
Account Matching - How to Know Who’s Who
(or Will the Real John Smith Please Stand Up?)

IAM Online
Wednesday, August 8, 2018

Benn Oshrin, Spherical Cow Group
Summer Scanlan, University of California, Berkeley

Keith Wessel, University of Illinois Urbana Champaign

What is Identity Matching?
● Not the same as identity linking, but one can lead to the other

● Answers the question: are A and B the same person?

● Useful for on-boarding or later if identity information is changed

● Harder today than it used to be with information being more
sensitive

Why Bother With Identity Matching?
● Prevent someone from having multiple identities

● For users with multiple roles, it can be important for everything
to be under one identity

● Fewer passwords and MFA tokens to juggle

● Better experience than waiting for the user to contact the help
desk to ask for a merge

● But be careful: a false match can create a tangled mess!

Matching Overview & History
Benn Oshrin, Spherical Cow Group

First, Some Background

● This problem has been around for a while
○ Way, way back (in the mid-90s) campuses started to set up email

for everyone
■ (Similar problem for ID badges, etc)

○ Problem: Who is everyone?
■ HR knows employees
■ Registrar knows students

○ Multiple Systems of Record (SORs) Make Higher Ed Special*
■ *For identity management purposes, anyway

Today, It's Basically The Same Problem

● Typical Higher Ed Scenarios
○ Students apply via commercial application
○ Students enroll via Registrar
○ Students become alumni and are tracked via Alumni Relations
○ Employees are hired through HR

■ But only after some early onboarding process
○ Guests and affiliates come from everywhere
○ And what about the Hospital?

● Need a single identity to properly manage access to
resources

Multiple Approaches, Common Themes

● Variation 1: Match at Registry
○ Absent other considerations, probably the recommended

approach

● Variation 2: Match at SOR ("Standalone")
● Variation 3: Match before SOR

○ Enrollee obtains unique ID before approaching SOR

● Regardless of variation, similar considerations
○ Quality of inbound attributes
○ Handling ambiguous ("fuzzy", "potential") matches

Solutions (?)

● Lots of custom (legacy) code
● Some commercial products

○ Expensive
○ Some better than others

● Not much in the way of Open Source
○ Maybe you can hack something together from MDM solutions
○ … Until now (well, soon) …

1. ID Match API
○ Defines how match requests and responses are exchanged

i. Match Request
ii. Match Response (exact, potential)
iii. Pending Matches (for review and resolution)
iv. Update Match Attributes

○ Design preference: JSON + REST
○ Goal: Assign a "Reference Identifier"

i. Unique identifier for a person, as defined by the Match Engine
○ (More later…)

Two Parts To A Solution

Two Parts To A Solution

2. Match Engine
○ Implements rules for performing searches

i. Define attribute characteristics
ii. "Canonical" vs "Potential" rules

1. Canonical: Can uniquely identify a person, processing stops if exact
match found

2. Potential: Can suggest ambiguous or fuzzy matches, processing does
not stop even if a single match is found

○ Maintains match state
i. Implies a need for attribute updates (such as name changes) to be

reported to the Match Engine

Matching: A Community Timeline

● 2011: Initial ID Match Strawman drafted
● 2012: "CIFER" Strawman API drafted
● 2013: UCB develops Java-based in memory solution
● 2014: UCB develops Postgres-based solution (PoC)
● 2015: UCB internal implementation
● Nov 2017: TIER project funding allocated
● Summer 2018: Initial TIER component releases

○ Code being developed under the COmanage Project
○ API being formalized by TIER API/Reg Working Group

Matching @ UC Berkeley
Summer Scanlan, University of California, Berkeley

Identity Matching at UC Berkeley

System Elements
● Berkeley Person Registry (BPR)
● Systems of Record (SOR)
● Primary Key
● UID
● Raw data (sorObject)
● Match Engine
● Canonical Match Rules
● Potential Match Rules
● Partial Match Table

Record Provisioning and Auto Matching in BPR

● Data arrives from SORs each morning or via message queue

● Incoming new and update records are checked for an existing
primary key
○ If the primary key matches an existing record, the existing

record is updated
○ If the primary key does not already exist, a new sorObject

is created, which is then sent through the match engine

Example of Auto Match

Incoming record: Existing record:
Robert Jones Robert Jones
SSN: 12345 SSN: 12345
DOB: 01/01/2000 DOB: 01/01/2000
EID: 011223345 SID: 3031231231
Role: Employee Role: Student

Matched Record:
Robert Jones
SSN: 12345
DOB: 01/01/2000
EID: 011223345
SID: 3031231231
Roles: Employee, Student

Match Engine

● Matchable elements are extracted from the sorObject

● Rest call is made to the match service

● Match engine goes through matching rules, starting with
canonical rules

● Records that meet canonical criteria are matched, and UID is
reprovisioned with updated identity data

Partial Match Table
● Records go through the potential match rules after canonical

rules

● Records that are a potential match are sent to the partial match
table for human review

● CalNet staff reviews raw data for additional matching data
elements
○ Although the match engine is really quite helpful, human

review is sometimes still required -- matching is hard!

● If no canonical or potential match is made, a new UID is
provisioned

Example of Partial Match Table

Match Rules Improvement

● After implementation, we analyzed the partial match table and
duplicate records to find additional possible match rules

● Updating rules requires a developer to update the configuration
inside the match engine

● We regularly review our systems in the hopes of continuously
improving them

Gotchas!

Examples:

● Potential Match Rule - arguably a “bad” rule

● Canonical Match Rule - a “good” rule that occasionally results
in identity collision

Example of Potential Match Rule

Example - Potential Match Rule

potential givenName: SUBSTRING, surName: DISTANCE,
dateOfBirth: EXACT

● Matches are difficult for records that have multiple first or last names
● This rule was meant to capture such cases
● The actual result of implementation is hundreds of non matching

records hitting the partial match table each month, and having to be
manually reviewed and provisioned

● It often feels like a bad rule, but it also finds matches that would
otherwise be provisioned as duplicates!

Gotcha #2: Canonical Rule

canonical givenName: SUBSTRING, surName: EXACT,
socialSecurityNumber: EXACT, socialSecurityNumberType:
FIXED_VALUE

● Records matching on first, last, and last five of SSN are considered a
canonical match

● This rule resulted in 3 identity collisions last year (out of 50,000
records provisioned)

● Luckily, these are found right easily repaired

Summary

● Matching is not easy

● Having a match engine is definitely helpful

● Analyzing your potential matches and cases of identity collision
makes for a better match engine

TIER Match API & Component
Benn Oshrin, Spherical Cow Group

The ID Match API

● RESTful design
● Goal: Obtain a Reference Identifier
● Can operate synchronously or asynchronously

○ ie: interactive fuzzy resolution, or queue for an admin

● Can be placed behind a Registry or as a standalone
service

● Can be used to transition legacy systems

ID Match API Status

● Strawman stable for quite some time
● Effort starting to "formalize" specification

○ eduPerson style, not as an RFC/etc
■ Goal: Ready for TechEx

○ Long term home TBD
○ Attribute names may change slightly from the examples

ID Match Component Initial Scoping

● UI Driven Configuration
○ Includes ambiguous match resolution

● ID Match API Support
● Postgres Only

○ Possible MySQL/MariaDB support later

● Multi-tenant
● Distance and Substring Matching

○ Dictionary and others later

TIER ID Match Component Status

● Being developed as part of COmanage Project
○ Does not require COmanage Registry

● Initial coding complete
○ Early access releases RSN
○ v1.0.0 by TechEx

● Documentation underway
● Up next:

○ UI
○ Packaging

Match Engine
Configuration

Matchgrid
Configuration

SoR Configuration

Match Attributes

Date of Birth
Configuration

New Match Request (SIS)

Match Result (SIS)

Demo Match Rules

Rule C1 Rule C2 Rule P1 Rule P2

DoB Exact Exact Distance (2) Exact

SSN Exact Skip Distance (2) Skip

First Substring (1,3) Skip Substring (1,3) Substring (1,3)

Last Exact Exact Distance (2) Distance (2)

NetID Skip Exact Skip Exact

New Match Request (HRMS)

Fuzzy Match (300) Result (HRMS)
{ "candidates": [{
 "referenceId": "3965572c-e900-4afd-ad07-a13d0cd2e0ee",
 "attributes": [{
 "matchRequest": 21,
 "sor": "sis",
 "identifiers": [{
 "type": "sor", "identifier": "368324971" }, {
 "type": "national", "identifier": "995005320", }],
 "dateOfBirth": "1999-08-23",
 "names": [{
 "family": "Clark",
 "given": "Jay",
 "type": "official"
}] }] }] }

Fuzzy Match Result

● Because the SoR is "interactive", there is no pending
request for the Match Administrator to review
○ Option 1: Notice correct identifier and resubmit
○ Option 2: Submit "Forced Reconciliation Request" with

appropriate Reference Identifier

Performance Considerations

● Search times vary according to
○ Configured attributes
○ Quantity and complexity of confidence rules
○ Number of records in the database

● Exact ~= (Exact + Fuzzy) < Fuzzy
○ Exact matches can partition the search space for fuzzy matches

● Need to optimize for initial load of already-matched
data

More Info

● ID Match Strawman API:
https://spaces.at.internet2.edu/x/2QL5AQ
○ Will move to https://github.internet2.edu soon

● ID Match Component:
https://spaces.at.internet2.edu/x/qwW6Bw
○ (In progress, content coming soon)

https://spaces.at.internet2.edu/x/2QL5AQ
https://github.internet2.edu
https://spaces.at.internet2.edu/x/qwW6Bw

Please evaluate today’s session

https://www.surveymonkey.com/r/IAMOnline-Aug2018

https://www.surveymonkey.com/r/IAMOnline-Aug2018

2018 Internet2 Technology Exchange (TechEx)
October 15-19, 2018 - Orlando, Florida
https://meetings.internet2.edu/2018-technology-exchange/

● Two full tracks for Trust and Identity topics
● Advance CAMP (ACAMP)
● Pre-meeting tutorials

https://meetings.internet2.edu/2018-technology-exchange/

Next IAM Online
Wednesday, September 12, 2018
2 pm ET | 1 pm CT | Noon MT | 11 am PT

Grouper 2.4 and the Grouper Deployment Guide

● Features of the latest Grouper release (2.4)
● The Grouper Deployment Guide, NIST 800-162, access models, and

how that comes together in a TIER based architecture.

