cs=N /

an_ 7 Adnnrmaire
GCII~& MWVIETIIVD

April 2019

This presentation covers Gen-Z Atomic operations.




nis document is provided ‘as is’ with no warranties whatsoever, inciuding any warranty of
merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising
out of any proposal, specification, or sample. Gen-Z Consortium disclaims all liability for infringement of

proprietary rights, relating to use of information in this document. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted herein.

17}

Gen-Z is a trademark or registered trademark of the Gen-Z Consortium.

All other product names are trademarks, registered trademarks, or servicemarks of their respective
owners.

All material is subject to change at any time at the discretion of the Gen-Z Consortium

http://genzconsortium.org/




* Enable interoperability with multiple instruction set architectures (ISA)
* Gen-Z components remain processor agnostic

Bt o e

Support muitiple target data sizes

o

* Enable atomics to scale

uesters

* Responder can support many Reques

* Requesters not limited to a fixed number of outstanding requests
o

* Number of target Atomic data locationsis not limited

arget Ato cda loca

[=1—{a]

Gen-Z architecture enables atomic operations to be executed on any component.
Processor atomic operations can be transparently transported across a Gen-Z fabric to
another component for execution. This enables software to seamlessly operate across
Gen-Z, i.e., software compatibility is transparently provided.

Gen-Z Atomics provide a complete set of operations capable of supporting atomics used by
multiple processor ISAs including x86, ARM, and Power. This enables Gen-Z components
to remain processor-agnostic and provide full software compatibility.

Gen-Z Atomics support multiple data sizes including: 8-bit, 16-bit, 32-bit, 64-bit, 128-bit,
256-bit, and 512-bit atomics.

Gen-Z Atomics can be scaled in multiple ways:

* A Responder can execute Atomics requests from multiple Requesters.

* Requesters are not limited to a fixed number of outstanding requests per Requester (as
some technologies are). If a Responder supports 1000 Atomic operations, then one or
more Requesters can take advantage of some or all of the supported operations, e.g.,
burst or random execution. Gen-Z’s forward progress screens (FPS) ensure all
Requesters can make forward progress.

* Though a Responder might support a limited number of outstanding Atomic requests,




this does not limit the number of memory locations that Atomic operations can be
applied.



Near and Far Atomics
Ty Far Atormics
e . S

SoC / Processor Gen-Z PE Switch

SoC

Near Atomics

* Near atomics are executed within a Requester e.g., a SoC

* Far atomics are executed within a Responder
* Gen-Z protocol engine (PE) transparently translates the
Atomic operationinto a request packet and returns success
and applicableresults

Near Atomics are operations executed within a processor. The target memory can be any
directly-attached memory, e.g., DDR, HBM, or Gen-Z memory.

Far Atomics are operations executed outside of the processor. Software maps addressable
resources in one or more Responders. Once mapped, a processor can execute an Atomic
operation which is transparently transported across the Gen-Z fabric by a Gen-Z protocol
engine (PE) to be executed by the Responder component. The Responder returns success
or failure and applicable results. Any component type can initiate and / or execute Atomic
operations.




Atomics Abstraction

. Y- I .

nic instructions are abstr.

s ICA Ax_ PR
T oA ALD cLed

* Enables multiple ISA to be transparently supported (processor independence), e.g., x86, ARM, Power, etc.

* |SA Atomics mapped to Gen-Z atomics, e.g.,
* Fetch-and-addis mapped to Gen-Z Add request which indicates that a result is to be returned

-
I
[n]
(]
<
(=]
@
=
(9]
a
W w
f =
T
k=]
C
F o
-
=
1]
o
o i
0
o
o
1]

re managed throug structure.

* Gen-Z supports multiple ISA Atomic sizes
* 8b, 16b, 32b, 64b, 128b, 256b, and 512b atomics

to enabie an atomic operation to

= Gen-Z supports Atomic vector operation
contiguous target data locations

w

* Gen-Z Atomic Response returns Atomic operation success / failure and optionally operation result

[=1—{a]

Gen-Z Atomics abstract ISA-specific Atomic operations, e.g., a fetch-and-add atomic is
translated into a Gen-Z Add operation with a flag to indicate the results are to be returned,
i.e., fetched. Abstraction enables Gen-Z to support a variety of processor ISAs and to be
easily extended / adapted to meet future needs.

Gen-Z supports integer and floating point data types. Gen-Z supports comparison,
arithmetic, logical, etc. operations.

Gen-Z Vector Atomics are used to apply an Atomic arithmetic or logic operation to a
contiguous range of memory locations (up to 256 bytes of data). Conceptually, this is
similar to a SIMD operation, e.g., application of 32 8b fetch-and-add operations.




Atomic Operation Types

8 Cam 7 eiimmearte o wida raman Af Adamaic Amaratiam fumae & o
® QEN-£ SUPPONs @ Wite range O AlOmiC Gp&iation types, €.§
* Add
« Sum
* Swap

+ Compare-and-Swap (CAS)

s FAC M~k Foeinl
® LAo INOL CGla

* Logical (AND, OR, XOR)

* Load Max

* Load Min

* Test-Zero-and-Modify
2 lemmeacnm o on PN « P g |

- III\.ICIIICII!. RUUnucu
* Increment Equal

* Decrement Bounded
* Compare-Store-Twin
* Atomic Vector Sum

+ Atomic Vector Logical
* Atomic Fetch

* Multiple ISA Atomics can be mapped onto a given Gen-Z Atomic operation type

[=1—{a]

Gen-Z supports a very wide-range of Atomic operations compared to other technologies
which often are limited to just two. This ensures software compatibility and portability

which simplifies solution development and amplifies the benefits of using Gen-Z

technology.




Atomic Operation

nt Requester Responder

5 em
Re-execution of a request packet will not return the same result tomic RE‘quest
o Atomic 1 OnClace: Recnonder must remember the nrior result
vic 1 OpClass: Responder must ber prior result !

and return this upon detecting a retransmitted packet Execute Request,

. 3 ol'\Se
* P2P 64 Atomics rely on LLR to ensure responses are not lost due aromic Re 0 Record Result
to transient errors, hence does not exchange NIRR packets

* Non-idempotent operations require special handling: N

3
E.'r.

IRR Re
* Responderrecords result N‘
= If request packet is retransmitted, the Responder returns the t Release Result
recorded result and request-specific information Acknow\edngn
* Once the Requester successfully received Atomic Response, it /
transmits a Non-idempotent Release Request (NIRR) packet —

* Upon NIRR packet receipt, Responder releases result resources
and transmits acknowledgment

* Responderruns a failsafe timer to release recorded results
should it fail to receive a NIRR packet

* If atomics are used with a LPD (Logical PCI Device) that uses
PCle Compatible Ordering (PCO), then NIRR not used

[=1—{a]

A non-idempotent operation is one where re-execution does not return the prior results,
e.g., if a fetch-and-add operation is retransmitted and re-executed, then the result will
differ due to the add being performed twice.

To ensure that a retransmission returns the prior results, a Responder maintains a non-
addressable resource that contains the results of outstanding requests. A Responder does
not execute an Atomic request unless it has a result slot available. Each result slot contains
sufficient space to store the result, the Requester’s identity, and the Tag; these values
uniquely identify each request packet. Upon receipt of an Atomic request packet, the
Responder verifies if it is a duplicate request. If not, it allocates a result slot and executes
the request packet. If a duplicate, then it does not execute the request packet; instead, it
returns the prior results.

Once the Requester receives the response packet, it transmits a non-idempotent release
request packet to the Responder. This is used to release the results slot at the Responder.
To ensure result slots are eventually released in the event of hardware failure, the
Responder maintains a failsafe timer.

Components that support LPDs that use PCle PCO do not exchange NIRR. If the component
is configured to use PCO, then communications are constrained to a single path that




requires LLR (link-level reliability). This ensures that packets arrive in the order transmitted
and any failures are raised as exceptions which handled as though operating over a native
PCle topology. Though LPDs may support PCO in order to re-use existing PCle device drivers,
designers are encouraged to not use PCO since the component will not be able to take full
advantage of Gen-Z’s architectural capabilities, e.g., multipath for aggregate performance
and natural resiliency.



Atomic Scaling

s Docivmiedoas = .
T REspoOnuer pr Visions

Y " .

ck N outstanding resuits (N is impieme

e d ita

sources to tr tion-specific)
* Component-wideresource that can be used with any Requester{no hard limits per Requester)

* N results limits only the maximum number of outstanding Atomic operations
* Does not limitthe maximum number of Atomic datavalues

Upon receipt of the (N + 1) outstanding Atomic request packet, the Responder
-

o

Sllentlydlscard the request packet and rely upon Requester retransmission

* Return a RNR-NAK indicatinghow long a Requester should wait before retransmitting the request packet
* Forward Progress Screens are used to ensure a Requester can make forward progress

[=1—{a]

If a Responder receives more Atomic request packets than it has result resources, then it

can take one of two actions:

* It cansilently discard the request packet and rely upon the Requester to retransmit the
packet. Gen-Z support packet Deadline semantics which enable reasonably aggressive
retransmission timers. Though simple and effective, the primary issue with this
approach is it does not guarantee the Requester will make forward progress.

* Alternatively, a Responder can return a Responder-Not-Ready Negative
Acknowledgment (RNR-NAK). This packet indicates how long a Requester should wait
before retransmitting a request packet (could be immediate in which case, this might be
less than the retransmission time, or could be longer due to heavy load). The Reason in
an RNR-NAK indicates which forward progress screen (FPS) epoch that the Requester is
now associated. When the Requester retransmits the Atomic request, it includes the
epoch. The epoch acts as an input to the Responder for it to determine how to prioritize
this request or to calculate a new wait value in order to ensure the Requester makes
forward progress.




=]
=

ank you

This concludes this presentation. Thank you.



