Preclinical Assessment of JTX-2011, An Agonist Antibody Targeting ICOS, Supports Evaluation In ICONIC Clinical Trial

Jennifer Michaelson, Ph.D.

AACR Annual Meeting
April 2, 2017
Major Symposium
"Emerging Targets in Immunotherapy"

Translational Science Platform

Comprehensive Interrogation of the TME to Develop a Sustainable Innovative Pipeline

Many Potential Targets: Why Choose ICOS?

Jounce Approach

- Data from Founders' labs demonstrated clinical correlate and outcome data that supported activation of ICOS
- Subsequent laboratory evidence in animal tumor reduction studies

Many Potential Targets: Why Choose ICOS?

Human clinical and mouse preclinical data support activating ICOS receptor for anti-tumor benefit

Median survival:

ICOShi = 20 months

ICOSlo = 8.1 months

Chen et al, PNAS (2009); Carthon et al, Clin Can Res (2010); Ng Tang et al, Canc Immunol Res (2013) Impaired Tumor Rejection In ICOS-/- and ICOSL-/- Mice Treated with Anti-CTLA-4 Therapy

Fu et al. Cancer Res 2011:71:5445-5454

JTX-2011: ICOS Agonist Antibody

JTX-2011: Key Features

- Specificity for ICOS
- Species cross-reactive
- Agonist activity
- Humanized rodent antibody
- hlgG1 Fc backbone

JTX-2011 Dual Mechanism Shifts Balance of T Cells Towards Anti-Tumor Activity

JTX-2011 is designed to

- Stimulate T effector cells in tumor
- Selectively reduce T regulatory cells in tumor

JTX-2011 Stimulates Primed Human T Cells

No Indiscriminate Activation of T cells

Activation of *primed* CD4+ T effector cells

No activation of *unprimed* CD4+ T effector cells

JTX-2011 Induces Signaling Through AKT Pathway

- ICOS antibody re-capitulates signaling activity of ICOS ligand
 - Induces pAKT signal in CD4+ T cells when cross-linked

JTX-2011 Dual Mechanism Shifts Balance of T Cells Towards Anti-Tumor Activity

JTX-2011 is designed to

- Stimulate
 T effector cells in tumor
- Selectively reduce T regulatory cells in tumor

Selective Reduction in Tumor but Not Peripheral T Regulatory Cells

Mouse JTX-2011 selectively reduces tumor T regulatory cells *in vivo*

Mouse JTX-2011 does not reduce spleen T regulatory cells *in vivo*

- Reduction in tumor T regulatory but not tumor T effector cells
- No change in T cell subsets in spleen, lymph nodes or periphery

ICOS Expression is Highest on Mouse and Human Intratumoral Tregs

Multiplexed IF

Tumor cells (gold) CD4(+) T cells expressing ICOS target within human tumors (green)

Flow cytometry

Selective Reduction of Tregs vs Teffs in vitro

 ICOS antibody selectively depletes Tregs from IL-2 activated PMBC Under these in vitro activation conditions,
 Tregs and Teffs express similar levels of ICOS

Single Agent Development of JTX-2011

Supported by Long-Lasting Response in Preclinical Tumor Models

Animals cured of tumors are immune to tumor re-challenge

Fc Effector Function is Required for Optimal Anti-Tumor Activity

Loss of Activity with Fc Deficient Version of Antibody

Fc-Deficient ICOS Antibody

Sa1/N Tumors

Tumor free / animals treated

Combination Development of JTX-2011 with Anti-PD-1

Supported by Enhanced Anti-tumor Activity in Preclinical Models

CT26 Tumors

Tumor free / animals treated

Preclinical Safety Features of JTX-2011

JTX-2011-induced T Cell Activation Requires Initial T Cell Priming

Activity of ICOS Antibody is Tumor-centric: No Depletion of Tregs in the Periphery

Preclinical Toxicity Studies Predict Safety Margin

 NOAEL = 50 mg/kg; highest dose tested in cynomolgus monkey IND-enabling GLP toxicology study

Cytokine Storm Not Predicted from *in vitro* and *in vivo* Studies

- No cytokine storm in GLP toxicology studies
- No cytokine induction by JTX-2011 alone or in combination with Opdivo[®] in human whole blood assays

Pharmacodynamic Biomarker: Target Engagement in Mouse

Efficacy in Syngeneic Mouse Tumor Model Correlates with Duration of ICOS Target Engagement

	0.05mg/kg	0.25mg/kg	2.5mg/kg
Tumor Free Mice	1/10	5/10	5/10

Preclinical Pharmacokinetics and Pharmacodynamics

PK and PD in Cynomolgus Monkey Preclinical Studies

- Pharmacokinetics:
 - T1/2 = 5-12 days in ADA-negative monkeys
- Pharmacodynamic readouts
 - Target engagement: ICOS is fully engaged for the duration of the dosing interval at all doses
 - JTXP induction: JTXP is induced on monkey cells in peripheral blood

Non-GLP tox study dosed up to 75 mg/kg with no toxicity observed

0.5mg/kg

75 m g/k g

Preclinical QSP Modeling of JTX-2011

Predictions for PK and Target Engagement in First-in-Human Study

Patient Selection Strategy Supported by Mouse Models

Better Single-Agent Efficacy in Tumors Expressing Higher Levels of Intra-Tumoral ICOS

Tumor	ICOS IHC Score	Single Agent Efficacy	Combination Efficacy (+ anti-PD-1)
Sa1/N	3+	++++	ND
B16-SIY	2+	+++	++++
MC38	1+	+	+++*
CT26	1+	+	++++
EMT6	1+	+/++	+/-
LLC1	0	-)	-

⁺⁺⁺⁺ indicates 61-100% tumor regression

*Intra-tumoral levels of ICOS+ T cells increases post PD-1 treatment

⁺⁺⁺ indicates 41-60% tumor regression

⁺⁺ indicates 21-40% tumor regression

⁺ indicates 10-20% tumor regression

⁻ indicates no tumor regressions

Indication Selection & Patient Enrichment

ICOS Immunohistochemistry (IHC)

Integrated Approach to Understanding ICOS in the Context of Immune Oncology Landscape

Collaborations with premier Institutions

1000s of human tumors interrogated

Integrated TCGA and Internal Data Analysis

Patient enrichment for our clinical trials

Translational Science Platform Informs Biomarker Strategy Example from NSCLC

ICOS expression levels across subtypes of NSCLC tumors

ICOS levels are not associated with smoker status

Biomarker-Driven Strategy for Patient Enrichment

Potential for Establishing Complementary and/or Companion Diagnostics

ICONIC: Adaptive, Biomarker-Driven Clinical Study

Phase 1/2 Preliminary Efficacy Proof-of-Concept

Poster: CT035

JTX-2011: Agonist Monoclonal Antibody that Targets ICOS

ICOS: T cell Surface Protein Receptor with Strong Target Rationale

- Member of family of immune modulators that includes PD-1 and CTLA-4
- Potential importance of ICOS supported by key clinical observations
- Pharmacological activity is focused in the tumor

JTX-2011: Agonist Antibody Targeting ICOS

- Significant anti-tumor activity seen in preclinical studies
- Preclinical data supports use as both a single agent and in combination
- Safety, PK, and pharmacodynamic features in the monkey inform human FIH study
- Potential predictive biomarkers identified for patient enrichment strategies

ICONIC: JTX-2011 Phase 1/2 Clinical Trial

- JTX-2011 being evaluated as monotherapy and in combination with nivolumab
- Phase 1 to assess safety, PK and PD ongoing
- Phase 2 will incorporate patient enrichment strategy

Thank You

MDAnderson Cancer Center

Jim Allison Pam Sharma

Tanguy Seiwart

David Rimm

Debbie Law

Elizabeth Trehu

Christopher Harvey

Heather Hirsch

Jason Reeves

Tyler Simpson

Lindsey Shallberg

Matt Wallace

Sriram Sathy

Robert Mabry

Amit Deshpande

Steve Sazinsky

Kutlu Elpek

Ellen Duong

Jenny Shu

Tong Zi

Applied Biomath

Joshua Apgar

ToxStrategies

Barbara Mounho-Zamora

