

A Practical Guide to
Relational Database
Design

ONE CHAPTER SAMPLE .pdf

A Practical Guide to
Relational Database
Design

From Business Analysis
Via Data Modelling
To Physical Design

ONE CHAPTER SAMPLE .pdf

Peter Domanski & Philip Irvine

Diaxon Ltd
Leominster, Herefordshire, UK

Published by

Diaxon Ltd. (formally Domanski-Irvine Book Company) , Coldwell Farm, Stretfordbury,
Leominster, Herefordshire, HR6 0QL

Email enquiries@diaxon.com

Domanski, Peter
Irvine, Philip

Title:

A Practical Guide to Relational Database Design
(From Business Analysis, Via Data Modelling, To Physical Design)

Second Edition

ISBN 0 9526043 1 0

Copyright © 2000 Domanski-Irvine Book Company

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior permission of Diaxon Ltd
(formally The Domanski-Irvine Book Company.)

(2.2)

Typeset, printed and bound by Domanski-Irvine Book Company, Coldwell Farm.
Stretfordbury, Leominster.

NOTICE:

If this notice appears, this book has been reproduced from an Adobe .pdf file sourced from
www.diaxon.com. Diaxon Ltd. is happy for sections of this document to be quoted with due
acknowledgement to the authors. However, please respect the copyright laws. If you wish
to reproduce parts of this document for anything other than personal use, permission
should be sought from the publishers beforehand. Contact enquiries@diaxon.com

TABLE OF CONTENTS

(NB headings in red are for sections available when you purchase the password to read the
full pdf)

Preface 11

1 Introduction

The Importance of Good Design

A Brief History of Database Systems

Bespoke Systems: Why the Need?

2 RDBMS-The Concept

The Fundamental Components of an Integrated Database

The Environment

The Database Engine

Accessing and Manipulating Data

Queries, Reports and other Output

Screen Access for Data Entry, Maintenance and Query

Menus

Housekeeping and other Utilities

 Introducing the RDBMS Method
The Main Components of a Relational Database are:
The Primary Key and the Uniqueness of a Row
Candidate Keys
Relationships Formed Between Tables
The Foreign Key (FK)
Using SQL, Joining Tables

The Graphical Approach to Queries

3 The Enterprise Model Error! Bookmark not defined.

The Holistic View

The Scope of Enterprise Models

Overview of the Components
The Case for using the Enterprise Approach

Modelling Functions and Processes
Introduction
Functions
Processes
Elemental Processes
Building Functional Decomposition Diagram (FDD)
Identifying Logical Functions and Processes

Data Flow Modelling and the Data Flow Diagram (DFD)
Introduction
Definitions
Use of DFDs: Strengths and weaknesses

4 Data Modelling 13

Introduction to Data Modelling 13
The Logical Model: Entities, Attributes, Relationships & Keys. 13
Logical vs. Physical Models 14

Producing an Entity Relationship Diagram (ERD) 14
Definitions 15
Modelling Entities and Relationships 17
Identifying Entities 17
A Simple Case Study for Entity Modelling 18

More Information about Entities 20
Entity Naming & Conventions 20
What do we Need to Know About an Entity? 20

Attributes 21
Attribute Naming and Conventions 21
What Information do we Need to Know About an Attribute? 21
Attribute Format Types 21
Ranges and Validation 22
Look-up Lists 22
Optionality 22
Guide-lines for Attributes to Include in Entities 22
What Not to Include as Attributes 23

Domains 25
Why use Domains? 26

The Principles of Normalisation 27

Unique Identifiers (UIDs). The Role of the Primary Key 27
Choosing a Primary Key (PK) 28
Types of Primary Key 28
Another example of an Artificial Primary Key 29
Representing Primary Keys on the ERD 29
Further Advice on Creating a Primary Key 30
Selecting a Primary Key - A Decision Chart to help you select one 30
 Candidate or Alternative Keys (CK) 31
The Foreign Key (FK) 31

Relationships: Definitions 32
A relationship line carries with it three essential pieces of information: 33
Reading Relationship Lines 33

Relationships and Business Rules 34

Relationship Modelling 35

More about Recursive Relationships ('Pig’s Ears') 36

More Complex Relationships 38
Hierarchies Super-types and Sub-types 38
Modelling Super-types and Sub-types 38
‘Complex’ Relationships: Arcs 40
Rules for Exclusive Arcs 40

Some Common Modelling Solutions 40

Creating a Data Dictionary (DD) 42

5 Project Planning : Appreciating Life Cycle Methods

Project Planning

What is a Life Cycle Methodology?
Why use a methodology?

An Imaginary Project Plan for XYZ Engineering
Horses for Courses

The Phases of Design

Strategic Business Analysis
The Management Life Cycle
Detailed Analysis

Design
What are the main prerequisites for the design process?
Avoid Modelling the exceptions

Build Phase

Implementation Phase

Production Phase

Defining the Deliverables or Products
Strategy
Detailed Analysis

Information Gathering

Partnership with the Customer

6 Advanced Entity Modelling

Intersection Entities and Time

Recursive (Pig's Ear) Relationships
BOM Structure example:

Retaining Historical Data

Laying an Audit Trail

Grouping Entities

Convergent vs. Divergent Data Model

Simplifying for Performance
Simplifying for Flexibility
Simplifying for Future Changes

Designing Out Arcs

Advanced Sub-Types

Another Example of Designing out Arcs
But…. Beware of Over-simplification

Some Common Pitfalls: Logic Traps (Fan, Chasm)
Fan Trap
Chasm Trap
Advanced Connection Traps

Denormalisation
Relationship Denormalisation
Denormalising on Low Attribute
Denormalising on Low Volume
Denormalising on Low Functionality

Fringe Tables

Converting Legacy Structures
Representing Multi-Dimension Data
Field Overloading
Concatenated Attributes
Overlapping Data

Using Free Text to Handle Exceptions

Complicated Splits

Design Dilemmas
Single Table vs Multiple Tables
Sub-Types of Sub-Types

Arc vs. Sub-types
Generic vs Specific Entities
Separation vs Combination of Column/attribute components
Delete vs Archive
Null vs Not Null columns

Same Entity with Different Names

7 Getting Physical

Practical Considerations
Prerequisites
Tables and Columns
Conventions for Tables
Conventions for Columns

Differences Between ERD and Physical Models
Why should logical and physical models diverge?
1:1 Entity : Table Mapping
Dealing with Sub-Types
1) Single Table Solution
2) Multiple Table Solution
3) Exclusive Arc Solution

Dealing with Exclusive Arcs

Further Reasons for Physical Mapping to Diverge from ERD
Adding Intersection Tables
Splitting a Table by Attributes
Splitting Tables Vertically
Splitting Tables in Both Directions
Dangers of Diverging and Denormalising in Client/Server and Distributed Environments

Striving Towards the Data-Driven Approach.
A simple case
Designing 'Codes' or ‘Reference’ Tables

Views and their Place in the Database Designer's Armoury
Snapshots

Creating Indexes
Indexes and Database keys
Where Should Indexes be Applied?
How are indexes implemented?
Composite Indexes
Do Indexes have a Downside?
Do's and Don'ts
Avoiding Creeping Deterioration in Performance

Design Considerations for Legacy Systems
Incompatible Codes
Structured Codes
Data Structures Not Supported in the New System

Functions to Modules

Using Proprietary RDBMS Features
Constraints
Stored Procedures and Triggers

Checklist of Other Design Considerations

8 OLAP Databases and Data Warehouses

Differences between OLTP and OLAP Databases
OLAP Tools
Example of an OLAP style transformation

What is a Data Warehouse and why build one?
DW Terminology
What is a DataMart?
Warehouse-Specific Design Techniques
Star Schemas
Snowflakes and Storage Granularity
Drill-Down and Roll-up: Retrieval Granularity
Dicing and Slicing
Data Mining and Serendipity

Data Sources and Data Quality, Data Quality, Data Quality
Populating a Warehouse

Some Guidance for Selecting an OLAP Solution
Recent Developments
Conclusions

9 People and Organisations

Why is ‘Customer’ so vexing?
What is a Customer?
About Individuals
About Addresses
About Organisations
The Data Cloud Concept
Customer Reference vs. Customer Accounts
CRM Products

10 Using a CASE Tool

Pros and Cons
Pros
Cons

What will CASE do for your Project?

11 Database Security

Treating Data as Assets

Minimising the Risks
Reducing the Risks Due to Human Error
Avoiding Loss of Data Integrity
Avoiding Destruction of Data
Use of audit trails
Misuse of the database

12 Quality And Completeness Checking

Means of Checking for Accuracy and Completeness
Cross Referencing Entities with Functions
Other Object Cross Referencing
The Walkthrough (Peer Review)
The Use of Prototyping

Reviewing and Refining the Physical Model
Will the Physical Model Support the Enterprise Model?

Are We Delivering a Well Designed Database?

Database Design CheckList

13 Business Case Study

A Training System for XYZ Engineering Company
Background Information

Outline of the Analysis Phase to be Used For the Project
Summary of Strategic Interviews

The Business Model
 High Level FDD
DFD (Data Flow Diagram)
KPI (Key Performance Indicators)
First Cut ERD #1
Phased Plan

Summary of the Detailed Analysis
Further Improvements to Our First Cut Model
Second Cut Model #2
Further Improvements to our Second Cut model
Our generic approach begins to pay dividends

Entities and Attributes

Getting Physical with Training!

Application Design
Deriving the User Perspectives
Example Screen: Course Attendance Groups

GLOSSARY OF TERMS

Index 47

Preface

This book is aimed at people who have to build database applications in the real world and are
seeking sensible and detailed advice on how to tackle this notoriously difficult area of systems
design. As the title implies, it is a practical guide and is based upon the experience of the authors
who have worked on numerous projects spanning more years than we care to dwell on.

Help is at hand. Fortunately, most of the analysis and design phase of a database project can be
done without the use of any specialised tools, although there are products that will aid the larger
and more complex enterprises. The authors do not to use a computer at all in the initial stages of
analysis and design – it impedes progress!

Many people will have savoured that glorious moment of tearing open the shrink-wrapped carton
of the very latest ‘flavour-of-the-month’ RDBMS software and be filled with optimism and
anticipation. Many will also have experienced the disillusion and frustration, days or weeks later,
when they realise that the product that they have bought barely prepares them for the complexities
of the database design process. A poorly designed database is unforgiving and becomes
progressively harder to maintain and develop. The unwary and ill-equipped developer may soon
realise that specific skills are required to get it right.

Do we sound over pessimistic? Well, have you ever spent days, weeks or even months working on
an application only to find that you are spending most of your time revisiting earlier work and
making amendments to it rather than making real progress on new or original functionality? Have
you ever wished you could scrap it and start again and employ the wisdom of hindsight? Ever
wished you had spent more time on analysis and design before you started to build your
application?

These are our personal experiences from the past ….the present, and, unfortunately, no doubt, the
future. We openly admit to making mistakes and errors of judgement but, with each new
assignment, we hope that our skills are that much more refined and our ability to interpret the
requirement, that much more acute. The primary reasons for making mistakes are not usually a
lack of technical prowess but a lack of understanding or misinterpretation of the project’s business
requirements. This is the area of skill which needs to be most developed for database design – the
area which is often neglected or underestimated when embarking on a database project.

Our motivation for writing this book (now the second edition) was the dearth of information, in a
readily digestible form that came near to concentrating on the crux of the problem. Like many
others, we don’t have much time to sift through textbooks on theory to find the gems of practical
solutions for conundrums and problems that arise. What we would have greatly benefited from at
the beginning, was more practical information on tried and tested methods.

We hope that others, at the beginning of the trail, might benefit from our experiences gained from
designing and implementing databases over the past decade or so. We will not be prescriptive,
provide ‘wizards’ or ‘painting-by-numbers’ methods on how to design database applications.
However, we have noted the common factors that recur repeatedly and distilled various sources of
information to provide more of a ‘cookbook’. The methods and techniques we describe are not an
infallible recipe for success but, we hope, give the reader sound advice and point the way to
effective database design.

Conventions Used
Throughout the book, information boxes are used to highlight points worthy of note, of
significance or importance. The convention used is:

Key Points The most important points made in a chapter
Notes Items of interest or warning
Tips Advice, short-cuts, best action as experienced in practice

Please note that our web site www.diaxon.com contains useful tips and links in the areas of database and
applications design.

Peter Domanski
Philip Irvine
August 2005

4 Data Modelling

In this chapter we discuss the techniques used at the very heart of database design. The aim here is
to determine the content and structure of the data storage requirement, which are needed to support
the functions of our application.

Introduction to Data Modelling

The Logical Model: Entities, Attributes, Relationships & Keys.
Data modelling is used to identify and order real-life information into a coherent and formalised
data structure. The techniques we use apply the following concepts:

· Methods = Modelling
· Analysis = Understanding
· Feedback = Communication
· Control = Decision Making

Data Modelling is the principal means by which we analyse and determine the information content
and structure of our proposed application, and it is this area that we shall be concentrating on most.
Unless we model the data content comprehensively, for anything but the most simple of
applications, we will not have an accurate view of the information structures needed to construct a
physical database. The purpose of the model is, therefore, to gain a complete and demonstrable
understanding of our data requirements. We achieve this by expressing our findings as accurately
as possible in the form of a stylised map called an Entity Relationship Diagram (ERD).
Accompanying the ERD will be a detailed description of the information represented therein.
A data model, when complete, should feature the following:

· The important informational objects (entities) and their composition (attributes)
· The relationships between objects
· The scope and limits of an application's data requirements
· Data volumes, constraints, validation rules etc.

The objective is to produce a Logical model, so named as it describes in pure terms, the actual data
required to fulfil the functions of our project. It may reflect the current information used in an

TERRITORY

SERVICE
CLASS

PRICE
CLASS

PERMITTED
PRICE

ORDER STATUSREGION

SALES ORDERORDER ORIGINATOR ORDER LINE

EMPLOYEE
TYPE

CUSTOMER

AUTHORISED
DEALER

PRODUCT SERVICE
DETAIL

EMPLOYEE

AGENT

includes
assigned t

assigned t
restricted to

classed by
classes

classed by
classes

priced by

prices

classed as

classes

located in

locates

charged on

charged in

sold on

sold in
part of

made of

is typed by

typed by

headed by

detail of

placed by

places

created by

creates

employs

employed by

The ERD

organisation, or existing application, or the projected requirements for something new. Although,
as we shall see, the logical model uses many of the concepts found in an RDBMS implementation,
it is quite distinct from a Physical model, which by contrast, is a design for implementation
comprising physical database tables and associated objects.

Logical vs. Physical Models
A logical model, although formal, is free from practical considerations imposed by the proprietary
software in which a database is implemented. It is, therefore, not software specific and not bound
by any product-related constraints, restrictions or special features. A physical model is (or should
be) a derivation of a logical model. It encompasses the software constraints, restrictions and
features required for an implementation to support the functional requirements of our application.
In reality, the physical model (table map) will vary from being very similar to the logical model
through to being quite different - depending upon the RDBMS product and practical design
considerations.

 Producing an Entity Relationship Diagram (ERD)
Entity modelling is the basis of data modelling. This method is employed to aid the construction of
the logical model and it is also the single most useful technique in database design and we strongly
recommend that the reader masters the basics of this indispensable technique. It should become as
familiar to the database designer as a circuit diagram is to an electronics engineer. The technique,
which can be used irrespective of the intended database product, is particularly complimentary to
RDBMS methodology because of the similarity of approach in the way data are organised. We
would advocate that effective entity modelling is essential to successful RDBMS database design,
as it is performed at the conceptual stage when we establish the informational requirements and
determine an organisational framework for the data. If our understanding of the logical structureor
application is flawed - so will be the structure of the database, which we are constructing.

As we have seen in the previous chapter, there are a number of very good reasons for Entity
Modelling and producing an Entity Relationship Diagram (ERD = Data Model). A good ERD has
intrinsic value to an organisation in its own right and it is usually considered to be a 'deliverable' in
the early stages of a project. An accurate logical model can be reusable and is likely to persist
beyond the life of a physical system. Here are some good reasons for doing one:

· It allows the analyst or designer to quickly build up a high level picture of the important data

objects and their interrelationships that already exist (or will be required) within an enterprise
or database application.

· An Entity model, when presented as an ERD, should be easy to interpret and can, after only

limited explanation, be readily understood by the business/client community.

· It can be presented to the business /client who can verify that we have considered, and

understood the importance of, contents of, and relationships between the significant data
components.

Tip: When embarking on a data modelling exercise, it is a wise thing to put knowledge of the
physical implementation process aside. We will be thinking on a higher plane. The time for
the physical mapping of a pure data model to an RDBMS comes much later. Our first
requirement is to thoroughly understand the information content of our project.

 Modelling Definitions

· Along with the itemised data content of each entity, we will have identified the primary and
foreign keys associated with the data, prior to the physical design.

· It forces compliance with existing 'Business rules' concerning data, and will doubtless generate

a few more, which had perhaps not been formally considered, as relationships are identified
between different groups of data.

· It can be used as a 'testbed' which we can verify for completeness and accuracy of structure by

ensuring that it can support each of the required component functions and processes.

· Having produced a logical map of the data structures the technique enables us to design ‘out’

duplications and other discrepancies in existing structures.

· The data model is developed independently of the eventual database tool and will outlive the

current technology. It is intended to be a conceptual map of data organisation and, as such, may
have great intrinsic value to a business in its own right (see Corporate Model)

· For most applications, the physical model will map closely the entity model and, thus, much of

the hard work designing the physical model will have been done at the data modelling stage.

Definitions
Before we progress any further, it is worthwhile defining at the outset, some of the key objects,
which we shall be working.

Entity

A uniquely identifiable information object, real or conceptual, which is of distinct and
enduring significance to the enterprise. Examples of entities are SALESMAN, SALES
ORDER, PRODUCT, VEHICLE, CUSTOMER, LOCATION and WORK PLAN. An
entity is characterised by constituent informational elements known as attributes, which
together identify and describe any occurrence of the entity.

Attribute
A characteristic or element of information which is used to identify, classify, quantify or
describe any occurrence (instance) of an entity. Examples: Surname, Date of Birth,
Product Code, and Quantity Sold. Using our Cars example, 'VEHICLE' is the name of an
entity, Colour might be one of its attributes. Note that attributes must be unique within the
same entity but may be repeated in different entities.

Domain

A named structure used to specify an attribute or group of attributes that recur within the
database. It provides the specification for format, meaning, validation, etc.

Instance

A single occurrence of an entity (it corresponds to a record on a file or database table). If
the SALESMAN entity contained the attribute 'First Name' then examples of instances
might be 'Michael', 'Jane', 'Ahmed' etc.

Relationship

Note: If an entity model or component entity models cover the entire information spectrum of
an organisation it is often called a Corporate model.

The ERD

A formal description of association between two entities (or instances of the same entity).
Examples are:

· A SALESMAN may place many SALES ORDERs.
· A SALES ORDER must be placed by a SALESMAN.
· A SALES ORDER may contain a number of PRODUCTs

In these examples, both SALESMAN and PRODUCT are related with SALES ORDER. There is
no restriction on how many relationships an entity may have with other entities.

Entity Relationship Diagram or ERD

The ERD is a graphical representation of Entities and their relationships in a formal style.
It can represent a data map for an individual application or group of applications. If it
encompasses an organisation's entire data requirement it can be considered to be a
Corporate Data Model.

Data Dictionary
This is a document, store or software tool (CASE) in which the Entity, Attribute and
Relationship definitions and characteristics are held. It should be the definitive authority
on all aspects of the Entity Model.

Examples of Entities, their constituent attributes and instances:

1) Entity EMPLOYEE
Attributes:
Staff No. First Name Surname Date of Birth Nationality

Instances:
1082 Michael Jones 10 March 1972 Canadian
1060 Emma Duval 13 July 1968 British
1145 Clive Samson 22 March 1967 French
2103 John Pickering 17 April 1952 British

2) Entity PRODUCT
Attributes:

Product Code Product Name Description
Instances:

P1236 Angle Bracket - 60mm 60mm Mild Steel Angle Bracket, 6 holes
P1237 Angle Bracket - 90mm 90mm Mild Steel Angle Bracket, 8 holes
P2201 Whitworth 3x2 3" Wood Screw size 2 .Whitworth thread.

3) Entity ORDER
Attributes:

Order No. Order Date Customer Ref. Staff Id. Delivery Date
Instances:

34567 10 OCT 94 HJ- 234567 4356 13 OCT 94
34568 10 OCT 94 BL-233456 4356 20 OCT 94
34569 10 OCT 94 C1-233112 3211 11 OCT 94

 Modelling Relationships

Modelling Entities and Relationships
We begin the modelling process after, and sometimes during, the identification of the principal
entities which our organisation (or application) requires to store in order to support its intended
processing functions. The model begins with a blank piece of paper and a pencil. Entities are
usually drawn as "soft" boxes on paper (or IE/CASE tool); by ‘soft’ we mean a rectangle with
rounded corners.
Relationships between entities are indicated explicitly by drawing lines between related boxes
(entities). These lines are stylised and are annotated to describe the nature of the relationships
between them. We begin to construct our ERD by drawing our entity boxes and indicating
relationships between them with connecting lines:

Note: There are various diagram notations in use – the one demonstrated here is the one we
recommend.

The above diagram illustrates what we might see on part of an ERD. It describes two entities:
DOCTOR and PATIENT and the relationship between them. The joining line indicates that they
are associated and the meaning of their association is described by the relationship names assigned
to them. Note that the nature of the relationship line is different at each end. We shall explore the
full meaning of this notation presently but suffice to say that the 'Crowsfoot' notation used on the
PATIENT end indicates a 'many' relationship whilst the unadorned end attached to DOCTOR
implies only 'one'. The implied meaning of this diagram is that "A doctor may minister to many
patients and a patient must only be registered with one Doctor". These descriptions are termed
Business Rules with which the relationship line complies.

Identifying Entities
Identifying the important entities and their attributes is akin to embarking on a voyage of
discovery. Often we will be seeking out structures from a mass of disorganised data originating
from diverse sources. After some practice and experience, however, identifying entities becomes
virtually an intuitive process and the analyst can usually spot them readily. Describing just how to
identify them to the inexperienced modeller is, however, not such an easy matter. It is easier to
demonstrate this process by reference to specific examples, of which the reader will find ample
material in the case study in Chapter 13. Basically, the process is as follows: The analyst gathers as
much information about an application or business area as is necessary to be in a position to feel
confident that the essential ingredients of the project are at hand. The information will come from
a variety of sources, from documents, interviews with management and users, file layouts, pro-
formae etc. We start by making a list of likely candidates for entities from our material. Our
provisional entities will take on a familiar form, they generally have nouns for names and the
attributes that characterise them are generally descriptive and qualifying. For example:

PATIENT DOCTOR
registered with

ministers to

Soft box signifies entity

Relationship indicator A
Relationship name B

Relationship indicator BRelationship name AEntity A

Entity B

A Simple Data Model

Entity Name: Nouns: e.g. EMPLOYEE, PRODUCT, CUSTOMER, JOURNEY
Attributes: Type, Description, Start Date, End Date, specific value

Provisionally identified entities will have at least two attributes, be capable of clear definition and
be capable of being identified as unique instances (occurrences).

 A Simple Case Study for Entity Modelling
It is unlikely that we will get the structure of our model correct at the first attempt, especially if the
application is complex and we are building up our ‘rich picture’. This is normally the case and it
does not matter because we shall go through a process of reiteration and refinement until we are
satisfied that we have arrived at a good conceptual working model of the major data objects and
their interrelationships. Traditionally, data models are constructed on the backs of envelopes and
other scraps of paper but CASE tools are gradually replacing these. The process does involve quite
considerable drawing and redrawing as the model is worked and reworked, so the use of one or
more erasable 'White Boards' is a good idea if you want to save a few trees! One useful technique
is to write entity names on sticky message pads, then the entities can be posted onto a board or
sheet of paper and repositioned as the model takes shape.
As an introduction to the subject, let us look at a 'simple' Sales example. Our project is to produce
a data model for the XYZ Engineering Company who require a new Sales and Invoicing System.
We are told that Sales persons take orders from customers and raise order documents for products
that are produced by the company.
Immediately, we can identify the principal objects (nouns) which are strong candidates for entities:
"Sales persons take orders from customers and raise order documents for products that are held in
stock".
At this stage we have no information regarding attributes, though this does not prevent us from
modelling the information at hand:
We might start by modelling part of the Sales model thus (on the back of an envelope)

This diagram is used to show the relationships between the entities SALESMAN, SALES
ORDER and PRODUCT. Note how SALES ORDER sits between the other two objects, i.e. it

Tip: Start by making a list of candidate Entities (Customer, Employee, Product etc.) Initially,
there is no need to fill in all the detail. We are after a first cut logical model (#1) which will
contain a high level framework. Once we have what we think are the major entities, we can
begin to work out their relationships and interdependencies. ☺You should be able to enjoy
this creative side of the design process, safe in the knowledge that it costs nothing to
experiment and make changes at this stage in a project.

 Modelling Relationships

has a relationship structure with two other entities and an instance (occurrence) of it cannot exist
separately without relationships to each of the other two entities.

We will explain the notation a little further on, but basically what we are demonstrating here is that
we have identified three entities, which are named in the three soft boxes. The connecting lines tell
us that a SALESMAN can raise many SALES ORDERs, and a PRODUCT can appear on many
SALES ORDERs. A good start, and accurate. What we have modelled is indisputable ...but if we
delve a little more deeply into the subject we might come up with a more detailed and realistic
model. First let us look more carefully at the entities:

SALESMAN (Salesperson)
Our company XYZ Machine Supplies Ltd. employs a Salesman (or saleswoman); he works in the
Sales Department. We know, however, that there are also other types of employee who work in
other departments who we will have to consider when we look at raising invoices, audit control
etc. We should, perhaps, consider changing our "Salesman" entity into one, which is a little less
job specific.

PRODUCT
XYZ Ltd. sells complete engines and motors as well as replacement parts. We should consider
some form of product part hierarchy that recognises that products may be parts of products.

SALES ORDER
By looking at the order form we see that an order document comprises a header section containing
customer information, order dates and delivery details etc. It also contains an itemised section,
which has a variable number of lines, each of which contains information about a single product.
This information includes product code, quantity and price etc. We recognise a Master - Detail
relationship here between an Order Header and its component Order Line (which is product
specific).

Let us now refine our original model:

This new structure represents a development of the previous high level model. Here we recognise
that a salesman is really just a type of employee who works in a particular department. A sales
order really has two components: general order information (Customer, Address, Account etc.) and
lines which are product related. Saleable Products might be assemblies of components (e.g. an
engine) or individual components. Therefore, by renaming the Product entity to 'PART' we are
giving ourselves greater flexibility. Do not worry too much about the notation used here - come
back to it after reading the next section.

A Simple Data Model

The model here is now more explicit. We show that we now understand the nature of an order and
the fact that the salesman (or saleswoman), is really just a type of employee. Our original
conception of product was over simplified. The model is still not complete, particularly in the
Product/Part area. For example, XYZ may also service machinery based upon a raised order. How
would service charges fit in? Also there is nothing to distinguish Salesmen from other types of
employees - if this is significant to the business. We could, however, just about build an order
database from the information supplied here. The model is reasonably generalised; we could
connect the EMPLOYEE entity to other structures (service tasks, skills, employment record etc.)
without having to model separate job categories. We could also incorporate a parts / stock
inventory without too much difficulty.

 More Information about Entities

 Entity Naming & Conventions
There are no hard and fast rules about naming entities, however, it helps if you adopt and adhere to
a convention such as the following:

· An entity name should, where possible, be a noun and take the singular form because when we

look at relationships between entities, we express our analysis on the basis of a single instance
(occurrence) avoiding ambiguity and making reading an ERD simpler.

· Entity names must be unique. The uniqueness should be at least across the application and
across your organisation if possible, this will again avoid possible confusion and ambiguity.

· Names should be clear and concise. Use full words rather than abbreviations unless they are of a
technical nature or 'culturally' significant to the organisation.

· Remember entities are business objects not database tables. We do not need to scrimp on bits
and bytes by codifying as in the 'old days' of data processing. Non-ambiguity, specific
definitions and clarity are the watchwords.

· It does not matter whether we use UPPER, lower or mixed case for our naming convention as
long as there is consistency.

 What do we Need to Know About an Entity?
a) Description Each entity should be accompanied by a precise and unambiguous definition which
describes its raison d’être. This should not be taken lightly as misunderstanding the precise scope
and purpose of an entity is very common. For example, what do we mean by an entity called
Employee? Does it include: executives, temporary staff, agents (on commission), sub-contracted
workers, agency staff, and students, work experience staff etc.? This may not be significant
perhaps in respect of order taking but, taken in a personnel context, there may be significant
differences for matters of pensions, benefits, salaries, overtime etc.
The precise definition of the EMPLOYEE entity must therefore provoke some thought. We might
settle for:
"Any person recognised as performing regular duties at the behest of XYZ Engineering Ltd."
This is obviously a catchall definition but it is unambiguous. Note that by specifying the company
we are specifically excluding parent and child companies - should they exist. Because we have
applied some thought to the definition, we are aware that there may be some problems to solve in
the personnel area, these can be addressed when we add the attributes and model relationships in
the ERD.

Note: There is rarely just a single solution to a data modelling problem and different modellers
may construct different solutions and hence differently shaped ERDs. This said, we would
expect there to be consensus over the main entities and their attributes.

 Modelling Relationships

b) Primary Key: Our entities will require, at the very least, a PK (= UID) whose selection will be
considered more fully in a later section but suffice to say that one or more attributes (singly or in
combination) will be employed for this task. For example, in the entity PART, a Part Number
would be the obvious choice for the primary key.

Attributes

Attribute Naming and Conventions
Again there are only a few rules to consider:
· Attribute names should be unique within an entity. They need not, however, be unique across

entities. For example, an attribute called "Description" may occur repeatedly in different
entities. Note, however, that their meaning and format will not necessarily be the same across
all entities*.

· Use proper words instead of abbreviations and acronyms, unless they are accepted technical
terms or well established in the Business' culture.

· As with naming entities, the text style of an attribute name does not matter as long as there is
consistency. In this book we use mixed case attribute names. There is no need to use hyphens
(-) or underscores (_) between words. We are not writing COBOL.

* But see ‘Domains’

 What Information do we Need to Know About an Attribute?

· Its assigned name (as discussed above)
· A concise definition
· Any synonyms that it might be given for reasons of regional variation or common usage. For

example Car : Auto, Agent : Commisionary, Goods : Products, Account Holder : Customer,
Pupil : Student

· Its Optionality (is a value for it mandatory or optional)
· Its type and format (alphanumeric, date, etc.)

 Attribute Format Types
As the attributes 'emerge' it is important that we record their format type and other characteristics.
These will be needed in the physical model. The basic ones are:

Type Contents
Character (Char) Alphanumeric characters a-z (in upper or lower case), 0-9 plus any

other ASCII characters £$%&+-* etc.
Number Real or Integer numbers
Integer (Int) Only Integer numbers (whole numbers)
Date (and optionally time) Date (and time) format
Special Images, sounds etc.

Examples:

Attribute Type/Length Meaning
Description Char(36) Up to 36 alphanumeric characters
Price Number(10) Up to 10 numerical characters including decimal point.

(We might also specify a format e.g. 99999.9999)
Order Sequence Int(8) Integer number to 8 digits

Attribute Definitions

 Ranges and Validation
Many attributes will only have a certain allowable range or acceptable list of values. Where this is
the case it is wise to record such constraints. Examples are:

Attribute Range / allowed value
Discount Percentage 0 - 100
Commission Required Y or N (Yes / No indicator)
Sex M or F (Male / Female)
Month JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,

DEC

Look-up Lists
In the fourth example in the above table we have 12 allowable values which are well-known and
very unlikely to change. If, however, we had a range of acceptable values that was likely to change
with time we might consider creating a ‘look up’ table (or List of Values) for validation purposes.
For example, if we were exporting goods to a number of countries but some products were country
specific, we aid the product selection process by presenting a pick list of country specific product
codes. This would be via a look up reference entity. We might use the same kind of construction
for other attributes where there were specific data or validation requirements.

Optionality
There are two states here:

· Mandatory: Attribute must not be null
· Optional: Attribute can be null

Mandatory (null values not allowed)
Within an entity, some attributes may have greater significance than others may. Some attributes
require a mandatory value in each occurrence of an entity: such an attribute is classed as Not Null.
Primary keys are always mandatory and so the attributes used must be Not Null. There may be
other attributes which, the analyst decides are also of such importance to an entity that they also
should be not null. For example, a PRODUCT may always need a Price and a Description; an
EMPLOYEE will always need a Start Date.

Optional (nulls allowed)
Some attributes will have optional values. For example, PRODUCT could have an attribute called
"Special Packing Instructions" which is only applicable to a small number of products.
EMPLOYEE could have "Telephone No." which would not always be applicable. Whether or not
an attribute should allow nulls is of importance to the database design, both from a data input and
maintenance point of view, and for estimating the size and growth of the database. It is up to the
analyst to define whether individual attributes are mandatory or optional.

 Guide-lines for Attributes to Include in Entities
The attributes comprising an entity should be the minimum number, which fully describe and
complete an entity within our functional framework (see Scope). These include:

· Characteristics recognised and added by the analyst (descriptions, dates, quantities and other

descriptive or qualifying characteristics etc.)
· Attributes added implicitly by relationships to other entities. These will be attributes, which

contain the Primary keys of related entities and are termed Foreign keys.

 Entities & Attributes

 What Not to Include as Attributes
This subject is somewhat more problematic than what attributes to include and covers areas, which
reinforce good modelling practice. Below are examples of what should not be included in a Data
Model.
1) Attributes, which are calculated, transformed or otherwise derivable from other sources, be
they within the entity or from other related entities. Logically, there is no need to hold them
because by knowing the formula or transformation method we can create the value on demand.
This information should be recorded in the functions or processes, which use the information in
these entities.
Examples:

Calculated values

On an invoice line held in an entity called INVOICE LINE the cost of the goods or
services is usually Price x Quantity; there is no need, therefore, to hold this cost as an
attribute as it can be readily be calculated as required.

Cumulative values
Although it may be desirable to hold some cumulative values (batch controls etc.); it is
good practice not to hold them as attributes on the logical model if at all possible.
Maintaining calculated running totals etc. requires procedural logic. If the components of a
cumulative value are liable to be altered (e.g. correction to number of goods ordered) then
the cumulative value has to be recalculated and this requires more procedural logic. If they
really are required for say, performance reasons, the decision should be made during the
physical design stage (see Chapter 7).

Transformed values
By transformed we mean some character or mathematical translation. We would not, for
example, strip out and hold as a separate attribute part of a code in another attribute (we
don't want structured codes anyway). We would not hold character translations or
concatenations. For example, if we had First Name, middle Initial and Surname) we would
not hold Name (First Name||" "||Initial||" "Surname) as a separate attribute.

2) Attributes as coded structures, e.g. product codes such as E123, H345 where the 'E' signifies a
product for the Export market and 'H' for the home market. Code structures require procedural
translation which makes our application more complex to build, maintain and change. It is better to
take the data driven approach, which gives greater flexibility: the formally structured attribute is
thus decomposed to:

Now we can introduce new Market areas or other characteristics quite freely (e.g. US = North
America, EC for EC countries etc.)

A structured code may be too well established in the culture of a company for it to be practicable
to replace it at the outset. This is usually the case when existing or ‘legacy’ systems are required to
interface to the new database system, which require the original structure to be supported.
However, our advice is to take the purist approach and still model the code as in the above
diagram. In the new system it is immaterial whether a value of a code remains structured to other

PRODUCT
available for

 restricts
MARKET AREA

345
123 E (Export)

H (Home)

Attribute Definitions

systems. Any processes we build can derive the code's characteristics by its classifying
relationship - regardless of the fact that the code is still structured to outside systems. To these
outside systems the code can still be translated in the same manner as previously. In the future, the
structured form of a data value can be dropped with no effect on the new system and its processes.

3) Attributes which are not used in any of the specified functions. If there are no functions that
require the presence of a particular attribute it should not be included in the entity. Inclusion of
attributes should be justifiable: if an attribute is not reported on or manipulated in any of the
known processes, there is no point in its inclusion: it simply clutters up the data model.

4) Denormalised attributes: Denormalisation is a complex area of database design and is dealt
with more fully in later sections of this book (see 'Advanced Entity Modelling' and 'Getting
Physical'). Our logical model should be ‘normalised’ as far as possible, that is, an attribute with a
unique value in an instance should be represented in a single entity only. For example, if a
PRODUCT entity includes Product Code, Name, Description and Type, in our ORDER LINE
entity we would include the attribute Product Code (as a foreign key), but we would not include a
repetition of Name, Description or Type for the product. These values can be looked up in the
PRODUCT entity when required via the Product code foreign key (which is the primary key to
PRODUCT'). If we follow this rule, the structure of ORDER LINE in respect of PRODUCT is
said to be normalised. Logically, it is unnecessary, and most undesirable, to duplicate attributes
for information that can be obtained elsewhere. There are, however, conditions when, for practical
reasons, replication of attributes between entities may be advantageous; this is called
denormalisation. These circumstances should only be considered in the very final stages of the
logical model, or, more usually, in the physical database design.

Key Point: Remember: we are constructing a logical model – which should be normalised and
holding the barest minimum to describe the information. Where procedures are required to
transform or translate data, identify and document them. Do not specify their products as
attributes. The physical model (database structure) is a different matter; for performance or
procedural reasons it may be advantageous to hold a calculated or ‘denormalised’ value. There
are certainly differences in database types (OLAP vs. OLTP). These decisions come later.

 Domains

Domains

We have looked at the definition and roles for entities and attributes and how they are used to
define an information model. However, there are other ways of looking at and defining data
constructs. Domains usually operate below entity level and can be used to define sets of
specifications that apply to a repeating attribute or a coherent group of attributes. These include:

· Attribute content
· Format
· Validation rules
· Constraints
· List of values
· Range (numeric)

Although entities must be unique, and attributes unique within an entity, attributes, or similar
attributes may appear across a number of entities. For example, within an application, the
following attributes / groups may appear a number of times:

· Address
· Date / Time
· Description
· Discount
· Name (person’s)
· Monetary value

These are but a few. We would prefer and expect that the definition of these attributes will take a
common form across the database – for obvious reasons. By defining a domain to which they will
conform is one way of achieving this consistency. For example, a domain called ‘Discount’ would
be used by attributes which may be called Discount or at least have the meaning of discount (Sale
Discount, Price Discount, Volume Discount, etc.). It might be defined as:

Definition Percentage (to be applied to an original value)
Format Numeric 999.99
Valid Range 0 - 100

A domain can have more structure. E.g. PersonName, may comprise the following attributes:

Salutation* Character(6)
First Name Character(24)
Middle Initials Character(4)
Last Name Character(24)

* May have values restricted to a list of permitted values (Mr. Prof. Dr. Ms., etc.)

Address is always an interesting one and subject to many national and international standards, it
may have a simple attribute data type definition:

Line One Character(36)
Line Two Character(36)
District Character(36)
Town Character(24)
Post Code Character(12)
County Character(24)
Country Character(24)

Domains

Within this simple attribute definition will be the standard business rules, for example:

· House / Street number may be before or after the street name (Country specific)
· The position of Town / Post / Zip Code is also country specific
· The format of post code / zip code is country specific
· The need for country will depend upon whether posting is within or outside the country of

postage

And it gets a lot more complicated than this. All these rules and definitions can be placed within
the domain properties.

Why use Domains?
It is obviously good practice to standardise use of common attribute types across a database design
for a number of good reasons – the properties and functions of the domain must be applicable
across all the attributes within them, across the database. If you are using CASE and application
generation tools, it makes even more sense. Domains are defined in CASE and then attributes and
groups of attributes will be assigned a domain, thus the attribute will assume all the properties of
the domain.

When code is written / generated, rules and constraints are automatically applied and thus rigour
and consistency are applied to the application being built. For example, if a validation range or list
of values is assigned to the domain, the attribute(s) using it will have this validation procedure
applied automatically during the build process.

Key Point: In many respects, a domain corresponds with the Object Oriented (OO)
definition of a ‘Class’. Many designers make the mistake of thinking that a class
corresponds with an entity – it does not. Note that, contrary to ill-informed belief,
OO and the Entity / Attribute view of the world, are not mutually exclusive – but
complimentary and necessary.

Warning: Note the ‘Domain’ concept is not particularly well implemented in
RDBMS packages or application generators. It may be missing in the less
expensive examples

 Principles of Normalisation

The Principles of Normalisation
The concept of normalisation originated with Dr Ted Codd in the early 1970's when he laid down a
number of criteria or rules which defined the Relational Model. In essence, the normalisation
process is the method by which a data model is constructed and validated to ensure that each
attribute is correctly assigned to one, and only one, entity. This eliminates data redundancy
(repetition) and ensures that relationship structures are correctly identified.
There are a number of "Normal Forms" which, by convention, are numbered from one upwards
(presently more than 7 have been mooted). In most models, however, taking the structure to the
'Third Normal Form' is usually quite sufficient. Without reference to examples, understanding the
meanings of the various normal forms is difficult. For completeness, here are descriptions of the
first three Normal Forms:

First Normal Form
(1NF)

Each attribute within an entity, that is not a key, should contain only
a single value (no repeating groups)

Second Normal Form
(2NF)

The entity should be in 1NF and every attribute which is not itself
used in a key, depends on the entire primary key - there being no
dependencies on any part of the PK

Third Normal Form
(3NF)

The entity should be in 2NF and each attribute which is not part of
the primary key is dependent solely on the PK and not on any other
non PK attributes

 Unique Identifiers (UIDs). The Role of the Primary Key

In the introduction we discussed the importance of primary (PK) and foreign keys (FK) in
relational database methodology. A vital part of Entity Modelling is the determination of unique
identifiers. Here we look at which attribute or attributes to use for identifying unique instances of
an entity.

Why do we need to uniquely identify each instance of an entity?
Logically, we need to be able to reference directly each instance of an entity unambiguously a) in
its own right and b) to enable us to define relationships between entities. For example, if we look
up the details of Mr. John Smith, we do not want the employment record of Mrs. Jane Brown and
the home address of Mr. Fred Bloggs. When information is spread through entities it is vital that
we are able to rely on our relationships being able to connect the correct instances. This is called
Referential Integrity.
In summary, without the ability to uniquely identify instances, we are unable to:

· Locate with any confidence any specific item of information
· 'Traverse' relationships to locate related information

Note: A good ERD will be in Third Normal Form. Following the normalisation rules explicitly is
quite a chore. The methods described in this book follow them implicitly and steer the reader
toward a model in 3NF. However, when modelling is complete, you can confirm the validity of
the model by checking each entity against the rules.

Primary Key

© Domanski & Irvine 2000-2005 28

Choosing a Primary Key (PK)
We select an entity's PK by looking for an attribute or the simplest combination of attributes that
will give us this. For example:

· In the SALES ORDER entity we would choose the Order Number attribute as no two
orders will have the same order number

· For the EMPLOYEE entity, Staff No. would be the logical choice as each employee has a
unique staff number

These are relatively simple examples but beware, the choice is not always as straightforward. In
the real world it can be difficult to find a single unique 'natural' identifier that we can say with
absolute certainty will always be unique. This is particularly true when dealing with people-related
information (those readers used to dealing with customer and contact information will have
discovered this). For example, Names are not unique and UK National Insurance numbers are not
always applicable (e.g. overseas visitors) and note that many attribute values are likely to change
with time.

Types of Primary Key
There are three main types to consider:

A. The Simple (Natural) key
Order Numbers and Staff Numbers are examples of simple keys. A simple key is a natural
attribute, which, on its own, provides a unique reference to an entity occurrence. Examples
are Order No. for ORDER, Staff No. for EMPLOYEE etc., these must be unique and not
be liable to vary with time.

B. The Concatenated or Composite key
If no single attribute provides a unique reference, it is quite in order to use two or more
attributes in combination, which, when concatenated, form a unique reference. For
example, there may be many ORDER LINEs for a given order. It would be worth
considering using Order No. + Product Code to form a unique key.

C. The Artificial key
If it is not possible to find an attribute or combination of attributes, the best course of
action is to create a special attribute with the specific purpose of providing a primary key.
A sequence number of some form is commonly used for this purpose: a number is
incremented as new occurrences are created. This technique is used quite commonly in the
real world; sequence or serial numbers are created to uniquely identify a person or object
where identification would otherwise be difficult. Examples are Staff No., Product Serial
No., Car Registration No., National Insurance No., Membership No. and a whole host of
others.
Consider again the ORDER LINE entity: if it is at all likely that the same product can
occur more than once on the same order (which can happen), our suggested concatenated
key of Order No + Product Code may be of no use as the combination would not be
unique in all cases. It would be better to create an artificial attribute such as "Order Line
No.", each occurrence of an order line within an order being given its own (unique) line
number within an ORDER. An effective primary key for ORDER LINE would thus be
Order No. + Order Line No.

 Artificial Primary Key

Another example of an Artificial Primary Key
A simpler example of an artificial key might be as follows. We are required to create a customer
database. A customer might be an individual or organisation. The customer is, over time, likely to
move house / premises and may even change name.

Question How do we uniquely identify a customer?
Answer This is a notoriously difficult problem for many companies - primarily because the

term 'Customer' means different things to different people (Accounts, Marketing,
Dispatch etc.). We should consider inventing a Customer Reference No.

Why? It can be difficult to find a convenient "handle" for customers. Names are not
unique and, in any case, customers may change name and so this rules it out as a
component for a primary key. Addresses are notoriously difficult to maintain and
liable to change and so should not be used. Not all customers will have registered
trade names, company numbers etc. so we really have a problem in finding a
suitable attribute or attribute combination that has some enduring uniqueness. A
unique Customer Reference No. On the other hand can be assigned to our otherwise
varying "cluster" of attributes, which describe a customer through time. It can be
printed on correspondence and so is a very useful mutual point of reference
between a customer and our company (see section “People and Organisations”)

Representing Primary Keys on the ERD
We often represent the PK(s) on
the ERD. Under the name of the
entity in the entity box the
attribute(s) comprising the PK
are written out prefixed with a
symbol, usually the # (hash). In
the diagram we can see that the

Order entity has a PK of 'Order No.' The ORDER LINE Entity uses Order No. + Order Line No.
(concatenated key).

Key Point: Rules for Primary Keys (PKs):

· The value of the Primary key must be unique for each instance of the entity
· There can be no missing values for PKs (i.e. Not Null). If the primary key is

composed of several attributes, each of those attributes must have a value for each
instance

· The PK is immutable, i.e. once created the value of the primary key cannot be
changed. (Can only be created or deleted with the instance)

· If the PK comprises multiple attributes, none of these values can be updated

Note: Where an artificial PK is used, it is often advisable to locate an instance of an entity via
alternative attributes. For example, a customer may have forgotten or mislaid his/her customer
reference number. We should still provide alternative routes via name, account number,
VISA/ACCESS no. etc. (see Candidate or Alternative keys).

ORDER
#Order No.

is part of

composed ofORDER
#Order No.
#Order Line No

Note the use of a bar across the ‘many’ end of the relationship line to indicate
that the foreign key forms part of the primary key of ORDER LINE

Primary Key

© Domanski & Irvine 2000-2005 30

Further Advice on Creating a Primary Key
Contrary to what we might expect, determining unique identifiers for entities is no trivial matter.
When we are presented with a genuinely unique attribute for an entity we should consider
ourselves lucky! Most entities are more problematic. We have already seen a couple of examples
where there is scope for a dilemma. Remember these two rules:

· The Primary key MUST exist on every instance
· The value of a PK cannot be changed

We must select primary keys that will have values right from the start, as these are the most
important attributes on an entity: to take an order from a customer we must have a Customer PK
and an Order PK. We must select primary keys that cannot possibly vary in content – one reason
being that these values are held as FKs in other entities – they preserve data integrity.

Selecting a Primary Key - A Decision Chart to help you select one

Step Decision Key Type
1 Do we have a single data (natural) attribute that is unique and will not

vary with time?

YES – Go to 2
NO – Go to 4

2 Is this attribute concise (<15 characters), not descriptive, wordy or likely
to be entered incorrectly if keyed in by a user

YES - Use this attribute as the Primary Key
NO – Go to 3

Simple Key

3 Will the entity have a volume of less than say, 100 and will the Attribute
be a 'User Handle' (i.e. referred to by value)

YES - Consider creating a (unique) abbreviated code of no more
than 10 characters.
NO - Go to 5

Simple Key
(coded)

4 Can we create a unique identifier by combining no more than 3
attributes? (and apply the conditions in step 2 to each attribute)

YES - Consider a concatenation of attributes
NO - Go to 5

Concatenated

Key

5 Consider using an incrementing sequence number. This is often referred
to, and named, a System Id. To select the right number of digits for the
size definition, x10 the highest likely number of instances for the entity

Artificial Key
(System Id)

This decision chart is for guidance only; it may help you and will probably work 90% of the time.
Some organisations, as a matter of policy, however, may insist that Artificial keys (Sequence
numbers or 'System Ids) should be used wherever possible - in which case deciding upon the
correct PK becomes a non-issue. Note, however, that the analyst still needs to understand the
logical construction of UIDs - Business rules shape the application processes!

 Principles of Normalisation

 Candidate or Alternative Keys (CK)
A Candidate or Alternative key is an attribute, which, as the name might suggest, provides another
means of selecting a particular instance of an entity. Artificial primary keys are all very well, but
they do not always permit us to sensibly locate the occurrence of an entity in which we are
interested. If we do not know an employee's staff id no., how do we locate his/her records? We
search on something more friendly - a candidate key (CK). For example, in the EMPLOYEE
entity we would use the Staff No. as the PK because we know that it is allocated uniquely to an
employee. We would, however, perhaps stand a >95% chance of obtaining the desired occurrence
of EMPLOYEE by referencing the National Insurance No. There may be circumstances when an
employee might be taken on initially without a NI no. (e.g. first day of work, workers from abroad
etc.). But in most cases this alternative identifying attribute would be effective. It would, therefore,
be eligible as a candidate, or alternative key. Another candidate key for EMPLOYEE would be a
concatenation of Surname and First Name but remember the bigger the work force, the higher the
risk of duplicate names. Candidate keys may not necessarily be unique keys, by that we mean that
for a single value of an attribute, we cannot guarantee access to a single target.

 The Foreign Key (FK)
Foreign Keys in data modelling function in the same way as described for the RDBMS overviewed
at the beginning. They are essential to the functioning of relationships between entities. When a
relationship is drawn line between two entities it is implicit that one of the entities will carry the
PK of the other as an attribute(s). Therefore, a FK will take the same form as the PK on the related
entity and not reference a candidate key or any other attribute on the other entity.

It is quite common for a FK to another entity to form part of its PK. For example, in our ORDER
/ ORDER LINE example shown previously, an ORDER will have one or more ORDER LINEs
The PK of ORDER is Order Number which will also be the FK in its ORDER LINE. The PK of
ORDER LINE will comprise this Order Number plus the Order Line No. (or possibly product).
On our ERD we can signify this particular case by putting a bar across the relationship line on the
'many' end.

An entity may be connected to none, one or many other entities by relationships and so it may
have a number of FK attributes (e.g. the SALES ORDER entity in our XYZ Engineering Ltd.
example). As we shall see later, there is a class of entity, which contains solely foreign keys as
attributes, this type of entity is used exclusively to resolve 'many:many' relationships. For example,
a product may appear on many orders and an order may be for many products, hence many:many.
(See Intersection Entities)

Tip: Take care when identifying a primary key. Be wary of selecting data attributes as keys as
these are likely to be changed. Unless absolutely certain that an attribute or set of attributes is
unique and will never be liable to change over time, create an artificial attribute specifically for
use as a primary key. An incrementing sequence number is usually used as this will guarantee
uniqueness.

System Ids: some designers love them, others hate them. Personally, we are of the former as
they guarantee uniqueness, take up the minimum amount of space for indexes as they are
integer numbers and, are satisfyingly unstructured They do give us more freedom if it is a
requirement to duplicate certain parts of the data, or allow nulls, or change what would have
been primary key data (e.g. CUSTOMER data). Primary keys of more than about 3 attributes
start to become unwieldy - particularly when writing SQL. One drawback, of course, is that an
extra attribute is added which will take up extra space; this may be significant for very large
tables.

 Relationships

© Domanski & Irvine 2000-2005 32

 Relationships: Definitions
This topic is one of the most crucial aspects of Data Modelling and one of the more difficult
concepts to get to grips with. We will start with the basics and hope that the reader will be able to
master the topic, go on to produce effective data models and hence successful database designs.

As we have seen, a relationship which exists between entities is represented by a joining line
between them. The nature of the relationship is indicated by the form that the line takes, by what
happens each end and, how each end is named. Here are some examples of relationships:

The relationship types marked as rare would arouse our suspicions if we saw them on an ERD,
they are likely to mean that a business rule is missing or has been modelled incorrectly.

Note that a relationship line has two ends and the relationship of one entity to another is different
when viewed from each direction: the significance of this will, we hope, become clear shortly.

SALES
ORDER

EMPLOYEE

be placed by

places

Key Point: Rules for Foreign Keys:

· The foreign key comprises the attribute or attributes that form the primary key of the

associated partner record.
· Only one entity in the relationship will carry a foreign key to the other in a 1:many

relationship. They are the children that carry the FK. In a 1:1 optional:mandatory
relationship, it is the mandatory end that carries the foreign key. In a genuine 1:1
mandatory:mandatory relationships, either end can carry the foreign key.

· Since an entity may be related to many other entities it may correspondingly carry
many foreign keys.

Common
(when resolved)

Uncommon

1 1

1 or many 1

1 or many 1 or many

1 0 or 1

1 or many 0 or 1

0 or 1 0 or 1

Optional
Mandatory

Different kinds of relationship
between two entities

1 or many

 1 only

Rare

Uncommon

Rare

Common

 Relationships and Business Rules

A relationship line carries with it three essential pieces of information:

1) Optionality
This describes whether an instance (occurrence) of one entity is dependent upon the
occurrence of the other entity. Optionality is usually different at either end of the
relationship line. In the notation used here a solid line implies a mandatory relationship
(must be) and a dashed line implies optional (may be).
Example: consider the relationship between EMPLOYEE and SALES ORDER.
Reading left to right: A SALES ORDER must be placed by an EMPLOYEE. This
reflects the fact that a sales order cannot exist on its own without reference to the
employee who raised it.
Now reading from the opposite direction: An EMPLOYEE may place a SALES ORDER.
An employee may exist irrespective of whether he/she has placed any orders.

2) Cardinality
Cardinality, sometimes referred to as the degree, defines the numerical relationship
between entities: a single line implies a single instance (1 only). The crowsfoot notation
we use here implies multiple occurrences (1 or many):
A SALES ORDER must be placed by one and only one EMPLOYEE.
An EMPLOYEE may place many SALES ORDERS.
Note how 'one and only one ' is emphasised.

3) Relationship Name
Each relationship line should carry a pair of descriptive elements, which define the nature
of the association between entities. A name is a single word or descriptive phrase; it
should always contain a verb such as: owns, owned by, holds, administered by, etc.
Examples from our simple model are:
A PART is sold on an ORDER LINE.
An ORDER LINE is placed for a PART.

 Reading Relationship Lines
Now if we look at our sales model again we can see that the relationship notation is not at all
haphazard or imprecise, it is actually very specific. To read a relationship we construct its
definition as an English statement thus:

1) We decide on the pair of entities in question and start at one end of the relationship. e.g. from
DEPARTMENT to EMPLOYEE
 "A DEPARTMENT"
2) Then we add the optionality of the line immediately connected to it
 "A DEPARTMENT may be"
3) Then we take the relationship name nearest to it
 "A DEPARTMENT may be staffed by"
4) Next we look at the cardinality of the line connecting to the other entity:
 "A DEPARTMENT may be staffed by one or many"
5) Then we add the other entity
 "A DEPARTMENT may be staffed by one or many EMPLOYEEs"

Business Rules

© Domanski & Irvine 2000-2005 34

Lets just analyse the statement another way:

"A DEPARTMENT may be1 staffed by2 one or many3 EMPLOYEEs "

1Optionality The line next to DEPARTMENT is dashed indicating an optional
relationship = may be.

2 Description Note that there is a verb implying that the entity is doing something.
3 Cardinality The 'crows foot' on EMPLOYEE means 1 or many.

If we now read the relationship from the other direction we get the following:
"An EMPLOYEE must be1 employed in2 one and only one3 DEPARTMENT "

1Optionality The solid line next to EMPLOYEE indicates a mandatory relationship =
must.

2 Description Note that there is a verb implying that the entity is doing something.
3 Cardinality The single line connected to DEPARTMENT has no crowsfoot so it is

singular.

 Relationships and Business Rules
Now here is the elegance of the technique; when we read the relationship as just described we are
reading a Business Rule for the data. This means that if the Business can provide us with the rules
covering two objects we must incorporate them into our model for compliance. If, on the other
hand, a priori rules have not been provided, when we model entity relationships we automatically
generate Business Rules relating to the entities and relationships. These rules should be verified by
the business (or guiding authority) who will check them against reality (or just apply plain
common sense). This facet of modelling is tremendously important as, by getting these rules
modelled, incorporated correctly and confirmed by the business, we can eliminate a fair
proportion of structural errors and weaknesses which tend to occur in the physical database. To
correct an error in the ERD takes only a very small fraction of the cost of correcting the error in a
physical database structure.

Exercises:
Try modelling entities and their relationships from these Business Rules.
1) A salesman may be responsible for one or more territories but a territory can only be maintained
by one salesman.
2) A person may only possess one passport for one country but may be a citizen of more than one
country.
3) An employee may obtain many training qualifications. A subject can be taught for a number of
different qualifications.

Note: The above dissection of relationships does emphasise the care, which must be used in
formulating the ERD. The method is formal and leaves no room for inaccuracy or 'woolly'
thinking. As we shall now see, these relationships are synonymous with business rules.
Precision is a must. Entities, attributes, relationships and business rules, our building blocks,
will eventually translate to a physical model – Accuracy is vital for a successful
implementation.

Key Point: The above concept is probably the most important one to grasp in the whole
of the design process. Proficiency in the above skill is best acquired by practice, practice
and more practice!

 Relationship Modelling

 Relationship Modelling
Unlike physical modelling (database design), entity modelling is less restrictive on how we model
relationships. By this, we mean that this (illustrated in the next diagram) can use the full variety of
relationship lines - at least in the initial stages. For example, we might start with the principle:
"A salesman may sell many products" and "A product may be sold by many salesmen” It could be
modelled thus:

This type of relationship would only be used in the early stages of a design. In the real world, this
type of many to many relationship is very rare and, in database terms, it is impossible to
implement directly. Note the use of a dashed line: a solid line would have implied mandatory
many:many, which is not credible.

Although we have just said that the entity modeller has greater freedom of expression in modelling
entities and relationships in an ERD than a physical model, in truth we should be travelling in a
direction which will inevitably lead us to transform our logical model into a physical database
structure. As we shall find out later, physical models are less forgiving than logical ones and
although it is true to say "A Sales Person may sell many Products and a Product may be sold by
many Sales Persons", we are communicating only part of the truth. The structure that we have
modelled is what is termed 'Unresolved', that is, the model has not been taken to its logical
conclusion - there is something missing. You cannot implement a structure like this unaltered and
if we saw this on an ERD we would know that it was either a primitive model or incorrect, as it
contained an 'unresolved' relationship and was not modelled to completeness. In perhaps 98% of
all cases we will see only four types of relationship: these are, roughly in order of precedence:

Case i: an instance of the entity A cannot exist without an instance of B (A must be a
child of B), whereas an instance of B can exist independently of A (B may be a parent of
A). Hence for any instance of B there may be 0, 1 or more of A. This is the most
commonly used form of relationships. For example, a car can exist without a service
record – but a service record cannot exist without reference to a car.

Case ii: is similar to i except that for an instance of D, only 0 or 1 instances of C may
exist. Such a relationship might be used, say, for details of a passport belonging to an
individual - assuming that an individual may or may not have a single passport.

 1 0 or 1

1 or many 0 or 1

 0 or 1 0 or 1

B

 iii.

E

D

F

i.

ii.

A

C

G

iv.

PERSON PRODUCT

Business Rules

© Domanski & Irvine 2000-2005 36

Case iii: indicates an equality between two entities, an instance of either E or F can exist
independently of each other. Note that only one entity needs to carry the foreign key to the
other.

Case iv: is a recursive relationship and the notation used is commonly referred to as a
“pigs’ ear”. The entity points back to itself. Note that in our sales example, the PART
entity had this kind of relationship attached to it (meaning that a part may be composed of
many other parts). The line is dashed for its whole length implying that the relationship is
optional at both ends. One end has a crowsfoot implying a 'many' cardinality; the other is
singular - so it is an optional one to many relationships. The fact that it points to itself
means that for an instance of the entity, it has a Foreign Key, which is the PK of a
different instance of the same entity! This is a useful device for modelling organisational-
type hierarchies. Confused? Don’t worry, this is explained more fully, later.

More about Recursive Relationships ('Pigs’ Ears')
In the XYZ Engineering Ltd. Sales example, we used the 'Pig’s Ear' device to show that goods we
sell may be made up of other goods that we sell (a part may be an engine or the parts that make up
that engine). There are many other examples of recursive structures, here are a couple:

In example A we have a simple Manage : Managed relationship. It supports one employee (boss)
managing a number of other employees (subordinates). An employee may be a boss to a number of
other employees but he or she may be subordinate to another employee, hence the structure is
called recursive - it supports a true multi-level hierarchy. The FK, which points to the same entity,
like any other FK, will take the same form as the PK. For example, if the PK of PART was Part
Number the FK might be called Sub-Part Number. There are, however, two failings in this design :

· An employee can only have one manager.
· The hierarchy may change with time but our EMPLOYEE entity can only hold one

occurrence of each employee.

These problems will be addressed in chapter 6 : 'Advanced Entity Modelling’.

Note: None of the three most common cases shown has a mandatory relationship at both
ends. If such a relationship is identified it is worth rechecking the following points:

· Should the two entities modelled really be only one entity?
· Should both ends really be mandatory at all times? If data are being entered or maintained

it may be inconvenient to allow the storage of one (perhaps the main entity) only when
the other is present. [But of course, here we are getting perilously close to worrying about
physical implementation rather than a logical model].

A manages

managed by

EMPLOYEE
PERSON

mother of father of

child (of mother) child(of father)
A B

 Relationship Modelling

In example B there are two recursive relationships on the same entity. It models the fact that a
person has two parents (one of each sex). We have no problem of time here as in A. We cannot
change our (natural) parents!

Note that the PERSON entity illustrating the recursive relationships is an example of an entity :
entity case connected by two relationships. It is quite common to have two or more relationships
between the same two entities – each simply describes a different business rule.

Tip: When modelling a recursive relationship, always make the relationship line optional at
both ends. In real life, everybody has both a mother and a father (biologically, at present) - it's
mandatory BUT in our database we cannot hold an infinite hierarchy. At the top of each
hierarchy we cannot know the 'parents' so we must provide for null values, some information
may be missing so we must provide for that too. No part of a recursive relationship should be
mandatory.

Complex Relationships

 More Complex Relationships

 Hierarchies Super-types and Sub-types
We have seen how master:detail (1:many) relationships are constructed and their use in modelling
hierarchies where the entities have obviously different structures. We have also seen how recursive
relationships can be used to model hierarchies when the structure of the entity in each level is the
same - e.g. manage : managed, where an employee can have a manager and be a manager for other
employees. There is also a third type; earlier, when we introduced the simple Sales application, we
demonstrated the value of accurate entity definition and we took EMPLOYEE as a particular
example. We ended up by providing a very broad definition, perhaps a little too broad. Suppose we
now find that the Sales staff consisted of (a) people employed both directly by the company and
(b) people from outside who are not employees. This second group would be 'agents', who could
make sales on a purely commission basis. How would we model this? As far as an order is
concerned, we really only want to know who was responsible for initiating it, but perhaps for the
purpose of commission earned, company benefits or other reasons, we need to differentiate
between the two types of sales originators. For similar reasons, we might also like to distinguish
between Retail and Wholesale orders:

Modelling Super-types and Sub-types

ORDER ORIGINATOR and SALES ORDER are now what are termed Super-Types with
EMPLOYEE and AGENT being their Sub-Types and RETAIL ORDER and WHOLESALE
ORDER being sub-types of SALES ORDER. This device enables us to put an element of
hierarchical structure into an entity and if we wished we could further differentiate one of the sub-
types shown in the example. For example, if our 'RETAIL ORDER' sub-type was split between
telephone and postal orders we might model it thus:

Further Example of Sub-types

EXTERNAL
ORGANISATION

ORDER LINE

SALES ORDERORDER ORIGINATOR

WHOLESALE
ORDER

RETAIL
ORDER

EMPLOYEE AGENT

belongs to

employs headed by

detail of

created by

creates

VOICE
AUTHORITY

SALES ORDER

ORDER LINE
RETAIL ORDERWHOLESALE

ORDER
TELEPHONE
ORDER

POSTAL
ORDER

authorised by

authorises

headed by

detail of

 Complex Relationships

This kind of construction is a very useful modelling device for dealing with entities which are
functionally very similar but may differ slightly in some respect. For example, the order sub-type
TELEPHONE ORDER may require voice identification attributes whereas POSTAL ORDER
does not. Sub-types can also have their own relationships to other entities as is shown above for
TELEPHONE and VOICE AUTHORITY. In all respects, super-type and sub-types are treated as
discrete entities, and these types of relationships are to be recommended providing they are used
properly and in the correct context. They are, however, sometimes abused and can lead to
problems of implementation. Here are a few rules / guide-lines:

· A super-type should always have at least two sub-types. If there is only one sub-type shown in a

super-type, question the existence of the structure - there should be at least one other, even if it
is called 'OTHER'.

· Sub-types should differ from the super-type and from other sub-types by at least one attribute,

not just by a type indicator value. We would, for example, expect there to be some difference in
data requirements between EMPLOYEE and AGENT within the ORDER ORIGINATOR
super-type.

· A sub-type will, by default, 'inherit' its primary key from the primary key of the super-type.

However, it is possible for a separate primary key to be specified for a sub-type in which case
the super-type PK becomes a candidate key.

· A sub-type also inherits the super-type's foreign keys but any relationships made directly

between a sub-type (as opposed to its super-type) and another entity will imply a local
arrangement, which the super-type will not share. Any foreign keys carried by a sub-type are
not logically enforced on the super-type.

· There is no limit to the number of levels of nesting of sub/super types. However, two to three

levels maximum will normally cover most structures that are likely to arise.

· Relationships can be created between members of a super-type, to external entities and

recursively just like any other separate entity. However, a super-type /sub-type structure will,
initially at least, be turned into a single physical table (at least in the first cut physical model) so
some common sense needs to be applied when modelling the logical model.

· ALWAYS use super / sub-type hierarchies, where possible, in preference to 'exclusive arc'

relationships (which we will come to next).

· Only use sub-types when there are genuine similarities between them. If the attribute content is

completely different, re-consider your model: maybe an Exclusive Arc is more appropriate.

Note that in the Object Oriented world, sub-types are synonymous with the concept of
‘inheritance’.

Common Solutions

 ‘Complex’ Relationships: Arcs
From the outset, we recommend that arc type (complex) relationships be avoided, if at all possible,
because they create extra work and complexity in the physical model. They do have their place in
the modelling repertoire and can be appropriate. Consider the following structure:

This structure tells us that a SALES ORDER is either connected to (made by) an AGENT OR an
EMPLOYEE, i.e. AGENT and EMPLOYEE are mutually exclusive- they cannot be both at the
same time. CUSTOMER does not appear in the arc and so is not part of a mutually exclusive set.
There is no restriction in the number of relationships that are included in an exclusive arc and arcs
may be nested to form even more complex relationships.
Reading the relationships now becomes slightly more complicated in respect of the complex
relationships, starting from SALES ORDER:
"A SALES ORDER must originate from one and only one EMPLOYEE or one and only one
AGENT."

Rules for Exclusive Arcs

Some Common Modelling Solutions
Consider these models, having being advised of the rules and work out which ones are invalid
structures:Resolving ‘many-to-many’ relationships: creating Intersections
One of the most common problems that we come across is solving a many to many relationship in

C. D.

Answer: All of them are Invalid, they all break one rule or another!

 AGENT

EMPLOYEE

 SALES ORDER

A. B.

SALES ORDER

EMPLOYEE

AGENT CUSTOMER

placed by

places

placed by

places

placed by

places

 Sub-Types & Super-Types

its various guises. The reader will perhaps have noticed that some entities can only exist between
two (or more) other entities. For example, the ORDER Entity in our sales model can only exist
when an EMPLOYEE takes details of an order for PARTS for a CUSTOMER. In our model,
without an instance of one of these entities, an ORDER could not exist. For this reason, the
ORDER entity is known as an Intersection or Associative entity. In this example, the ORDER
has an identity and meaning of its own - an order is an order (as well as solving many products are
ordered by many customers recorded by many sales staff) but, in other cases, an intersection entity
can have no inherent meaning of its own. However, it has great importance as a device for solving
many to many relationships. Here are some more examples:
During his/her career, an employee may hold several positions within a company, or perform a
number of different roles. Conversely, over time, a role may be performed by a number of
employees. It may be possible for a single employee to perform several roles at the same time and
for the same role to be performed by a number of employees. So how do we model this scenario?
Initially, we might describe the relationship as:

But we need to resolve this many:many relationship and we do this by introducing an intersection
entity:

The entity EMPLOYEE ROLE, which is now interposed between EMPLOYEE and ROLE
resolves their many to many relationship. The very minimum for an intersection entity is a primary
key comprising the two primary keys of the entities which it resolves.

Its primary key, therefore, contains the foreign keys for EMPLOYEE and ROLE. Instances of
EMPLOYEE ROLE can now allow a Staff No. to be associated with a Role. The primary key of
this entity will consist of the two associated primary keys. This device will allow a Staff No. to be
associated with many different Role Ids. or vice versa, thus enabling any combination of employee
and role.

The structure proposed above is still incomplete as it makes no provision for changes over time,
i.e. we would expect employees to move from one role to another, perhaps even fulfil two or more
roles at the same time. Note that Intersection tables often carry other attributes - such as the time
dimension (see how this is achieved in Chapter 5: Advanced Entity Modelling).

Key Point: Using intersection entities to resolve many:many relationships is an essential
technique for prising out further entities and relationships as well as a necessary technique
required for implementation.

Tip: Naming an Intersection Entity - If the intersection entity has some meaningful name
(such as ORDER) then all well and good but if, as in the above example, there is no obvious
name, by convention use a combination of the entities which it intersects, e.g. EMPLOYEE
ROLE. The identity and purpose of the entity then becomes obvious when reading the ERD
or Data Dictionary.

STAFF ID
ROLE ID

EMPLOYEE
ROLE

ROLE
ROLE ID

EMPLOYEE
STAFF ID

takes

taken byoccupied by

occupies

ROLEEMPLOYEE
occupied by

occupies

Modelling Hierarchies

© Domanski & Irvine 2000-2005 42

Topics dealt with in the rest of this chapter

Modelling a Hierarchy

1) Common attributes across types

2) Common attributes but at least one different

3) Few if any attributes shared: Mutually Exclusive Entities

Creating a Data Dictionary (DD)

Using a CASE Tool?

Not using a CASE Tool?

Requirements for each Entity:

Requirements for each Attribute:

Requirements for information across Entities and Attributes:

We hope that you have found this chapter useful. For those of you
new to data modelling and database design there is a lot to take in
BUT don’t be daunted. With a little practice you will find that it is not
difficult – all you need is a pencil and piece of paper to start with. You
can validate your models by following the advice given in this book
and checking the ‘rules’ – of which there are relatively few
To read the rest of this chapter, you will need to purchase a password
to open the full .pdf file. Other parts of the book include the design-
critical chapters on “Advanced Data Modeling” and “Getting Physical”
which describes how to take your logical model to a physical database
schema.

Good Luck with your database designing!

GLOSSARY OF TERMS

3GL third generation languages e.g. COBOL, FORTRAN, ALGOL, PL/1, procedural high level
languages, contrast with 2GL which are at a lower level i.e. closer to the instructions in a machine.
4GL fourth generation language. A language or application package that has a degree of
automation to help the developer produce a product without the need to program in conventional
languages (see 3GL). Examples are, Microsoft’s SQL*Server, Oracle 8i. etc.
Application a set of screens, programs and reports which perform a specific set of tasks within a
functional area of a business.
Aim, Objective, Mission Statement a goal set by the owners of a business area, an aim is not a
measurable goal, an objective is measurable and a mission statement is the set of principles in
which aims and objectives are set.
Attribute a unit of information – date, description, value, etc. A characteristic or element used to
classify, identify, quantify or describe an Entity.
Binary Tree the method database software uses to implement an index.
Bottom-Up Approach a methodological approach through which a system is designed upwards
from its functional components rather than originating from a strategic view from the top. See Top-
Down
Business Rules general rules within a business which must be applied with business functions e.g.
salesman commission is paid on sales 10% greater than target.
Business Unit a component part of a business oriented towards product lines, production units,
services, departments and section, etc.. Business units can also be different sites, countries and
other geographical units.
Cascade Delete a delete which must be propagated to other tables in an application or database.
e.g. deleting a department will also have to delete or transfer all employees of that department!
There are also cascade updates where the update of a code must also be propagated.
CASE (Computer Aided Systems Engineering) Analysis, Design and Development assisted by
software tools. Usually based on a proprietary methodological approach. Particularly useful for
large database projects requiring management of evolutionary change. Can be used exclusively to
administer logical and physical models and/or create and maintain application design and
generation.
Client/Server Database System a design configuration where the application is separated into
two parts; the Client Front End, User Interface usually a GUI; and a Server Back End (providing
the data on request, usually a Database Server). The Client and Server processes usually run on
separate machines and communicate over various protocol layers.
Complex Relationship generally refers to ‘arcs’ in which there are alternative ‘master : detail’
relationships. Requires specific modelling techniques to minimise the application design
complexity for administering these structures.
Constraint a means of applying a rule within a database – facilitated by a proprietary RDBMS
feature – E.g. the automatic application of a validation rule, prevention of loss of integrity by PK
and FK relationships. Etc.
Convergent Model a version of the data model that has been ‘tuned’ as a step to the creation of a
compact physical database model. See Divergent Model
CRM (Customer Relationship Management) An application pivoted on the customer.
Generally difficult concept to maintain as ‘customer’ is a complex topic. Requires a hybrid OLAP
/ OLTP approach to system’s design.
CSF (Critical Success Factors) something which, if not achieved, will put in jeopardy a business
aim, objective or mission.
Data Model a formalised, logical ‘blue-print’ of the information structure required to support a set
of functional requirements. See ERD

Glossary

© Domanski & Irvine 2000-2005 44

Database Optimiser a software procedure or mechanism which attempts to find the optimum
method of retrieving a set of data (usually by analysing an SQL statement).
DataMart a database designed for information retrieval (OLAP) constructed to support a
particular business function or business department.
Data Warehouse an OLAP database designed to be a comprehensive and definitive repository for
all or a major part of a business’s collective information. It is often constructed from a number of
OLTP and other sources. (see OLAP & OLTP)
DBA (Database Administrator) a job role who primary task is to maintain a database and
associated software; sizes databases and gives advice on how to use a database and the information
contained within.
Denormalisation a means of simplifying data retrievals from an RDBMS by the judicious
repetition or reconstruction of attributes which are available elsewhere but in a less accessible
manner. A common technique in OLAP databases but generally to be avoided in OLTP.
Distributed Database a database that is not physically located on a single machine. Different
tables and other storage components belonging to the same database may be located on different
disks on different machines.
DML (Data Manipulation Language) the commands in SQL which implement inserts, updates,
delete in a table.
Dicing & Slicing terms used in OLAP to gain the required perspective and granularity on a data
‘hypercube’
Dimensional Modelling derivative of ER, it is a technique used to support the design of OLAP
databases. Comprising three main components (dimensions, facts and measures) it usually leads to
Star and Snowflake structures.
Divergent Model the first objective of a data modeller, to determine the full extent of the
information model required to be supported in a database. Structurally, there may be repetition to
support different data content – this may be eliminated by going on to produce a convergent
model.
Domains grouping of attribute definitions which make up functional and repeating units E.g. a
standardised address structure. It is synonymous with the data aspect of Classes in the OO
approach.
EDI (Electronic Data Interchange) a means to electronically transfer standard information e.g.
Invoices, between two or more organisations according to specific standards.
Entity a uniquely identifiable information object, real or conceptual which is of distinct and
enduring significance to an enterprise. Characterised by constituent informational elements known
as attributes.
ER (Entity Relationship) Modelling a formal technique used to describe an information
structure. Graphically, it is used to produce an ERD. The major components are Entities and
Attributes, Relationships, Keys (Primary, Foreign) and their precise definition.
Foreign Key (FK) attribute or attributes (Entity) or Column / Columns identified and specified on
one table that identify the primary Key (PK) of a related table. See UID and PK
Full Table Scan sometimes the only method available to database software when it cannot use an
index. It has to look at every row in a table to resolve the query and can be very slow!
GUI (Graphical User Interface) the part of an application that the user sees and uses to
communicate messages and information to the application. A GUI is usually windows oriented
with various text fonts, icons, pictures, boxes, slide bars, pull down menus etc. A mouse is used as
a pointing device for selection. Contrast with an historical text based user interface which usually
only has boilerplate text, input fields (inverse, underlines or delimited), and selections made by
special function keys.
Hands On an expression often used to describe when a DBA or other privileged user, rolls up
his/her sleeves and manually takes control of the system, bypassing the normal control
functionality. E.g. using SQL to update tables rather than the normal maintenance procedures (e.g.
via forms). A good database is one that requires the minimum of such manual intervention.

 Glossary

Hypercube a conceptual view of a multi-dimensional structure often used by OLAP tools. See
Dimensional Modelling.
Index like the index of a book, an index provides the means of looking up the precise location of a
table row. The correct application of an index may speed up retrieval a thousand-fold. A table may
have multiple indexes. Indexes are supported by various mechanisms, the most common in current
use is the Binary Tree.
Integrity (referential integrity) a state in which all the database tables are in perfect synchrony, i.e.
all foreign keys point to the right primary keys, there being no key records missing or extra. Loss
of integrity can occur if records are deleted or inserted without proper regard to their relationships
with other tables.
Intersection Entity/Table a entity/table positioned between two entities used to solve their
many:many relationship. In its simplest form it carries only their PKs. However, can be more
complex, holding time and/or other value information.
JAD (Joint Application Development) a methodology suitable for applications where there is a
close and effective relationship with the ‘Client’. Often associated with RAD.
KPI (Key Performance Indicator) criterion or statistic on how an organisation or project is
judged, monitored and controlled. e.g. share price, profitability, cash flow, return on capital
measurement against expected result, etc.
Legacy System a system already operational in the organisation and covering a similar functional
area to the proposed new system. Contrast with a green field site where the system will be
completely new apart from manual procedures. A heritage system is a legacy system which could
be placed in a museum! There may be many good reasons why a legacy system should remain –
e.g. the sheer cost of replacing the functionality it supports – such as interfaces to OLAP systems.
Estimating the cost of developing a replacement system often overlooks such cross-system
functionality!
Logical Model an idealised model of requirements. It is usually free from the constraints and
contortions imposed by the technology used to create the Physical Model.
Metadata information held about the location and configuration of data structures (as opposed to
actual data). Commonly used at the heart of OLAP tools.
Model a coordinated view and means of representing the business that an application must satisfy.
Usually the model is represented in diagrammatic form but can also be in words.
Normalisation the process used to reduce the data model to its simplest, minimalist form in
which an attribute only occurs once. A good data model is usually in what is termed Third Normal
Form (3NF). Deliberately repeating an attributes/columns in other entities/tables is called
denormalisation.
Object Orientation a development paradigm where everything is considered an object (even
procedures). Consists of OOA (Object Oriented Analysis), OOD (Object Oriented Design) and
OOP (Object Oriented Programming).
OLAP Database (On-line Analysis Processing) is oriented towards data analysis and information
extraction, it is usually read-only. Architypically, Data Warehouses and Marts are OLAP.
Modelling usually uses the dimensional approach. Surrounded by a rich and expanding
terminology – Eg. Variants ROLAP, MOLAP, HOLAP.
OLAP Tools A fast growing and wealthy corner of the database market. OLAP tools are used to
analyse / extract / present information from databases which may be OLAP or OLTP in nature.
The best represent database structures as metadata upon which hypercube / dicing & slicing
techniques can be applied.
OLTP Database (On-Line Transaction Processing). General ‘workhorse’ database used primarily
to store and maintain transactions in all their guises. Not generally orientated to data analysis and
extraction and so may be very inefficient for these purposes. Generally mirrors the normalised
information model. Where intensive analysis required (in read-only mode) designers may resort to
OLAP tools or even wholesale design of derivative OLAP database. See OLAP & Data
Warehouse.
Outer Join an SQL construct which allows a table join to a table where the foreign key is null.

Glossary

© Domanski & Irvine 2000-2005 46

Pigs Ear not, as commonly thought, a negative descriptive term applied to project deliverables
(c.f. ‘A dog’s Breakfast’) but a term used for a recursive relationship. E.g. The manage / managed
relationship from an EMPLOYEE to itself – forms tree-lik structures.
Physical Model the end result – the physical manifestation of an actual database. Usually (but not
necessarily) very similar to logical model but adapted to overcome / take advantage of the
software features of an RDBMS tool.
Primary Key (PK) Attribute or attributes (Entity) or Column / columns (Table) specifically
identified and specified as forming the UID. See Integrity
Project a set of tasks and activities oriented towards building one or more applications.
Prototype A delivery step used in RAD/JAD to demonstrate project progress and an
understanding of the clients’ requirements. A mixed blessing as can often be a serious distraction
to development. Never, unless under extreme conditions (emergency) implement prototypes.
RAD (Rapid Application Development) a methodology suitable for applications where speed of
development is paramount. See JAD
RDBMS Relational Database Management System – utilise the relational concept but generally
includes a host of features to create an application.
Relationship a formal description of association between two entities An EMPLOYEE “must be
employed by a single” DEPARTMENT. The relationship, though is usually asymmetric as A
DEPARTMENT “may employ many” EMPLOYEES. Relationships are described by a number of
characteristics: Optionality, Description and Cardinality.
SQL (Structured Query Language) a standard language used to interface with a relational
database, with English-like statements.
Stored Procedure programmable code such as SQL stored within the database that can be
invoked by triggers or called by application components
System Id a commonly used term to describe a Unique System Identifier based upon an
incrementing sequence number or code (see artificial primary keys).
Top Down Approach a methodological approach where analysis and design is based upon a
strategic view downwards from the Business, may result in wholesale redesign of functions and
processes.
Tree Walking the process of scanning a tree-style structure in hierarchical way. It is implemented
in some proprietary versions of SQL (but not in all).
Trigger a specific event such as a database insert, update or delete which initiates a related or
consequential procedure. May automatically invoke a stored procedure.
UID (Unique Identifier) an attribute or combination of attributes enabling a specific instance to
be uniquely and unambiguously identified. Synonymous with the Primary Key (PK).
UML (Universal Modelling Language) an OO-based mooted standard similar in nature to ER and
the RDBMS Enterprise approach.
View a predetermined 'window' based on a table or series of tables. A view can be programmed
to show different information to different users. A view can be used just as a normal table in most
respects other than for DML operations.

Index
Address structure, 39
Advanced Connection Traps, 93
Advanced Sub-Types, 90. See sub-types and

super-types
Alternative Key (CK), 45
Analysis

detailed, 69, 75
Arcs

arc vs. sub-types, 100
designing out, 89, 91
rules for, 54

Artificial Key, 42
Attributes

common across type, 56
concatenated, 98
denormalised, 38
formats, 35
guide-lines, 37
naming conventions, 35
optionality, 36
Overlapping Data, 98
separating / combining components, 102
sub-types & super-types, 56

Audit Trails, 84
for database security, 152

BOM Structure, 83
Build Phase, 72
Business case study, 163

interview technique, 164
summary of detailed analysis, 171

Business Rules
definitions, 48

Candidate Keys (CK)
definition, 12

Cardinality, 47
CASE

advantages, 147
use of, 145

CASE Tools, 58
Chasm Trap, 92
Codes & reference tables, 114
Columns

introduction, 10
Concatenated or Composite Key, 42
Convergent vs. Divergent Data Model, 86
Cost Benefit Analysis, 75
CRM, 144
Customer principle, 139
Data Access

introduction, 8
Data cloud principle, 141
Data Dictionary

creating one, 57
defintion, 30

Data driven approach, 114
Data Modelling

component definition, 29
introduction, 27

Data range and validation, 36

Data warehouses
data mining, 132
data quality, 133
design techniques, 130
dicing and slicing, 132
drill-down & roll-up, 132
granularity, 131
population, 134
terminology, 130
what are they?, 130

Database Security, 149
avoiding data destruction, 152
avoiding misuse, 153
human error, 150
integrity loss, 151

Datamarts, 130
Delete vs. archive, 102
Deliverables, 66

definition, 74
Denormalisation, 94

relationships, 95
risks of, 152

Denormalising
dangers, 113

Design, 70
phases, 67
sub-types and super-types, 100

Design considerations
checklist, 126
legacy systems, 121
structured codes, 122

DFD, 17, 18, 23
components, 24
strengths and weaknesses, 25

Dimensional modelling, 131
Doctor

Patient relationship, 31
Domains

definition, 39
use of, 40

Enterprise Model, 17
case for, 18
scope of, 17

Entities
generic vs. specific, 101
grouping, 85
identifying, 31
intersection, 81

Entity
examples, 30
naming conventions, 34

Entity Modelling
advanced, 81

ERD, 17, 18, 28
hand drawing, 32
simple case, 32

Fan Trap, 92
FDD, 17, 18, 20

benefits of, 20

Index

© Domanski & Irvine 2000-2005 48

building one, 22
Field Overloading, 97
Foreign Key (FK), 45

definition, 12
Fringe Tables, 96
Functions, 20

identifying, 22
Hierarchies

modelling, 56
super-types and sub-types, 52

Historical Data
retaining, 83

Housekeeping, 9
Implementation Phase, 72
Indexes

composite, 118
creating, 117
downside, 119
implementation of, 118
primary keys, 117
when to use them, 118

Information Gathering, 77
Intersection Entities and Time, 81
Legacy Structures, 97
Life Cycle Methodology, 60

types, 61
Look-up Lists, 36
Menus

introduction, 9
Milestones, 65
Modelling

avoiding pitfalls, 92
common solutions, 55
complicated splits, 99
design dilemmas, 100
exceptions, 71, 98
introduction, 19
overlapping models, 18
super-types and sub-types, 52

Normal Forms, 41
Normalisation

principles, 41
Null vs. not nill columns, 102
OLAP, 127

selecting a solution, 135
tools, 128
transformation, 129
vs. OLTP, 127

Optionality, 47
Organisations

features, 141
People and organisations, 139
Physical Model 1

1 mapping with ERD, 108
column naming, 106
dealing with sub-types, 108
differences from ERD, 106
divergence from logical model, 108, 112
implementing arcs, 110
prerequisites, 105
table naming, 106

Pigs Ears, 82
Primary Key

role of in modelling, 41
Primary Key (PK), 11

advice on selection, 44
artificial, 43
choosing, 11
representing on the ERD, 43
types of, 42

Primary Key (PK)., 11
Processes, 21

elemental, 21
Production Phase, 73
Project Plan, 64
Project Planning, 59
Proprietary RDBMS features, 124

constraints, 124
stored procedures and triggers, 124

Prototyping, 156
Quality Checking

CRUD matrix, 155
design checklist, 159
peer review, 156
reviewing physical model, 157

Queries
graphical, 15

Queries and Reports
introduction, 7

RDBMS
engine, 6
Environment, 6
history, 2
introduction, 10

Relationships
complex, arcs, 54
definition, 46
modelling, 31, 49
naming, 47
recursive, 50, 82

Rows
introduction, 10

Sales Order model, 33
Screen Example, 182
Snapshots, 117
Splitting tables, 113
Spreadsheet

as a table, 10
SQL

joining tables, 13
what is it?, 6

Star schemas, 131
Star Schemas, 131
Strategy, 68
Table

example, 10
introduction, 10
relationships, 12
Vehicles example, 11

UIDs, 41
Views, 116

END OF BOOK SAMPLE

