
Goal-Driven Software Development

Ingo Schnabel
itestra GmbH
Ludwigstr. 35

Germany – 86916 Kaufering
schnabel@itestra.com

Markus Pizka
Institut für Informatik

Technische Universität München
Germany – 85748 Garching

pizka@in.tum.de

Abstract

Established software development processes focus on de-
livering software within time and budget according to a
set of requirements. However, practical experiences show
that neither business processes nor requirements can be
fully understood in an early stage of a realistic software
project. This is not primarily due to inadequate require-
ments elicitation but the fact that the technical implemen-
tation constitutes a formalization of a more or less fuzzy
business domain revealing gaps and inconsistencies. Fur-
thermore, the technology used adds constraints and enables
new processes. Hence, trying to set the requirements in ad-
vance causes change requests, cost and time overruns, or
even project cancellation. This paper continues the line
of thought of iterative process models by regarding soft-
ware development as a process iteratively converging busi-
ness goals and technology from both sides. This “goal-
driven process” is successfully applied in real-life commer-
cial software projects and has repeatedly contributed to low
cost but high quality software.

1 Convergence Vs. Refinement

The role of information technology for business pro-
cesses still seems to be underestimated. Software is no
longer only a means to an end but has itself an enabling role
and conversely changes business processes. Over the last
30 years, the rapidly increasing complexity of software sys-
tems along with the growing economic impact of large scale
software projects gave rise to disciplined software develop-
ment processes, such as the waterfall model [20], the spi-
ral model or the Rational Unified Process [12], more lately.
However, the recent emergence of agile [5] approaches pro-
moting quite different development strategies demonstrates
that software development processes are still far from hav-
ing reached a stable or even finished state and significant
improvements are still possible and needed.

1.1 Are Requirements Overrated?

In this paper, we put one specific aspect of software
development processes into question that is the prevalent
strong concentration on requirements. As to our experi-
ence, the wide-spread misconception and overemphasis of
requirements as an interface between business and software
units repeatably causes excessive costs and reduced quality
of the outcome. There are two main reasons for this:

1. Requirements are usually not identical with business
objectives because the selection of requirements on
the software part of the overall solution is usually al-
ready coined by the limited knowledge of the author
of the requirements document about technical possi-
bilities and their costs.
E. g. for persons with non-technical backgrounds it is
hard to understand that a certain behavior of a con-
trol on a graphical user interface might become exces-
sively expensive whereas an extensive set of statistical
analyzes might come almost for free on top of a rela-
tional database. Requirements documents written by
these persons tend to include unnecessary expensive
wishes while excluding technically simple features that
would provide substantial benefit.

2. The development of a software system corresponds to
a formalization of the supported business process. This
formalization usually reveals inconsistencies and gaps
within the current or target business process which in
turn must be compensated with changes to the business
process or the role of the software system.

The result of these two effects is usually a large number
of change requests during and after development entailing
time an cost overruns. We argue that this is one of the
main reasons, why user involvement stands in first place
of project success factors. Vice versa, lack of user input as
well as incomplete or changing requirements are top of the
list in project challenge factors in the CHAOS reports [1].



1.2 Goal-Driven Development

Instead of refining requirements down to an implemen-
tation we therefore recommend trying to find an optimal
mapping between business objectives and capabilities of
the technical platform in an iterative process. Figure 1 il-
lustrates this subtle difference that has far reaching conse-
quences on several roles and activities.

While established software processes (on the left) refine
requirements down to an implementation (hopefully itera-
tively to reduce risks), the Goal-driven Development Pro-
cess (right) suggested in this paper equally considers and
adjusts business goals and technical aspects to come to an
optimal solution corresponding to the current situation.

Figure 1. Top-Down versus Convergence

Outline The following section 2 explains the key princi-
ples of the goal-driven process proposed in this paper be-
fore we detail concrete activities of the goal-driven process
in section 3. Section 4 discusses our practical experiences
with the goal-driven process. This paper concludes with an
overview on related work in section 5 and a brief summary
in section 6.

2 Key Process Principles

Identifying goals before setting the requirements influ-
ences several core process principles. The following para-
graphs describe how goals can be identified and how this
affects top-down versus bottom-up orientation, team orga-
nization, roles and project size.

2.1 Collaborative Goal Identification

Our conception of business goals is closely related to the
Goal-Question-Metric paradigm [3]. A top-level goal is de-
fined as an informal description of what a stakeholder wants
to change or improve in his business environment. Sample
goals are: “increasing our knowledge about items on stock”
or “increasing the cost efficiency of marketing events”. In
contrast to this, invalid goals are “the system should pro-
vide a listing of all items in stock in foo bar format . . . ”.
As shown in figure 2 every goal may have one ore more
subgoals.

A set of questions is linked to every goal, which charac-
terizes the way how software will be tested against defined
goals after an iteration. A goal is attained, if every ques-
tion of the goal is answered positively and all its subgoals
are attained. Artifacts (such as requirement specifications,
documents, source code etc.) can be assigned to leafs of the
goal tree.

Stakeholders and contractors have to collaborate closely
to work out goals so that the stakeholders know what is fea-
sible and contracts gain a deep understanding of the busi-
ness processes respectively. While goal definition is top-
down driven, deciding, if a goal is feasible is bottom-up
oriented. In other words, the collaborative identification of
goals brings knowledge of users and software developers
together.

2.2 Top-Down and Bottom-Up Conver-
gence

Most established processes refine requirements top-
down to the implementation. The main advantage of top-
down orientation is, that it allows a horizontal team organi-
zation.

In contrast, bottom-up approaches try to provide gen-
eralized and therefore highly flexible and reusable compo-



Figure 2. Goals and subgoals



nents or services. In an environment of constant change and
evolution, the bottom-up design approach produces systems
that provide superior satisfaction to users compared to top-
down developed ones [14, 18].

In the GDP the collaborative identification of goals al-
lows to combine top-down with bottom-up aspects.

We call this top-down thinking and bottom-up acting. As
a result of a consequent top-down and bottom-up conver-
gence a software developer is forced to maintain all arti-
facts appendant to a specific goal entailing a vertical team
organization.

2.3 Vertical Team Organization

In contrast to horizontally organized project teams,
where programmers implement the solution specified by
the modeling team, the vertical organization implied by the
GDP requires skilled and qualified generalists.

Every software developer has to be creative in order to
find the best technical solutions corresponding to a high
level business goal but is also responsible for delivering the
implementation, because, again it is to expect that goals and
subgoals need to be revised bottom-up according to knowl-
edge gained during implementation.

Obviously, a horizontal organization is often chosen in
real life software projects, since many organizations try
to decrease overall development time by increasing the
number of people working on a software project though
this clearly disregards software engineering literature [11].
However, providing specific positions that only require a
narrow qualification, such as full-time modelers, greatly fa-
cilitates over staffing software projects. As to our expe-
rience a slim vertical project organization is by far more
productive than a horizontally organized project with nu-
merous specialists and communication interfaces between
them. Table 1 summarizes some important differences be-
tween a vertical and horizontal team organization.

The Unified Process is very clear about the fact that in-
dividual developers can and should take multiple roles on a
project. Unfortunately, this advice still seems to fall on deaf
ears within many organizations. In reality organizations
tend to fill each role, such as requirements specifier, system
analyst, user-interface designer, and database designer, with
different people. The resulting communication overhead as
well as emerging conflicts increase development time and
costs dramatically.

2.4 Roles and People

Because of its vertical organization the GDP requires
skilled generalists with the ability to fulfill many roles of
the process. The GDP distinguishes the following key roles.

Programmers It is well known that the best program-
mers are up to a thousand times more productive than the
worst, but the worst outnumber the best by a similar margin
[6, 10]. Therefore, the programmers are the most impor-
tant and therefore most expensive experts. They make the
preliminary design and are responsible for top-down and
bottom-up convergence. They have the main influence on
delivering software in time and budget.

Business Analyst Business analysts are important to un-
derstand the stakeholders’ business processes. The busi-
ness analyst collaborates with the programmers during goal
identification and later-on during testing. The business an-
alyst should have a deep understanding of the stakeholders’
business domain.

Software Architects The software architect’s role [9] is
closely connected to the programmers. In contrast to a pro-
grammer who focuses on one specific goal, the software ar-
chitect keeps an eye on the whole project.

Project Manager The primary task of a project manager
is to organize the project by assigning resources, keeping
track of time and effort, and creating a productive environ-
ment for the project team.

Requirement Engineer To the extent of our experience,
the role of requirement engineers and designers is often
vastly overestimated. If once only job is to produce models,
then there will be a strong tendency to over model things,
as naturally everyone wants to do a good job.

People Once again, without any doubt the three most im-
portant ingredients to achieve efficiency and productivity in
software projects are skilled, qualified, and motivated peo-
ple. Surely, this insight is not new for itself. Early work on
the importance of people for successful software projects
dates back to de Marcos’ Peopleware [8]. Agile processes
such as XP and others [5, 4, 2] also focus on individual skills
and communication. Practices such as pair programming
aim at increasing the skills of individuals within the team,
too. Collective code ownership and refactoring practices
are further examples of how agile methods try to assign re-
sponsibility while requiring and increasing skills. As Grady
Booch said, People are more important than processes [7]. The
GDP follows this insight through vertical team organization
and planning only a few different roles.

2.5 Minimizing Project Size

Another commonly known key to success in large project
is to minimize project size in all aspects. Minimizing



Vertical Team Organization Horizontal Team Organization

Few but highly qualified staff needed Low qualified staff can be used

Low communication overhead Staff is exchangeable

Everyone has to be familiar with (sub-)goals to
which he is assigned

Many team members do not know any business
objectives

Parallelization is simple to gain Parallelization limited due to sequential order of
activities

High motivation and strong identification with re-
sult

Lower motivation due to reduced responsibility for
overall result

Table 1. Vertical versus horizontal team organization

project size does not only mean to limit the number of goals
and software artifacts like documents, requirement specifi-
cations, models, etc. but also to limit the number of staff, to
avoid mutual waiting (e.g requirements must be defined be-
fore implementation in established processes) and the size
of the code. We know from experience that by conse-
quently choosing a simple solution, the development time
and the number of lines of code can both be reduced by
about 50% compared to the application of flexible frame-
works that might eventually become useful one time in the
future.

Minimizing size is the simple most effective measure to
increase maintainability and changeability of the system to
new and changing business processes in the future. Note,
that business processes are the most likely factor to change
over the time [17]. Changes of the database system or
the technical environment a rather rare and unpredictable
so that highly sophisticated complicated frameworks can
hardly be justified.

3 Goal-Driven Activities

Figure 3 depicts the core activities of the GDP and shows
how their organization in iterations.

Every iteration starts with the identification of business
goals and their priorities and ends with a running version
of the software system corresponding to the selected goals.
While incremental development of the software system is
also done in other processes, we extend the scope of itera-
tion to include a discussion of business objectives after each
iteration, because we frequently experience that the busi-
ness objectives themselves mature with the availability of
usable implementation.

3.1 Goal Identification

The definition of goals is done in small groups of at
most 5 people consisting of stakeholders and/or business
analysts, and programmers. The stakeholders or business
analyst have the responsibility to explain their goals to the
programmers without taking any technical aspects of a pos-
sible solution into account. The responsibility of the pro-
grammer is threefold. First, they have to keep the business
people’ attention focused on business objectives instead of
technology. Second, they have to offer ideas on what could
be done with information technology to achieve these goals.
Third, they have to inform the business side on the different
costs of possible alternatives to allow prioritization of goals.

3.2 Vertical Distribution of Tasks

Based on the priorities of goals and individual skills of
programmers, selected goals are assigned to groups of at
most 4 programmers. Depending on the project one pro-
grammer may become associated with several goals vice
versa. From there on, every programmer team decides for
itself within a given boundary what (product) will be built
how (activity), by whom and when.

3.3 Implementation and Testing

Implementation and testing are the most important pro-
cess disciplines and receive the greatest amount of time be-
cause implementation and testing are the only activities that
directly affect product quality. In simple words, if the soft-
ware system is well implemented and corresponds to the
business objectives, the project will succeed!

The GDP distinguishes between implementation-driven
and goal-driven tests. Implementation-driven tests are done
by the programmer permanently during implementation.



Figure 3. GDP iteration

This includes writing and executing test cases as well as
manual testing. Goal-driven tests are executed at the end of
each iteration and compare the actual implementation with
the questions formulated during goal identification. Note,
that a lack of accordance, might indicate a defect in the im-
plementation as in conventional testing but it might also in-
dicate a weakness in the definition of goals. Both possibili-
ties are taken into consideration.

4 Practical Experience

The process sketched in this paper has already proven its
benefits in commercial software projects1

One example is a large-scale project with a total of more
than 50 man-years, critical interest to the stakeholders and
a tough deadline. Here, the GDP contributed to a 30% cost
reduction comparing the development costs of 2005 with
2004. After the introduction of the GDP, the schedule of
the development effort was considered as reliable for the
first time since this project was initiated.

Previous to the introduction of the GDP, about thirty peo-
ple were involved and organized in a horizontal team struc-
ture; i. e. individuals were permanently allocated to single

1Due to non-disclosure agreements, no details that would allow to draw
conclusion about the site and purpose these projects can be published.

roles like software architect, designer, or developer. Many
of the team members were hired from a highly regarded
software service provider in Germany to increase the quali-
fication within the project team. After one year of work and
nearly about 1 million Euros were spent, hundreds of doc-
uments were written, but hardly any software implemented.
As a consequence the project was canceled and because of
its importance restarted with the GDP and a reduced team
size of 8 programmers and 2 business analysts. Within five
months 200000 lines of code were written, tested and about
100 change requests were successfully built into the system.

The stakeholders now feel, that the resulting software
improves their business processes and are highly satisfied.
As part of this success, the stakeholders have decided to
proceed with the GDP.

5 Related Work

The work described in this paper has obviously a strong
relationship with process models such as the waterfall
model [20], the V-Model2[16], or object-oriented process
models like the rational unified process [13]. Statements
such as the need for skilled personnel, minimizing project
size and delivering early and often can also be found in agile

2Standard used in German government projects



methods [2] like Scrum [19] or XP [4].
However, there is at least one significant difference be-

tween the GDP described in this paper and other process
models. Virtually all other processes (even agile methods)
focus on requirements and try to map them top-down to
an implementation. The GDP regards goals instead of re-
quirements and combines them with technical capabilities,
which leads to an integrated top-down and bottom-up ap-
proach that yields superior benefit for the user. Organi-
zational changes, such as vertical team organization, are a
consequence of this goal-orientation.

The idea to incorporate a bottom-up orientation into the
development process is further influenced and supported
by work on software evolution [15]. For example, the re-
port about the successful long-term development and use
of McIDAS [14] comes to the conclusions that a) “require-
ments are not of paramount importance, user satisfaction
is” and b) that long-term success was not possible without a
stubborn bottom-up approach. [18] gives further examples
for the advantages of bottom-up orientation.

6 Summary

This paper introduced the basics of an iterative and in-
cremental software development process, called the goal-
driven development process (GDP). Clearly, the GDP is
no revolution and has many similarities with other process
models. However, the subtle differences of the GDP have
various consequences and can make a big difference for the
output of the process.

The two key contributions of the GDP are its concentra-
tion on business goals instead of requirements and the ex-
plicit integration of a bottom-up part. The combination of
this two principles reflects the mutual dependency between
business processes and information technology since infor-
mation technology is not only a means to an end but it also
enables new business processes. Practical experiences show
that the GDP is capable of delivering high quality software
at low cost.

As to our experience, the main challenge but also one
of the main benefits coming along with the GDP is keep-
ing the user of software focused on business aspects instead
of technology. Currently, business people are still putting an
amazingly strong focus on technical aspects in their require-
ments specifications, such as requiring the use of certain
languages, frameworks, architectures and standard prod-
ucts. In fact, technology seems to be the only motivation
for many projects, such as a migration to a web-based so-
lution! What the GDP is trying to suggest is that business
users would be much better off with staying focused on their
business expertise and collaborating with skilled technical
people for the implementation of their goals.

References

[1] The chaos report. Technical report, Standish Group, 1994.
[2] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile

software development methods. Review and Analysis VTT
Publication 478, VTT Electronics, 2002.

[3] V. R. Basili, G. Caldiera, and K. D. Rombach. Goal question
metric paradigm. In J. J. Marciniak, editor, Encyclopedia of
Software Engineering, volume 1, pages 527–532. John Wiley
& Sons, 1994.

[4] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2000.

[5] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas.
Manifesto for agile software development. www, 2001.
http://agilemanifesto.org/.

[6] B. Boehm. Software Engineering Economics. Prentice-Hall,
1981.

[7] G. Booch. Object Solutions: Managing the Object-oriented
Project. Addison-Wesley, 1996.

[8] T. DeMarco and T. Lister. Peopleware: productive projects
and teams. Dorset House, New York, 1987.

[9] M. Fowler. Who needs an architect? IEEE Software,
20(5):11–13, Sept. 2003.

[10] J. Greenfield. The case for software factories. Microsoft
Architects Journal, (3), July 2004.

[11] F. P. B. jr. The Mythical Man-Month. Addison Wesley, 1995.
[12] P. Kruchten. The Rational Unified Process: An Introduction,

Second Edition. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2000.

[13] C. Larman, P. Kruchten, and K. Bittner. How to fail with
the rational unified process: Seven steps to pain and suf-
fering. Technical report, Valtech Technologies and Rational
Software, 2001.

[14] M. A. Lazzara, J. Benson, R. Fox, D. Laitsch, J. Rueden,
D. Santek, D. Wade, and J. T. Y. T. Whittaker. Man computer
interactive data access system (mcidas): 25 years of interac-
tive processing. Bull. Amer. Meteor. Soc, jan 1999.

[15] M. Lehman and J. F. Ramil. Rules and tools for software
evolution planning and management. Annals of Software En-
gineering, 2001.

[16] M. Meisinger, A. Rausch, M. Deubler, M. Gnatz, U. Ham-
merschall, I. Küffer, and S. Vogel. Das V Modell 200x – ein
modulares Vorgehensmodell. In R. Kneuper, R. Petrasch, and
M. Wiemers, editors, 11. Workshop der Fachgruppe WI-VM
der Gesellschaft für Informatik e.V. (GI) zur Akzeptanz von
Vorgehensmodellen. Shaker Verlag, 2004.

[17] T. Panas, W. Löwe, and U. As̈mann. Towards the unified
recovery architecture for reverse engineering. In B. Al-Ani,
H. R. Arabnia, and Y. Mun, editors, Proc. of the Intern. Conf.
on Software Engineering and Practice SERP’03, volume 1,
pages 854–860, Las Vegas, NV, June 2003. CSREA Press.

[18] M. Pizka and A. Bauer. A brief top-down and bottom-up phi-
losophy on software evolution. In Proc. of the Int. Workshop
on Principles of Software Evolution (IWPSE), Kyoto, Japan,
Sept. 2004. IEEE Computer Society.

[19] L. Rising and N. S. Janoff. The scrum software development
process for small teams. IEEE Softw., 17(4):26–32, 2000.

[20] W. W. Royce. Managing the development of large software
systems. In IEEE Wescon, pages 1–9, 1970.


