

Page 1

© Express Logic

1-888-THREADX * www.rtos.com

Event Chaining™ Enables Real-Time Systems to Respond
to Multiple Real-Time Events More Efficiently

Innovative function callback capability

permits responsiveness, while reducing overhead

Introduction
Express Logic’s ThreadX® RTOS provides several advanced technology features that can be beneficial
during the development stage as well as during run-time. These features include real-time Event-
Chaining™, Application Notification “Callback” Functions, and many others. We will investigate the Event
Chaining and Notification Callback Function topics in this paper.

Event-Chaining
Event-Chaining is a technique that enables a single RTOS action based on the occurrence of independent
events. This is particularly useful in activating an application thread that is suspended on two or more
resources. For example, suppose a single thread is responsible for processing messages from 5 or more
message queues, and must suspend when no messages are available. Such resources might be messages
being awaited in one or more queues, a semaphore from one of several cooperating threads, or an
event in an event flags group. In general, Event-Chaining results in fewer threads, less overhead, and
smaller RAM requirements. It also provides a highly flexible mechanism to handle synchronization
requirements of more complex systems. Implementing this technique is a three-step process as follows:

1. Register one or more notification callback functions. We’ll explain notification callback functions
below.

2. The event occurs, and the registered notification callback function is automatically invoked.
Each such function typically contains a tx_semaphore_put service call, which increments a
“gatekeeper” semaphore which communicates to a waiting thread that a particular event has
occurred. However, many other service calls could be used.

3. A thread, suspended on the “gatekeeper” semaphore mentioned above, is activated. Getting
this semaphore signifies that one of the events in question has occurred and the thread
determines which, and then performs the actions appropriate for that event.

There are three types of Event-Chaining available:

1. Queue Event-Chaining
2. Semaphore Event Chaining
3. Event Flags Group Event Chaining

Page 2

© Express Logic

1-888-THREADX * www.rtos.com

A typical use for Event-Chaining is to create a mechanism for a thread to suspend on two or more
objects. For example, this technique can be used to permit a thread to suspend on any of the following
situations:

 Suspend on a queue, a semaphore, and an event flags group

 Suspend on a queue or a semaphore

 Suspend on a queue or an event flags group

 Suspend on two queues

 Suspend on three queues

 Suspend on four queues

An important advantage of the Event-Chaining technique is that one or more threads waiting for an
event to occur can be activated automatically when the event occurs. In general, this technique will
reduce the number of threads needed to respond to an event and will reduce the associated resources
and overhead required for processing systems of this nature.
In this paper, we will focus on Queue Event Chaining. The principles are the same across all three types,
so the process described below for Queue Event Chaining can be replicated for either of the other two
types.

Notification Callback Functions
Some applications may find it advantageous to be notified whenever a message is placed on a queue.
ThreadX provides this ability through the tx_queue_send_notify service. This service registers the
supplied application notification function with the specified queue. ThreadX will subsequently invoke
this application notification function whenever a message is sent to the queue. The processing within
the application notification function is determined by the application; however, it typically consists of
resuming the appropriate thread for processing the new message.

For example, the tx_queue_send_notify(&my_queue, queue_notify) function registers a callback
function (“queue_notify”) that would be called every time a message is sent to the specified queue
(“my_queue”).

Queue Event-Chaining
Suppose a single thread is responsible for processing messages from five different queues and must also
suspend when no messages are available. This is easily accomplished by registering an application
notification function for each queue and introducing an additional counting semaphore. Specifically, the
application notification function performs a tx_semaphore_put whenever it is called (the semaphore
count represents the total number of messages in all five queues). The processing thread suspends on
this semaphore via the tx_semaphore_get service. When the semaphore is available (in this case, when
a message is available!), the processing thread is resumed. It then interrogates each queue for a
message, processes the found message, and performs another tx_semaphore_get to wait for the next
message. Accomplishing this without event-chaining is quite difficult and likely would require more
threads and/or additional application code. As noted, implementing Event-Chaining is a multiple-step
process.
Figure 1 contains a template that illustrates the components involved for Event-Chaining with a message
queue.

Page 3

© Express Logic

1-888-THREADX * www.rtos.com

1. Initialization

TX_QUEUE my_queue;
TX_SEMAPHORE gatekeeper;
ULONG my_message[4];

/* The queue, semaphore, and
message declarations, the
registration of the notification
callback function, and the prototype
for the notification callback function
are usually placed in the
tx_application_define function, which
is part of the initialization process */

tx_queue_send_notify (&my_queue, queue_notify);

void queue_notify (TX_QUEUE *my_queue);

 2a. Event Occurrence

tx_queue_send (&my_queue, my_message,
TX_NO_WAIT);

/* A message is sent to the queue
somewhere in the application.
Whenever a message is sent to this
queue, the notification callback
function is automatically invoked,
thus causing the semaphore
gatekeeper to be incremented. */

 2b. Notification Callback Function Called

void queue_notify (TX_QUEUE *my_queue)
{
 tx_semaphore_put (&gatekeeper);
}

/* Notification callback function to
increment the “gatekeeper”
semaphore is called whenever a
message has been sent to my_queue
*/

3. Thread Activation

tx_semaphore_get (&gatekeeper,
TX_WAIT_FOREVER);

/* Somewhere in the application, a
thread suspends on semaphore
gatekeeper, which is equivalent to
waiting for a message to appear on
the queue */

Figure 1. Template for Event-Chaining with a message queue

Page 4

© Express Logic

1-888-THREADX * www.rtos.com

Sample System Using Event-Chaining
We will now study a complete sample system that uses Event-Chaining. The system is characterized in
Figure 2.

All the thread suspension examples in previous chapters involved one thread waiting on one object,
such as a mutex, a counting semaphore, an event flags group, or a message queue. In this sample
system, we have 2 threads waiting on multiple objects. Specifically, threads wait for a message to
appear on either queue_1 or queue_2.

Speedy_thread has priority 5 and slow_thread has priority 15. We will use Event-Chaining to
automatically increment the counting semaphore named “gatekeeper” whenever a message is sent to
either queue_1 or queue_2. We use two application timers to send messages to queue_1 or queue_2 at
periodic time intervals and the threads wait for a message to appear.

Figure 2. Multiple object suspension problem

Figure contains a description of the two activities for speedy_thread.

Figure 3. speedy_thread activities

Page 5

© Express Logic

1-888-THREADX * www.rtos.com

Figure contains a description of the two activities for slow_thread.

Figure 4. slow_thread activities

Listing for sample_system.c
The sample system named sample_system.c appears below; line numbers have been added for easy
reference.

000 /* sample_system.c

001

002 Create two threads, one byte pool, two message queues, three timers, and

003 one counting semaphore. This is an example of multiple object suspension

004 using Event-Chaining, i.e., speedy_thread and slow_thread wait for a

005 message to appear on either of two queues */

006

007

008 /**/

009 /* Declarations, Definitions, and Prototypes */

010 /**/

011

012 #include “tx_api.h”

013 #include <stdio.h>

014

015 #define STACK_SIZE 1024

016 #define BYTE_POOL_SIZE 9120

017 #define NUMBER_OF_MESSAGES 100

018 #define MESSAGE_SIZE TX_1_ULONG

019 #define QUEUE_SIZE MESSAGE_SIZE*sizeof(ULONG)*NUMBER_OF_MESSAGES

020

021

022 /* Define the ThreadX object control blocks... */

023

024 TX_THREAD speedy_thread; /* higher priority thread */

025 TX_THREAD slow_thread; /* lower priority thread */

026

027 TX_BYTE_POOL my_byte_pool; /* byte pool for stacks and queues */

028 TX_SEMAPHORE gatekeeper; /* indicate how many objects available */

029

030 TX_QUEUE queue_1; /* queue for multiple object suspension */

031 TX_QUEUE queue_2; /* queue for multiple object suspension */

032

Page 6

© Express Logic

1-888-THREADX * www.rtos.com

033 TX_TIMER stats_timer; /* generate statistics at intervals */

034 TX_TIMER queue_timer_1; /* send message to queue_1 at intervals */

035 TX_TIMER queue_timer_2; /* send message to queue_2 at intervals */

036

037 /* Variables needed to get info about the message queue */

038 CHAR *info_queue_name;

039 TX_THREAD *first_suspended;

040 TX_QUEUE *next_queue;

041 ULONG enqueued_1=0, enqueued_2=0, suspended_count=0, available_storage=0;

042

043 /* Define the variables used in the sample application... */

044 ULONG speedy_thread_counter=0, total_speedy_time=0;

045 ULONG slow_thread_counter=0, total_slow_time=0;

046 ULONG send_message_1[TX_1_ULONG]={0X0}, send_message_2[TX_1_ULONG]={0X0};

047 ULONG receive_message_1[TX_1_ULONG], receive_message_2[TX_1_ULONG];

048

049 /* speedy_thread and slow_thread entry function prototypes */

050 void speedy_thread_entry(ULONG thread_input);

051 void slow_thread_entry(ULONG thread_input);

052

053 /* timer entry function prototypes */

054 void queue_timer_1_entry(ULONG thread_input);

055 void queue_timer_2_entry(ULONG thread_input);

056 void print_stats(ULONG);

057

058 /* event notification function prototypes used for Event-Chaining */

059 void queue_1_send_notify(TX_QUEUE *queue_1_ptr);

060 void queue_2_send_notify(TX_QUEUE *queue_2_ptr);

061

062

063 /**/

064 /* Main Entry Point */

065 /**/

066

067 /* Define main entry point. */

068

069 int main()

070 {

071 /* Enter the ThreadX kernel. */

072 tx_kernel_enter();

073 }

074

075

076 /**/

077 /* Application Definitions */

078 /**/

079

080

081 /* Define what the initial system looks like. */

082

083 void tx_application_define(void *first_unused_memory)

084 {

085

086 CHAR *speedy_stack_ptr;

Page 7

© Express Logic

1-888-THREADX * www.rtos.com

087 CHAR *slow_stack_ptr;

088 CHAR *queue_1_ptr;

089 CHAR *queue_2_ptr;

090

091 /* Create a byte memory pool from which to allocate the thread stacks. */

092 tx_byte_pool_create(&my_byte_pool, “my_byte_pool”,

093 first_unused_memory, BYTE_POOL_SIZE);

094

095 /* Create threads, queues, the semaphore, timers, and register functions

096 for Event-Chaining */

097

098 /* Allocate the stack for speedy_thread. */

099 tx_byte_allocate(&my_byte_pool, (VOID **) &speedy_stack_ptr, STACK_SIZE,

100 TX_NO_WAIT);

101

102 /* Create speedy_thread. */

103 tx_thread_create(&speedy_thread, “speedy_thread”, speedy_thread_entry, 0,

104 speedy_stack_ptr, STACK_SIZE, 5, 5, TX_NO_TIME_SLICE,

105 TX_AUTO_START);

106

107 /* Allocate the stack for slow_thread. */

108 tx_byte_allocate(&my_byte_pool, (VOID **)&slow_stack_ptr, STACK_SIZE,

109 TX_NO_WAIT);

110

111 /* Create slow_thread */

112 tx_thread_create(&slow_thread, “slow_thread”, slow_thread_entry, 1,

113 slow_stack_ptr, STACK_SIZE, 15, 15, TX_NO_TIME_SLICE,

114 TX_AUTO_START);

115

116 /* Create the message queues used by both threads. */

117 tx_byte_allocate(&my_byte_pool, (VOID **)&queue_1_ptr,

118 QUEUE_SIZE, TX_NO_WAIT);

119

120 tx_queue_create (&queue_1, “queue_1”, MESSAGE_SIZE,

121 Queue_1_ptr, QUEUE_SIZE);

122

123 tx_byte_allocate(&my_byte_pool, (VOID **) &queue_2_ptr,

124 QUEUE_SIZE, TX_NO_WAIT);

125

126 tx_queue_create (&queue_2, “queue_2”, MESSAGE_SIZE,

127 Queue_2_ptr, QUEUE_SIZE);

128

129 /* Create the gatekeeper semaphore that counts the available objects */

130 tx_semaphore_create (&gatekeeper, “gatekeeper”, 0);

131

132 /* Create and activate the stats timer */

133 tx_timer_create (&stats_timer, “stats_timer”, print_stats,

134 0x1234, 500, 500, TX_AUTO_ACTIVATE);

135

136 /* Create and activate the timer to send messages to queue_1 */

137 tx_timer_create (&queue_timer_1, “queue_timer”, queue_timer_1_entry,

138 0x1234, 12, 12, TX_AUTO_ACTIVATE);

139

140 /* Create and activate the timer to send messages to queue_2 */

Page 8

© Express Logic

1-888-THREADX * www.rtos.com

141 tx_timer_create (&queue_timer_2, “queue_timer”, queue_timer_2_entry,

142 0x1234, 9, 9, TX_AUTO_ACTIVATE);

143

144 /* Register the function to increment the gatekeeper semaphore when a

145 message is sent to queue_1 */

146 tx_queue_send_notify(&queue_1, queue_1_send_notify);

147

148 /* Register the function to increment the gatekeeper semaphore when a

149 message is sent to queue_2 */

150 tx_queue_send_notify(&queue_2, queue_1_send_notify);

151 }

152

153

154 /**/

155 /* Function Definitions */

156 /**/

157

158

159 /* Entry function definition of speedy_thread

160 it has a higher priority than slow_thread */

161

162 void speedy_thread_entry(ULONG thread_input)

163 {

164

165 ULONG start_time, cycle_time=0, current_time=0;

166 UINT status;

167

168 /* This is the higher priority speedy_thread */

169

170 while(1)

171 {

172 /* Get the starting time for this cycle */

173 start_time = tx_time_get();

174

175 /* Activity 1: 2 ticks. */

176 tx_thread_sleep(2);

177

178 /* Activity 2: 5 ticks. */

179 /* wait for a message to appear on either one of the two queues */

180 tx_semaphore_get (&gatekeeper, TX_WAIT_FOREVER);

181

182 /* Determine whether a message queue_1 or queue_2 is available */

183 status = tx_queue_receive (&queue_1, receive_message_1, TX_NO_WAIT);

184

185 if (status == TX_SUCCESS)

186 ; /* A message on queue_1 has been found-process */

187 else

188 /* Receive a message from queue_2 */

189 tx_queue_receive (&queue_2, receive_message_2, TX_WAIT_FOREVER);

190

191 tx_thread_sleep(5);

192

193 /* Increment the thread counter and get timing info */

194 speedy_thread_counter++;

Page 9

© Express Logic

1-888-THREADX * www.rtos.com

195 current_time = tx_time_get();

196 cycle_time = current_time-start_time;

197 total_speedy_time = total_speedy_time + cycle_time;

198 }

199 }

200

201 /***/

202

203 /* Entry function definition of slow_thread

204 it has a lower priority than speedy_thread */

205

206 void slow_thread_entry(ULONG thread_input)

207 {

208

209 ULONG start_time, current_time=0, cycle_time=0;

210 UINT status;

211

212

213 while(1)

214 {

215 /* Get the starting time for this cycle */

216 start_time=tx_time_get();

217

218 /* Activity 3-sleep 12 ticks. */

219 /* wait for a message to appear on either one of the two queues */

220 tx_semaphore_get (&gatekeeper, TX_WAIT_FOREVER);

221

222 /* Determine whether a message queue_1 or queue_2 is available */

223 status = tx_queue_receive (&queue_1, receive_message_1, TX_NO_WAIT);

224

225 if (status == TX_SUCCESS)

226 ; /* A message on queue_1 has been found-process */

227 else

228 /* Receive a message from queue_2 */

229 tx_queue_receive (&queue_2, receive_message_2, TX_WAIT_FOREVER);

230

231 tx_thread_sleep(12);

232

233

234 /* Activity 4: 8 ticks. */

235 tx_thread_sleep(8);

236

237 /* Increment the thread counter and get timing info */

238 slow_thread_counter++;

239

240 current_time = tx_time_get();

241 cycle_time = current_time-start_time;

242 total_slow_time = total_slow_time + cycle_time;

243 }

244 }

245

246 /***/

247 /* print statistics at specified times */

248 Void print_stats (ULONG invalue)

 Page
10

© Express Logic

1-888-THREADX * www.rtos.com

249 {

250 ULONG current_time, avg_slow_time, avg_speedy_time;

251

252 If ((speedy_thread_counter>0) && (slow_thread_counter>0))

253 {

254 current_time = tx_time_get();

255 avg_slow_time = total_slow_time/slow_thread_counter;

256 avg_speedy_time = total_speedy_time/speedy_thread_counter;

257 tx_queue_info_get (&queue_1, &info_queue_name, &enqueued_1,

258 &available_storage, &first_suspended,

259 &suspended_count, &next_queue);

260 tx_queue_info_get (&queue_2, &info_queue_name, &enqueued_2,

261 &available_storage, &first_suspended,

262 &suspended_count, &next_queue);

263 printf(“\nEvent-Chaining: 2 threads waiting for 2 queues\n\n”);

264 printf(“ Current Time: %lu\n”, current_time);

265 printf(“ speedy_thread counter: %lu\n”, speedy_thread_counter);

266 printf(“ speedy_thread avg time: %lu\n”, avg_speedy_time);

267 printf(“ slow_thread counter: %lu\n”, slow_thread_counter);

268 printf(“ slow_thread avg time: %lu\n”, avg_slow_time);

269

270

printf(“ total # queue_1 messages sent:

%lu\n”, send_message_1[TX_1_ULONG-1]);

271

272

printf(“ total # queue_2 messages sent:

%lu\n”, send_message_2[TX_1_ULONG-1]);

273 printf(“ current # messages in queue_1:

%lu\n”, enqueued_1);

274 printf(“ current # messages in queue_2: %lu\n\n”, enqueued_2);

275

276 }

277

278

else printf(“Bypassing print_stats function, Current Time: %lu\n”,

tx_time_get());

279 }

280

281

282

283 /***/

284 /* Send a message to queue_1 at specified times */

285 void queue_timer_1_entry (ULONG invalue)

286 {

287

288 /* Send a message to queue_1 using the multiple object suspension approach

*/

289 /* The gatekeeper semaphore keeps track of how many objects are available

290 via the notification function */

291 send_message_1[TX_1_ULONG-1]++;

292 tx_queue_send (&queue_1, send_message_1, TX_NO_WAIT);

293

294 }

295

296 /***/

297 /* Send a message to the queue at specified times */

298 void queue_timer_2_entry (ULONG invalue)

299 {

300

 Page
11

© Express Logic

1-888-THREADX * www.rtos.com

301 /* Send a message to queue_2 using the multiple object suspension approach */

302 /* The gatekeeper semaphore keeps track of how many objects are available

303 via the notification function */

304 send_message_2[TX_1_ULONG--1]++;

305 tx_queue_send (&queue_2, send_message_2, TX_NO_WAIT);

306

307 }

308

309 /***/

310 /* Notification function to increment gatekeeper semaphore

311 whenever a message has been sent to queue_1 */

312 void queue_1_send_notify(TX_QUEUE *queue_ptr_1)

313 {

314 tx_semaphore_put (&gatekeeper);

315 }

316

317 /***/

318 /* Notification function to increment gatekeeper semaphore

319 whenever a message has been sent to queue_2 */

320 void queue_2_send_notify(TX_QUEUE *queue_ptr_2)

321 {

322 Tx_semaphore_put (&gatekeeper);

323 }

END Example code.

 Page
12

© Express Logic

1-888-THREADX * www.rtos.com

Figure contains several comments about this listing, using the line numbers as references.

Lines Comments

024 through 035
Declaration of system resources including threads, byte pool,
semaphore, queues, and timers

037 through 047
Declaration of variables used in the system including parameters for
the queue info get services

049 through 060
Declaration of prototypes for thread entry functions, timer entry
function, and event notification functions

116 through 127 Creation of the two queues used for multiple object suspension

129 and 130 Creation of the gatekeeper semaphore used for Event-Chaining

132 through 142
Creation of the timer for display statistics at periodic intervals, and
creation of the two timers to send messages to the queues at various
intervals

144 through 150
Registration of the two functions that increment the gatekeeper
semaphore whenever messages are sent to the queues

159 through 199
Entry function for Speedy Thread; lines 178 through 191 contain the
implementation of Activity 2

203 through 244
Entry function for Slow Thread; lines 218 through 231 contain the
implementation of Activity 3

247 through 276
Entry function for timer print stats, which includes calculating
average cycle time, number of times through each cycle, and info get
for the two queues

281 through 304
Entry functions for timers to send messages to queue_1 and queue_2
at periodic intervals

307 through 320

Entry functions for the notification callback functions; these functions
increment semaphore gatekeeper whenever a message is send to
either queue_1 or queue_2; these functions are essential to the
Event-Chaining technique

Figure 5. Comments about sample system listing

 Page
13

© Express Logic

1-888-THREADX * www.rtos.com

Following is some sample output for this system after it has executed for 500 timer ticks, using

information obtained from the tx_queue_info_get service:

Event-Chaining: 2 threads waiting for 2 queues

Current Time: 500

speedy_thread counter: 69

speedy_thread avg time: 7

slow_thread counter: 24

slow_thread avg time: 20

total # queue_1 messages sent: 41

total # queue_2 messages sent: 55

current # messages in queue_1: 0

current # messages in queue_2: 1

Conclusion
Event-Chaining is one technique that uses notification callback functions to reduce the number of threads
required to manage responses to multiple events in a real-time system. For more information about
Event-Chaining, Callback Functions, or any of the other advanced technology features of Express Logic’s
ThreadX RTOS, please send an email to: info@expresslogic.com, or call 1-888-THREADX.

mailto:info@expresslogic.com

