part, SV models are incomplete: the volatility is driven
by one of several extra Brownian motions, and as a result perfect
replication and price uniqueness are lost. Modifying the drift of the
SV leaves the model arbitrage-free, but changes option prices.

Using SV models allows us to gain control of key risk factors such
as volatility of volatility (vol-of-vol), forward skew and spot-vol corre-
lation. SV models generate joint dynamics of the asset and its implied
volatilities (henceforth, spot-vol dynamics) that are much richer than
the LV ones. For instance, using a very large mean reversion together
with a large vol-of-vol and a very negative spot-vol correlation, one
can generate an almost flat implied-volatility surface, together with
very negative short-term forward skews. If an LV model were used to
match this smile, the LV surface would be almost flat as well, produc-
ing vanishing forward skew. As a result, cliquets of forward-starting
call spreads would be much cheaper in the LV model. This is still true
even if the smile is not flat: the LV model typically underprices these
options. Using SV models prevents possible mispricings.

To allow SV models to perfectly calibrate to the market smile, one
can use stochastic local volatility (SLV) models; ie, multiply the SV
by an LV (the so-called leverage function), which is fitted to the smile
using the particle method (see Guyon & Henry-Labordère 2012). This
modifies the spot-vol dynamics, but only slightly: usually the leverage
function, seen as a function of the asset price, becomes flatter and
flatter as time t grows, so the SLV dynamics become closer and closer
to pure SV ones (Henry-Labordère 2009).

At this point, a question naturally arises: can we build complete
models that have all the useful properties of SLV models, namely, rich
spot-vol dynamics and calibration to the market smile? For instance,
can we build a complete model that fits a flat smile and yet produces
very negative short-term forward skews? It is tempting but wrong to
quickly answer ‘no’by arguing that the only complete model calibrated
to the smile is the LV model.This is not true: in this article, we will show
that path-dependent volatility (PDV) models, which are complete, can
produce rich spot-vol dynamics and, furthermore, can perfectly fit
the market smile. The two main benefits of model completeness are

price uniqueness and parsimony: it is remarkable that so many popular
properties of SLV models can be captured using a single Brownian
motion. Although perfect delta-hedging is unrealistic, incorporating
the path-dependency of volatility into the delta is likely to improve
the delta-hedge. Not only that, we will see that, thanks to their huge
flexibility, PDV models can generate spot-vol dynamics that are not
attainable using SLV models.

Below, we first introduce the class of PDV models and then explain
how we calibrate them to the market smile. Subsequently, we investi-
gate how to pick a particular PDV.

Path-dependent volatility models
PDV models are those models where the instantaneous volatility �t

depends on the path followed by the asset price so far:

dSt

St

D �.t; .Su; u 6 t // dWt

where, for simplicity, we have taken zero interest rates, repo and
dividends. In practice, the volatility �t � �.t; St ; Xt / will often be
assumed to depend on the path only through the current value St and
a finite set Xt of path-dependent variables, which may include, for
example, running or moving averages, maximums/minimums, realised
variances, etc.

PDV models have been widely overlooked, compared with LV and
SV. The most famous PDV models are probably the Arch model by
Engle (1982) and its descendants Garch (Bollerslev 1986), Ngarch,
Igarch, etc. But these are discrete-time models that are hardly used in
the derivatives industry. The two other main contributions so far are
from Hobson & Rogers (1998) and Bergomi (2005). In its discrete
setting version, Bergomi’s SV model is actually a mixed SV-PDV
model in which, given a realisation of the variance swap volatility
at time Ti D i� for maturity TiC1,

q
�i

Ti
, the (continuous-time)

volatility of the underlying on ŒTi ; TiC1� is path-dependent: it reads
�.St =STi

/, where � is calibrated to both �i
Ti

and a desired value of
the forward at-the-money (ATM) skew for maturity �. By restriking
S at Ti , the distribution of STiC1

=STi
is made independent of STi

,
which allows us to decouple the short-term forward skew and the
spot/volatility correlation.

By contrast, the Hobson-Rogers model is a pure PDV model in
which the volatility �t D �.Xt / is a deterministic function of Xt D
.X1

t ; : : : ; Xn
t /, where:

Xm
t D

Z t

�1

�e��.t�u/

�
ln

St

Su

�m

du

When n D 1, the volatility depends only on the offset:

X1
t D ln St �

Z t

�1

�e��.t�u/ ln Su du

risk.net 1
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stochastic differential equation, Ann. Appl. Prob., 23(4):1584–1628, 2013.

Dupire, B.: Pricing with a smile, Risk, January, 1994.

Engle, R.: Autoregressive Conditional Heteroscedasticity with Estimates of
Variance of United Kingdom Inflation, Econometrica 50:987-1008, 1982.
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