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Abstract

Ideas by Statistical Mechanics (ISM) is a generic program to moadltien and propaation of
ideas/patterns throughout populations subjected to endogenous and exogenous interactions. The program
is based on the authsrivork in Statistical Mechanics of Neocortical Interactions (SMNI), and uses the
authors Adaptve Smulated Annealing (ASA) code for optimizations of training sets, as well as for
importance-sampling to apply the autlsotopula financial risk-management codes, Trading in Risk
Dimensions (TRD), for assessments of risk and uncertaifitys product can be used for decision
support for projects ranging from diplomatic, information, militsayd economic (DIME) factors of
propagationfeolution of ideas, to commercial sales, trading indicators across sectorarafiél marlets,
advertising and political campaigns, etc.

It seems appropriate to base an approach for padipagof ideas on the only system so far demonstrated
to develop and nurture ideas, i.e., the neocortical brainstatistical mechanical model of neocortical
interactions, desloped by the author and tested successfully in describing short-term memory and EEG
indicators, is the proposed moddiSM develops subsets of macrocolumnar activity of nwaltiate
stochastic descriptions of defined populations, with macrocolumnsedeby their local parameters
within specific regions and with parameterized endogenous-regiemal and rogenous xernal
connectities. Rarameters of subsets of macrocolumns will be fit using ASA to patterns representing
ideas. Rrameters of external and integional interactions will be determined that promote or inhibit the
spread of these idea3ools of inancial risk management, \toped by the author to process correlated
multivariate systems with differing non-Gaussian disttibns using modern copula analysis, importance-
sampled using ASA, will enable bonaéd correlations and uncertainties of success and failure to be
calculated. Maginal distributions will be wlved to determine their expected duration and stability using
algorithms deeloped by the authopr.e., ATHTREE and RTHINT codes.
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1. Significance of Problem

A briefing [2] demonstrates the breadth and depth complexity required to address real diplomatic,
information, military economic (DIME) fictors for the propagion/eolution of ideas through deied
populations. Aropen mind would conclude that it is possible that multiple approaches may be required
for multiple decision makers in multiple scenarid$owever, it is in the interests of multiple decision-
malers to as much as possible rely on the same generic model for actual computdaongisers

would have  trust that the coded model is faithful to process their inputs.

Similar to DIME scenarios, sophisticated competitimarketing requires assessments of responses of
populations to n& products.

Many lamge fnancial institutions are motrading at speeds barely limited by the speed of ligitey co-

locate their servers close to exchange floors to be able to turn quotes into ordersedoutas evithin
msecs. Clearlytrading at these speeds require automated algorithms for processing and making
decisions. Thesealgorithms are based on “technical” information detifrom price, volume and quote
(Level 11) information. The net big hurdle to automated trading is to turn “fundamental” information
into technical indicators, e.g., to includeangolitical and economic news into such algorithms.

Ideas by Statistical Mechanics (ISM) can bedi#ped to address these issues. [ism (noun): A belief (or
system of beliefs) accepted as authoxitatlyy some group or schoolA doctrine or theory; especiallp
wild or visionary theory A distinctive doctrine, theorysystem, or practice.]

A short summary of the detailed description provided here appears in the 2008 issue of/thepEdia

of Artificial Intelligence[56] with a collection of n& approaches to artificial intelligence. Details in this

paper appear in the Journal of Integrated Systems Design and Process Science, Special Issue: Biologically
Inspired Computing [54].

1.1. Bottom-Upversus Top-Down
The concept of “memes” is an example of an approach to deal with DIME factors [74].

The meme approach, using a reductionist philogaglevolution among genes, is reasonably contrasted
to approaches emphasizing the need to includevaiaglobal influences ofwolution [75].

A best selling book on propation of ideas documents macontexts where the spreading of information
often follows a diffusion process [9].

It seems appropriate to base an approach for padipagof ideas on the only system so far demonstrated

to develop and nurture ideas, i.e., the neocortical brdinthe present context, the autlsogpproach,

using guidance from his statistical mechanics of human neocortical interactions (SMEDpeé in a

series of about 30 published papers from 1981-20016,20,29,33,35,41,43,44,46], also addresses
long-standing issues of information measured by electroencephalpdEpB) as arising from bottom-

up local interactions of clusters of thousands to tens of thousands of neurons interacting via short-ranged
fibers), or top-den influences of global interactions (mediated by long-ranged myelinatrd)i SMNI

does this by including both local and global interactions as being necessaryelap deeocortical
circuitry.

1.2. CostFunctions for Ideas

Computational approachesvetoped to process different approaches to modeling phenomena must not be
confused with the models of these phenomdra. example, the meme approach lends it self well to a
computational scheme in the spirit of genetic algorithms (GA&)e cost/objectie function that describes

the phenomena of course could be processed pyotrer sampling technique such as simulated
annealing (SA). One comparisf#?] demonstrated the superiority of SAep GA on ast/objectve
functions used in a GA database. That study used Very Fast Simulated Annealing (VFSR), created by the
author for military simulation studies [26], which hagoleed into Adaptte Smulated Annealing

(ASA) [30]. However, it is the authois experience that the Art and Science of sampling coxnpistems

requires tuning expertise of the researcher as well as good codes, and GA @\5wdikd do as well

on cost functions for this study.
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A very important issue is for this project is tovelep cost functions for this studgot only hav to fit or
process themFor example, a cost function may be obtained directly from minus theritbgn of the
multivariate distribution describing all variables (related to the egtosgdinformation”), as vas done for
some SMNI and financial markets studies.

1.3. Inclusionof non-Gaussian Correlated Systems

This approach includes application of methods of portfolio risk analysis to such statistical sydtenas.
are often tw kinds of errors committed in multriate risk analyses: (E1) Although the disttibns of
variables being considered are not Gaussian (or not tested toveembe thg are to Gaussian), standard
statistical calculations appropriataely to Gaussian distriltions are emplged. (E2)Either correlations
among the variables are ignored, or the metadommitted in (E1) — incorrectly assuming variables are
Gaussian — are compounded by calculating correlations as if all variables were Gaussian.

The harm in committing errors E1 and E2 can be fatal — fatal to the analysis and/or fatal to people acting
in good faith on the basis of these risk assessments. Risk is measured by tails ofidisritsojf the

tails of some variables are muddttér or thinner than Gaussian, the risk in committing E1 can be quite
terrible. Mary times systems are pushed to and past desvels lef risk when seeral variables become

highly correlated, leading to extreme dependence of the full system on the sensitivity oftisdess

It is very important not to commit E2 errors.

The Trading in Risk Dimensions (TRD) project addresses these issues in the context of financial risk
management, but the tools and codes are generic [52].

1.4. OtherAlternati ves

There are multiple other alternagiworks being conductedarid-wide that must be at least kept in mind

while devreloping and testing models ov@ution/propa@tion of ideas in defined populations: A study on

a (too) simple algebraic model of opinion formation concluded that the ordlydpinions ared@remal

ones [1]. A study of the influence on chaos on opinion formation, using a simple algebraic model,
concluded that contrarian opinion could persist and be crucial in close elections, albeit the authors were
careful to note that most real populations probably do not support [fjads limited review of work in

social netwrks illustrates that there are about as yna@renomena to be explored as there are disciplines
ready to apply their network models [73].

2. Technical Objectives

2.1. Architecture for Selected Model

The primary objectie is to celiver a computer model that contains the following features: (1) A
multivariable space will be defined to accommodate populati@2)sA cost function @er the population
variables in (1) will be defined to explicitly dak a pattern that can be identified as an Idea. (3) Subsets
of the population will be used to fit parameters — e.g,fowehts of ariables, connectivities to patterns,
etc. — to an Idea, using the cost function in (2). (4) Cornvigctf the population in (3) will be made to
the rest of the populationlnvestigations will be made to determine what endogenous connectivity is
required to stop or promote the propagation of the Idea into other regions of the popgtiexternal
forces, e.g., acting only on speécifegions of the population, will be introduced, to determing these
exogenous forces may stop or promote the propagation of an Idea.

3. Work Plan

3.1. Application of SMNI Model

A statistical mechanical model of neocortical interactionseldped by the author and tested successfully
in describing short-term memory (STM) and in training and testing EEG indicators, is the model used
here to address DIME factors for the propagatiwmiigion of Ideas through defined populations.

The approach here is to w#op subsets of Ideas/macrocolumnar activity of naaltate stochastic
descriptions of defined populations (of a reasonabtesimall population samples, e.g., of 100-1000),
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with macrocolumns defed by their local parameters within specific regions (larger samples of
populations) and with parameterized long-ranged -regional and external connedgties. Rarameters

of a gven subset of macrocolumns will bé ftising ASA to patterns representing ldeas, akin to acquiring
hard-wired long-term memory (LTM) patternBaameters of external and integional interactions will

be determined that promote or inhibit the spread of these Ideas, by determining the degree of fits and
overlaps of probability distributions relat © the seeded macrocolumns.

That is, the same Ideas/patterns may be represented in other than the seeded macrocolumns by local
confluence of macrocolumnar and long-rangedds, akin to STM, or by different hard-wired parameter

LTM sets that can support the same local firings in othgions (possible in nonlinear system§MNI

also calculates o STM can be dynamically encoded into LTM [15].

Small populations in regions will be sampled to determine if the padpdddea(s) exists in its pattern
space where it did exist prior to its interactions with the seeded popul&MNI derives ronlinear
functions as arguments of probability distributions, leading to multiple STM, et?, fér auditory
memory capacity Some irvestigation will be made into nonlinear functional forms other than those
derived for SMNI, e.g., to hee @apacities of tens or hundreds of patterns for ISM.

3.2. Application of TRD Analysis

Tools of financial risk management,véoped by the author to process correlated warlate systems
with differing non-Gaussian distultions using modern copula analysis, importance-sampled using ASA,
will enable bonaitle correlations and uncertainties of success and failure to be cal¢6Btearginal
distributions will be @olved to determine theixpected duration and stability using algorithmeettgped

by the authqri.e., ARTHTREE [57] and BTHINT [45] codes.

3.3. Exampleof Use of ISM

For an exkample of problems that can be approached by ISM, for gpgcitonsider some data that might
be drawn from opinions, or internet sampling, etc., and mapped orsxalseariables. Sayhat the
mapped/projected data has a range that is dense enough (e.g., 10 owisioresgso that it makes sense
to build histograms -- which are essentially marginal probability digtaobs for each ariable. Ifthe
system is such that it is changing in time, e.g., duelatility of the system or changing trends/coutse
then this really is a multeriate stochastic processFor a lamge class of distriltions, the time
development can be used to bettérthe models, e.g., usingAPHINT/PATHTREE code to wlve the
model and fit the modeMer a ime domain as well.

ASA can fit the data to some forms of reasonable digidbs. TRDcopula codes can transform these
distributions (which lilely are not Gaussian) into a space where it makes sensefapdenrrelations and
covariances -- the point of using modern copula analysis for risk management, etc. In most systems it is
important to properly treat correlations.

Now, consider introducing a product or an idea into a city arwithin one of two countries. Therean

be “long-ranged” interactions/influences between cities within one country and cities within the other
country Within a country there are relately “short-ranged” (different from long-ranged, e.g., due to
cultural distances, etc.) interactions. The problem posedasdi¢a) model this total system composed

of two (or more) countries with their inner cities, (bmhto promote or retard the delopment of certain
products or ideas, e.g.,\udo sed the process to enhance a desired goal.

This is very much lie the real brain modeled by SMNI in detail to fit EEG data across regions of
neocorte (where here different neocorticalgiens are lile dfferent countries, e.g., Eauditory, visual,
somatic, associat, frontal cortical regions), and the within eaclgiom there are macrocolumnar
interactions (lile within cities).

Somevhat more spedifally, the distributions likely hae multiple states to support\s®al to mary ideas

or themes, akin to states of short-term memory (STM). These can be maintained by stochatsticfacti

the underlying model which a8 not not set prior to hold such states. These states nvigitbe
competing preferences or ideas. After time, the parameters of the model may bedfaaidipted to

store these adfity patterns more solidly into the parameters of the system, e.g., into a long-term memory
(LTM) storage, which likely would be harder to modify with the long-ranged interactibhs.long-
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ranged interactions, which can exist endogenously in the total system, probably can be more easily
modified (than the short-ranged interactions) by introduction of exogenousyag@rmitting some kind
of control wer the system.

The use of multiariate stochastic processes at just these fevds, albeit requiring relately
sophisticated computational algebra and numerical algorithnigsestd explain a lot of brain processes,
and this also would sfie to explain some useful tactics and strategies for a lot of businesses.

4. RelatedWork
4.1. StatisticalMechanics of Neocortical Interactions (SMNI)

4.1.1. Application to ISM Project

Neocorta has &olved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions acrggmseof macrocolumns.This
common architecture processes patterns of information within and amdéergrdifregions of sensqry
motor, associatve rtex, etc. Therefore, the premise of this approach is that this is a good model to
describe and analyzeatution/propagation of Ideas among defined populations.

Relevant to this study is that a spatial-temporal lattieddf short-time conditional multiplicate-noise
(nonlinear in drifts and diffusions) multriate Gaussian-Madwvian probability distribution is deloped
faithful to neocortical function/pfsiology. Such probability distributions are a basic input into the
approach used here. The SMNI model was itst physical application of a nonlinear mudiiate
calculus deeloped by other mathematical physicists in the late @0tefine a statistical mechanics of
multivariate nonlinear nonequilibrium systems [10,67].

4.1.2. SMNITests on STM and EEG

The author has d@eloped a statistical mechanics of neocortical interactions (SMNI) for human ne@corte
building from synaptic interactions to minicolumnpamacrocolumnar and regional interactions in
neocorte. Sincel981, a series of papers on the statistical mechanics of neocortical interactions (SMNI)
has been deloped to model columns andgiens of neocortex, spanning mm to cm of tissue, As
depicted in Figure 1, SMNI delops three biopysical scales of neocortical interactions: (a){@’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscogionsz SMNI has
developed appropriate conditional probability distributions at eae#l,laggreaing up from the smallest
levels of interactions.In (a) synaptic inter-neuronal interactionsyesaged @er by mesocolumns, are
phenomenologically described by the mean and variance of a wstib¥. Smilarly, in (a)
intraneuronal transmissions are phenomenologically described by the meanargmtcey of I'.
Mesocolumnar \eraged excitatoryK) and inhibitory () neuronal frings M are represented in (a’)n

(b) the vertical aganization of minicolumns is sketched together with their horizontal stettdn,
yielding a physiological entitythe mesocolumn. In (b’) theverlap of interacting mesocolumns at
locationsr andr’ from timest andt + r is sketched. Inc) macroscopic regions of neocorte depicted

as arising from manmesocolumnar domains. (c’) sketchesviregons may be coupled by long-ranged
interactions.

Most of these papers V& ckalt explicitly with calculating properties of STM and scalp EEG in order to
test the basic formulation of this approdtB8-16,19,20,22,28,29,33,35,36,38,39,41,43,60,61]. The
SMNI modeling of local mesocolumnar interactions (@gence and dergence between minicolumnar
and macrocolumnar interactions) was tested on STM phenomé&ha SMNI modeling of
macrocolumnar interactions across regions was tested on EEG phenomena.

4.1.3. SMNIDescription of STM

SMNI studies hee cetailed that maximal numbers of attractors lie within the physical firing spadé pf
where G = {Excitatory Inhibitory} minicolumnar irings, consistent with experimentally obseav
capacities of auditory and visual STM, when a “centering” mechanism is enforced by shifting background
noise in synaptic interactions, consistent widpeximental observations under conditions of selecti
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l M <0

Fig. 1. lllustrated are three biophysical scales of neocortical interactions: " Je(a(a
microscopic neurons; (b)-(b") mesocolumnar domains; (c)-(c’) macroscopic regions.

attention [16,20,33,61,71]This leads to all attractors of the short-time disiiiin lying along a diagonal
line in M® space, déctively defining a narrev parabolic trough containing these most likely firing states.
This essentially collapses the 2 dimensioMf space down to a one-dimensional space of most
importance. Thughe predominant physics of STM and of (shdsef contribution to) EEG phenomena
takes place in a namo* parabolic trough” inVI® space, roughly along a diagonal line [16].

These calculations were further supported by high-resolutroluteon of the short-time conditional-
probability propagator usingAPHINT [61]. SMNI correctly calculated the stability and duration of
STM, the primag versus recencrule, random access to memories within tenths of a second aseahserv
and the obserd 7% 2 capacity rule of auditory memory and the observed?4capacity rule of visual
memory.

SMNI also calculates o STM patterns (e.g., from agn regon or even aggregaed from multiple
regions) may be encoded by dynamic mim@ifion of synaptic parameters (withirkpgrimentally
observed ranges) into long-term memory patterns (LTM) [15].

4.1.4. SMNIDescription of EEG

Using the power of this formal structure, sets of EEG amtteel potential data from a separate NIH
study collected to inestigate genetic predispositions to alcoholism, were fitted to an SMNI model on a
lattice of regional electrodes to extract brain “signatures” of $AMKA3]. Eachelectrode site as
represented by an SMNI distution of independent stochastic macrocolunseaied M€ variables,
interconnected by long-ranged circuitry with delays appropriate to long-fiber communication in
neocort&. The global optimization algorithm ASA was used to perform maximum likelihood fits of
Lagrangians defined by path igtals of multvariate conditional probabilities. Canonical momenta
indicators (CMI) were thereby deed for individual's EEG data. The CMI gie ketter signal recognition

than the rev data, and were used to ahtage as correlates of behavioral states. In-sample data was used
for training [41], and out-of-sample data was used for testing [43] these fits.

These results aye strong quantitatie sipport for an accurate intuié gcture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
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scales and functional or betaral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.

4.1.5. GeneridVlesoscopic Neural Networks

SMNI was applied to a parallelized generic mesoscopic neural networks (MNN) [29], as depicted in
Figure 2, adding computational power to a similar paradigm proposed for target recognition [18].

Fig. 2. Scales of interactions among minicolumns are represented, within macrocolumns,
across macrocolumns, and across regions of macrocolumns.

“Learning” takes place by presenting the MNN with data, and parametrizing the data in terms of the
firings, or multvariate frings. The*weights] or coefficients of functions of firings appearing in the drifts

and diffusions, areitf to incoming data, considering the joint fesdtive” L agrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost function. This program of
fitting coeficients in Lagrangian uses methods of ASA.

“Prediction” takes advantage of a mathematically edemt representation of the Lagrangian path-
integral algorithm, i.e., a set of coupled Langevin rate-equatignsoarse deterministic estimate to
“predict” the eolution can be applied using the most probable path, BUHMNT has been used.
PATHINT, even when parallelized, typically can be toowléor “predicting” evolution of these systems.
However, PATHTREE is much faster.

The present project uses the same concepts, having sets of maltipldes define macrocolumns with a
region, with long-ranged connexitly to other rgions. Eachmacrocolumn has its own parameters, which
define sets of possible patternditimately, ISM of course would not use functional relationships
developed solely in neocortex, but rather those more appropriate veraipulation.

4.1.6. OnChaos in Neocortex

There are manpapers on the possibility of chaos in neocortical interactions. While this phenomena may
have sme merit when dealing with small netsks of neurons, e.g., in some circumstances such as
epilepsythese papers generallyeacmnsidered only too simple models of neocortex.

The author took a model of chaos that might be measured by EE&opdel and published by some
colleagues, but adding background stochastic influences and parameters that were agreed to better model
neocortical interactions. The resulting mudtiate nonlinear conditional probability distributionasv
propagted may thousands of epochs, using the auth@BHINT code, to see if chaos could exist and
persist under such a modéB]. Therewas asolutely no measurable instance of chaos surviving in this
more realistic context.

4.1.7. MathematicalDevelopment

Some of the algebra behind SMNI depicts variables and distributions that populate each repessentati
macrocolumn in each region.

A derived mesoscopic Lagrangiah,, defines the short-time probability distdbon of firings in a
minicolumn, composed dfiL0? neurons, gien its just preious interactions with all other neurons in its

macrocolumnar surroundG is used to represent excitatori)(and inhibitory () contributions. G
designates contributions from bdthand] .

Puw =1 PRIME(r; t+ ) MC(r'; 1)]
G
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where Ag and Bg, are minicolumnagveraged inter-neuronal synapticfiehcies, vg, and (pg, are
aveaged means and variances of contiins to neuronal electric polarizations1® andN® in F€ are
afferent macrocolumnairings, scaled to efferent minicolumnar firings ByN * (1103, whereN * is the
number of neurons in a macrocolunii®®. Similarly, AS andBE have keen scaled byl * /N0 to
keep FC invariant. V' are mesocolumnar nearest-neighbor interactions.

4.1.7.1. Inclusionof Macroscopic Circuitry

The most important features of thisvdlepment are described by the Lagrangighin the ngaive o
the argument of thexponential describing the probability distribution, and the “threshadtiof” F©
describing an important sensitivity of the distribution to changes in its variables and parameters.

To more properly include long-ranged fibers, when it is possible to numerically include interactions
among macrocolumns, thé&; terms can be dropped, and more realistically replaced by a iewbdif
threshold factoF®,

(V€ - alSvEING - % AENVEIM® - al-vE N - % AEVE MFE)

Fe =
1 , ! 12
(VN2 + (¢lSh2](alSING + 5 ACIMG + afENE + 5 AEMEE))L2

1
ik = . A + B )

Here, afferent contributions frold*E long-ranged excitatory fibers, e.g., cortico-cortical neuronge ha
been added, whertl*® might be on the order of 10% di": Of the approximately 1§ to 10
neocortical neurons, estimates of the number of pyramidal cells range from 1/10 to 2/3. Mawrly e
pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the number of cortico-
cortical fibers is of the order 10

4.1.8. Portfolio of Physiological Indicators (PPI)

The ISM project uses the SMNI distuiiions as a template for distributions of populations. The TRD
project illustrates ha such distributions can be @doped as a Portfolio of BBiological Indicators (PPI),

to calculate risk and uncertainty of functions, e.g., functions of ldeas, dependamntmntieat impact
such populations [53].
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4.1.8.1. Multiplelmaging Data

It is clear that the SMNI distributions also can be used to procdsesedif imaging data beyond EEG,

e.g., also MEG, PETSPECT, fMRI, etc., where each set of imaging data is used to fitvit set of
parameterized SMNI distributions using a commagiamal circuitry (Different imaging techniques may

have dfferent sensitivities to different synaptic and neuronaVitiets.) Thenportfolios of these imaging
distributions can be deloped to describe the total neuronal system, e.g., akin to a portfolio ofet bask
markets. For example, this could permit the uncertainties of measurements to be reduced by weighting
the contrilutions of different data sets, et@verlaps of distributions corresponding to different subsets of
data gve rumerical specificity to the values of using these subsets.

It is to be expected that better resolution of behaviam@ite can be determined by joint distributions of
different imaging data, rather than by treating each distribution separately.

4.1.8.2. LocalMersus Global Influences

Another twist on the use of this approach is to better understand the role of local and globaitiomstrib

to imaging data. EEG data is often collected at different electrode resolutions. Cost functions composed
of these different collection-method variables can be used to calcu(aeta&tions wer their imaging
portfolios. For example, relate weights of tvo scales of collection methods can be fit as parameters, and
relative grengths as thecontribute to various circuitries can be calculated. This method will be applied

to determine the degree of redace of local and global activity during specific tasks. If some tasks
involve drcuitry with frontal cortex, then these methods may coutetio the understanding of the role of
consciousness.

4.1.8.3. BinocularRivalry Example

For specificity, an exkample of the use of this approach is xr&ct information from binoculanvalry
tasks. Binocularivalry likely is a stochastic Gamma process [68], wherein there can be as much as 20%
of the data switching between states during either task.

Fitted SMNI distributions could be “Trained” on data presenting clear cases of brain Sthese
distributions could then be ®sted” on out of sample clear data, and then used to match these
distributions to data not so clearly defd. Theseesults may be sfi€iently defned to be correlated with
frontal region activitysuggesting further studies on the role of consciousness in binoaalay.ri

4.1.8.4. Aplication to ISM
These kinds of applications of SMNI and TRD to PRlehébvious counterparts in ISMDifferent kinds

of data from populations often lead to different conclusioAsportfolio of distributions from these
different data sets permits a better assessment of/eeéator/uncertainty of these conclusions.

4.2. ComputationalPhysics

4.2.1. Application to ISM Project

The authorl work in mathematical and computationalyptts, applying algorithms including those used
in this project to applications in w®al disciplines, including pfsics per se[21,34,42,57,63]
neuroscience [14,16,29,35,39,43finance [27,45,59,65],general optimization [3,26,31,37,62], and
combat analysif6,32,58,64], illustrate the importance of properly applying these algorithms to this
project.

4.2.2. Adaptve Smulated Annealing (ASA)

Adaptive Smulated Annealing (ASA)30] is used to optimize parameters of systems and also to
importance-sample variables for risk-management.

ASA is a C-language code \d@#oped to statistically find the best global fit of a nonlinear constrained
non-covex a@st-function @er a D-dimensional space. This algorithm permits an annealing schedule for
“temperature’T decreasing>@onentially in annealing-timg, T = T, exp(-ck’P). Theintroduction of
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re-annealing also permits adaptation to changing sétisgiin the multi-dimensional parametgrace.
This annealing schedule is faster than fast Cawamealing, wherel = Ty/k, and much faster than
Boltzmann annealing, whefe = To/Ink. ASA has eer 100 OPTIONS to praide robust tuning er
mary classes of nonlinear stochastic systems.

For example, ASA has ASA ARALLEL OPTIONS, hooks to use ASA on parallel processors, which
were first deeloped in 1994 when the authoras/ Principal Imestigator (PI) of National Science
Foundation grant DMS940009/Parallelizing ASA and RTHINT Project (RPP). Sincethen these
OPTIONS hae been used by people in various institutions.

4.2.3. ATHINT and PATHTREE

In some cases, it is desirable torelep a time golution of a short-time conditional probabilitgg., of
mauiginal distributions in this studyTwo useful algorithms hae keen deeloped and published by the
author.

PATHINT [33] motivated the declopment of RTHTREE [57],an algorithm that permits extremelgst
accurate computation of probability distrttons of a large class of general nonlinear diffusion processes.

The natural metric of the space is used itst flay down the mesh. Thevaving local short-time
distributions on this mesh are then dynamically calculated. The short-time probability dewnsstyhgi
correct result up to ordégd(At) for ary final point S, the order required to reger the corresponding
partial differential equation.

PATHINT and ATHTREE hae demonstrated their utility in statistical mechanical studiesnante,
neuroscience, combat analyses, neuroscience, and other selected nonlinearriateulti
systems [45,58,6 1]PATHTREE has been used extershy to price financial options [57].

4.2.3.1. ReaDptions for Project Schedules (ROPS)

An adwantage to fitting data to nonlinear short-time conditional multiplieatbise (nonlinear in drifts
and diffusions) multiariate Gaussian-Madvian probability distrilations, aside from robust features such
as forming Rdeapproximates of ratios of drift and flision nonlinear functions, is that Real Options
based on this data can also beettgped to estimate the future nature/value of marginal digioibs [55].

Real Options for Project Schedules (ROPS) has three nezwwsnpling/optimization shellsAn outer
Adaptve Smulated Annealing (ASA) optimization shell optimizes parameters of gicatelans
containing multiple Projects containing ordereabRs. Amiddle shell samples probability distuiitons
of durations of &sks. Aninner shell samples probability distributions of costs agks. RTHTREE is
used to deelop options on scheduledAlgorithms used for TRD are applied tovélop a relatve risk
analysis among projects.

4.3. StatisticalMechanics of Combat (SMC)

4.3.1. Application to ISM Project

The author has experience inva®l disciplines deeloping projects requiring deloping and itting
nonlinear stochastic algorithms to data, including projects that requigmpliag algorithms for accurate
description and analysis of human activity.

4.3.2. &nus Project

During 1988-1989, after a year of preparatory work, as a Professor of Physics with the/3nNa
working with the US Armythe author vas Pl of US Army Contract RLF6L, funded by the Deputy Under
Secretary of the Army for Operations Research (DUSA-OHR) led a team of @iters and contractors to
successfully baseline Janus(T) — a battalimetlevar game with statistical details of performance
characteristics of weapons, wement of men and machines acrosmious terrains — to National
Training Center (NTC) data obtained in the field [6,23-25].

The Janus project deoped fits of data to probability distributions, separately for the data collected at
NTC and for the data collected from Janus(Byrwames (after the terrain and tactics used at NTC were
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put into Janus).A Statistical Mechanics of Combat (SMC) wasveleped, essentially a nonlinear
stochastic extension of Lanchester theory of combat, to define a common cost fumbiofits were
performed using an earlyasant of ASA, Very Fast Simulated Re-annealing (VFSR) also created by the
author [26]. These distributions werevalved in time, to test their sensitivity to the initigbf A match
between the means andriances of the taevolving distributions gvethe US Army confidence to use
Janus(T) in acquisition and tactics training.

4.3.3. Portfolio of Combat Indicators (PCI)

Many times (multiple runs of) simulation studies are performed to study the influence of a particular
technology or set of tactics using varied technologies, within the xtooftea full scenario of multiple
technologies and tactics/strategies.

The PPI project illustrates womultiple distributions, devied from independent fits of such simulations
can be decloped as a Portfolio Combat Indicators (PCI), to calculate risk and uncertainty of functions of
these technologies and/or tactics.

4.3.3.1. Aplication to ISM

Similar to the utility of PPl to help ground the concept of ISM by a reasonable analogy to phenomena
more familiar than ISM, the kinds of applications of PCVéhabvious counterparts in ISMDifferent

kinds of data from populations often lead tdetiént conclusionsA portfolio of distributions from these
different data sets permits a better assessment of/eeéadr/uncertainty of these conclusions.

4.4. Trading in Risk Dimensions (TRD)

4.4.1. StatisticalMechanics of Financial Markets (SMFM)

A full real-time risk-managed trading system has been coded by the author using state of the art risk
management algorithms, Trading in Risk Dimensions (TRD) [52].

TRD is based largely on previous work irval disciplines, using a formulation similar to that used by
the author to deslop a multvariate nonlinear nonequilibrium Statistical Mechanics of Financial ®tark
(SMFM) [17,27,40,48-50].using powerful numerical algorithms tid fnodels to dat§7]. A published
report closest to this project was formulated for a portfolio of options [51].

4.4.2. Application to ISM Project

Some algebraic and numerical details inherent v@ldping and using an end-to-end trading system lik
TRD serves to emphasize some reald aspects of dealing with complesystems that must be
addressed using ISM.

In the contgt of this approach, the concepts of “portfolio” are considered to be extended to the total
ensemble of of multiple regions of populations, each having sets of mubifiédbes. Thais, although

the each region will hee the same kinds of multiple variables, to create a generic system for the project,
such variables in different regions will be part of the full set of waitite nonlinear stochasti@rables
across all rgions. Oncethe full “portfolio” distribution is deeloped, \arious measures of cost or
performance can be calculated, in addition to calculating various measure of risk.

It should be understood thatyasampling algorithm processing a huge number of states can fing man
multiple optima. As mentioned b&lp ASAs MULTI_MIN OPTIONS are used to & nultiple optima
during sampling. Some algorithms might label these states as “mutations” of optimal states. It is
important to be able to include them indl decisions, e.g., to apply additional metrics of performance
specifc to applications. Experience with risk-managing portfolioswshthat all criteria are not best
considered by lumping them all into one cost functiaut, rather good judgment should be applied to
multiple stages of pre-processing and post-processing when performing such sampling.

The concepts of trading-rule parameters are considered to be extended to parameters that might be
included in this work, e.g., to permit some topelecontrol of weights gien to dfferent members of
ensembles, or parameters in models that affect their interactions.
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It is clear that stochastic financial matk represent a social system of ynpaople willing to risk their
moneg on their beliefs and ideas and on their assumptions of beliefs and ideas of other tiduders.
concepts of trading rules and portfolio risk-management seem useful to introduce into ySiWl to®ls
to determine risk and uncertainty.

4.4.2.1. StandardCode For All Platforms

The ASA and TRD codes are in vanilla C, able to run across all Unix platforms, including
Solaris/SRRC, Linux and Cygwin under Wdows [http://gzgwin.com]. StandardJnix scripts are used

to facilitate file and data manipulationBor example, output analysis plots — e.g., 20 sub-plots per page,
are prepared in batch using RDB (a Perl relational database tool from ftp://ftp gdrRDBrhobbs/),
Gnuplot (from http://gnuplot.sourceforge.net/), and other Unix scriptageed by the author.

The judicious use of pre-processing and post-processing of variables, in addition to processing by
optimization and importance-sampling algorithms, presents important features to this prggeat be
simple maximum likelihood estimates based on (quasi-)linear methodgressmn usually applied to

such systems.

TRD includes design and code required to interface to actual data feedeeutte platforms.Similar
requirements might be essential for future use of these approaches as proposed here.

As with most compbe projects, care must bevgn to sundry problems that arise. Similar andvn&ich
problems can be expected to arise in this project as well.

4.4.2.2. GaussiaCopula

Gaussian copulas are véped in TRD. Other copula distributions are possible, e.g., Student-t
distributions (often touted as being more sewsitb fat-tailed distributions — here data is first adapyi

fit to fat-tailed distrilations prior to copula transformations). These alteveatistributions can be quite
slow because iverse transformations typically are not as quick as for the present distribution.

Copulas are cited as an important component of risk management not yet widely used by risk
management practitionef4]. Gaussiarcopulas are presentlygaded as the Basel Il standard for credit
risk management [11]. TRD permits fast as well as robust copula risk management in real time.

The copula approach can bgended to more general distributions than those considered1Bgrdf
there are not analytic or rekatly standard math functions for the transformations (and/eerse
transformations described) here, then these transformations must be perfepiraity enumerically in
code such as TRD. Then, the ASA_PARALLEL OPTIONS alreadstiag in ASA (deeloped as part
of the1994 National Science#ndation Parallelizing ASA andAPHINT Project (PAPP)) would beevy
useful to speed up real time calculations [30].

4.4.3. ExponentialMarginal Distribution Models

For specificity, assume that each mautkis fit well to a two-tailed exponential density disttibn p (not
to be confused with the ingded price variablep,) with scaley and meamn,

B 1 Gm
Dﬂ e x dx,dx>=m 1l
P =0 oeem =5 e 1 X 3)
U= e x dx,dx<m
02y
0
which has a cumulate probability distribution
dx U 0 _lecmid
F(dx) = J’ o' p(dx) = §+ sgndx-m)l-e « (4)
Pa O

0
where y andm are defined by\aerages < > over a window of data,
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m=<dx>, 2y =< (dx)? > - < dx >? (5)

The exponential distriliion is selected here to illustrate thatere this hardest case to process
analytically [70] can be treated within TRD,

The p(dx) are “marginal” distributions observed in the market, modeledt tindé abae dgebraic form.

Note that the exponential distribution has an infinite number of non-zero cumulants, so that
< dx? > - < dx > does not heae the same “variance” meaning for this “width” as it does for a Gaussian
distribution which has just tevindependent cumulants (and all cumulants greater than the secosid)v

Below algorithms are specified to address correlated markets giving rise to the stochastiorbeha
these markets.

The TRD code can be easily modified to utilize distiitns p'(dx) with different widths, e.g., dérent
x' for dx less than and greater tham

_|dx-m|
p(dx)dx = (6)
4.4.4. CopulaTransformation
4.4.4.1. Tansformation to Gaussian Marginal Distributions
A Normal Gaussian distribution has the form
4 1 ¥
=—_—¢€ 2 7
p(dy) = = (7)
with a cumulatie dstribution
F(dy) = [1 ¥ erf[ﬂy% ®)
20

where the erf() function is a tabulated function coded into most math libraries.

By setting the numerical values of the abdvo cumulative dstributions, monotonic on inteay [0,1],
equal to each othghe transformation of the marginal variables to thg marginal variables is effected,

O _ldm[]
dy =V2ef(2F(dx)-1)=V2gn@dx-m)efld-e x [ (9)
O 0

The irnverse mapping is used when applying this to the portfolio distribution,

Cldy|

0
dx=m- sgn(dy),\/lng. erfD\/

(10)

4.4.4.2. IncludingCorrelations

To wnderstand ho correlations enterlook at the stochastic process defined by dye marginal
transformed variables:

dy' = §'dw, (11)
wheredw; is the Wener Gaussian noise contributingdy of marleti. The transformations are chosen
such thag"=1

Now, a gven markets roise, @i dw;), has potential contributions from &l markets, which is modeled in
terms ofN independent Gaussian processizg,

§'dw; = %Qikdzk (12)
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The cavariance matrix ') of thesey variables is then gen by
o' = 2 g6 (13)
with inverse matrix, the “metritwritten as (;) and determinant ofd) written asg.

Since Gaussianaviables are n@ being used, the esariance matrix is calculated directly from the
transformed data using standard statistics, the point of this “copula” transformation [70,72].

Correlationsp are denved from bilinear combinations of market volatilities
g’

Vargi

Since the transformation to Gaussian space hasedaf' = 1, here the oriance matrices theoretically

are identical to the correlation matrices.

This gives a multivariate correlated proce$sin the dy variables, in terms of Lagrangiathsand Actions
A,

Pl = (14)

N 1

P(dy) = P(dy?, ... ,dyN) = (27zdt) 2 g 2e”-® (15)
wheredt = 1 @bove. The Lagrangian L is géen by
L= Z dy'g;; dy’ (16)

2dt2

The effectve action Ag;, presenting a “cost function” useful for sampling and optimization, is defined by

P(dy) =€, Ag = Ldt + % Ing+ % In(27rd) 17)

4.4.4.2.1. Stabl€ovariance Matrices

Covariance matrices, and theirvierses (metrics), are kam to be quite noisyso dten the/ must be
further deeloped/iltered for proper risk management. The root cause of this noise is recognized as
“volatility of volatility” present in market dynami¢65]. In addition to such problems, ill-conditioned
matrices can arise from loss of precision for larggables sets, e.g., when calculatingeise matrices

and determinants as required here. In general, the wisde used for ceariance calculations should
exceed the number of market variables to help tame such problems.

A very good approach fowvaiding ill-conditioning and lack of posite-definite matrices is to perform
pre-averaging of input data using a wingdaf three epochfs9]. Othermethods in the literature include
subtracting eigeralues of parameterized random matrifg8]. Using Gaussian transformed data
alleviates problems usually encountered witlrthiled distrilotions. Selectiorof reasonable windues,
coupled with pre-geraging, seems to robustlyad ill-conditioning.

4.4.4.3. Copulaof Multi variate Correlated Distribution
The multivariate distribution inx-space is specified, including correlations, using

ady

P(dx) = P(dy) 05—~ Da o , (18)
Oody' O
Where% Ois the Jacobian matrix specifying this transformation. Thiesgi
1t z(dydx) (95=1i)(dyh) .
P(dx) =g 2e 2 7 Pi(dx") (19)
i

where (dyg) is the column-vector of(dyéx,---,dyd'\'x) expressed back in terms of their respezxti
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(dx},...,dx"N), (dyg)' is the transpose wevector and (1) is the identity matrix (all ones on the
diagonal).
The Gaussian copul@a(dx) is defined from Eq. (19),
A YR R ICYR)
C(dx)=gze2d (20)

4.4.5. Prtfolio Distribution
The probability density?(dM) of portfolio returnsdM is given as

P(dM) = J’ ITI d(dx")P(dx)dp (dM, — Jz(aj,t dx! +b;,)) (21)

where the Dirac delta-functiafy expresses the constraint that
dM = 3 (a; dx’ +b;) (22)
j

The coeficientsa; andb; are determined by specification of the portfolio currént and “forecasted”
K, giving the returns expectedtaidM;,

_ Ki =Ky
M, = =
Ki =Yy + 25 SgnNGC; ¢ )NC; v (Pir — Piar)
Ki =Y + 2,(sgnNC; )NC; 1 (pi« — Pi@:) + SLINC;; = NCi +]) (23)

whereNC; ; is the current number of brekfilled contracts of mast i at timet (NC > O for long and

NC < Ofor short positions)p; @+ and p; g; are the long/short prices at which contracts were bought/sold
according to the long/short signal sbi; ) generated by xternal models.Y; andY, are the dollars
available for irvestment. Thefunction SL is the slippage and commissionsfetdd by changing the
number of contracts.

4.4.5.1. Recursie Risk-Management in Trading Systems

Sensible deglopment of trading systems fit trading-rule parameters to generate the “best” portfolio (best
depends on the chosen criterid)his necessitates fitting risk-managed contract sizes to chosen risk
taigets, for each set of chosen trading-rule parameters, e.g., selected by an optimization algorithm.
given st of trading-rule parameters affects te andb;; coeficients in Eq. (21) as these rules act on

the forecasted market prices asythe generated to sample the mudtiate market distributions.

This process must be repeated as the trading-rule parameter space is sampled to fit the trading cost
function, e.g., based on profit, Sharpe ratio, etc., of the Portfolio retuena easonably large in-sample

set of data.

4.4.6. RiskManagement

Once P(dM) is devdoped (e.g., numerically), risk-management optimization ignddf Theportfolio
integral constraint is,

~VaR)
Q = P(dM < VaR) = J’ dM P(M,|M"y) (24)

where VaR is a ixed percentage of the totavalable mong to invest. E.g.,this is specitally
implemented as

VaR =0.05,Q =0.01 (25)

where the value o¥aR is understood to represent a possible 5% loss in portfolio returns in one epoch,
e.g., which approximately translates into a 1% chance of a 20% loss within 20 epochs. Expected tail loss
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(ETL), sometimes called conditional VaR oonst conditional expectation, can be directly calculated as
an aerage wer the tail. While the ¥R is useful to determine expected loss if a tahtdoes not occur
ETL is useful to determine what can be lost if a teéhe occurs [7].

ASA [30] is used to sample future contracts defined by a cost function, e.g., maximuimnspigéct to
the constraint

Costg =|Q-0.01] (26)

by optimizing theNC;; parameters. Othgvost-sampling constraints can then be appligdidgments
always must be made whether to apply specific constraints, before, during or after sampling.)

Risk management is dgoped by (ASA-)sampling the space of the next emNC;} to fit the abee
Q constraint using the sampled markatiables{ dx}. The combinatoric space ®C’s satisfying theQ
constraint is huge, and so additiohsl-models are used to choose the actual trfhsg ,} .

4.4.7. SamplingMulti variate Normal Distribution for Events

Eq. (21) certainly is the core equation, the basic foundation, of modt mw risk management of
portfolios. For general probabilities not Gaussian, and when including correlations, this equation cannot
be solved analytically.

Some people approximate/mutilate this multiple integral to attempt to get some angbyésseon.
Their results may in some cases sens nteresting “toy” models to study some extreme cases of
variables, but there is no reasonable way to estimatenimach of the core calculation has been dgstto

in this process.

Many people resort to Monte Carlo sampling of this multiple gra¢ ASA has an ASA_SAMPLE
option that similarly could be appliedHowever, there are published algorithms specifically for
multivariate Normal distributions [8].

4.4.7.1. Tansformation to Independent Variables

The multvariate correlatedly variables are further transformed into independent uncorrelated Gaussian
dz variables. Multiple Normal random numbers are generated for edzhvariable, subsequently
transforming back taly, dx, and dp variables to enforce the Dira&-function constraint specifying the
VaR constraint.

The method of Cholegkdecomposition is used (eigaiue decomposition also could be used, requiring
inverses of matrices, which are used elsewhere in this project), whereinvin@amoe matrix is dctored

into a product of triangular matrices, simply related to each other by the adjoint operation. This is
possible becaudgg is a symmetric posite-definite matrix, i.e, because care has beeprabk process the

raw data to presemvthis structure as discussed previously.

G=(¢")=c'c , 1=cGct (27)

from which the transformation of thdy to dz are obtained.Eachdz has 0 mean and Stdb4, so is
covariance matrix is 1:

| =< (d2)"(dg) >=<(d9" (CG™C")(d2) >=<(C"d2)' G (C" d2) > = < (dy)" G* (dy) >(28)
where

dy=C'dz (29)
The collection of relateqdx}, {dy}, and {dz} sampled points are defined here a®tis related to
market me@ements.

4.4.8. NumericalDevelopment of Portfolio Returns

4.4.8.1. X From Sampled Events Into Bins

One approach is to directly i#op the portfolio-returns distribution, from which moments are calculated
to defne Q. This approach has the virtue of explicitly exhibiting the shapes of the portfolio wiiigtnib
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being used. In some production runs, integrativar the Dirac d-function permits dster numerical
calculations of moments of the portfolio distribution, to fit these shapes.

The sampling process of Ents are used to generate portfolio-return Bins to determine the shape of
P(dM). Basedon prior analyses of data — market disitibns hae been assumed to be basicallyotw
tailed exponentials — here too prior analyses strongly supports two-tailed distributions for the portfolio
returns. Therefor@nly a “reasonable” sampling of points of the portfolio disifitn, expressed as Bins,

is needed to calculate the momenksx example, a base function to be fitted to the Bins would be in
terms of parameters, wid¥and meanmm,,,

n 1 dM-my,
Di e X dM,dM >= mpy 1 _[dM-my|
P(dM)dM = 1 dM-my = ox e x d™ (30)
O—e X dM,dM < my
02X
X andm,, are defined from data in the Bins by
my =< dM >, 2X2 =< (dM)? > - < dM >? (31)

By virtue of the sampling construction &f(dM), X implicitly contains all correlation information
inherent inA' « .

The TRD code can be easily modified to utilize disiiins P'(dM) with different widths, e.g., dérent
X' for dM less than and greater thamy,,

_[dM-my|
e x dM (32)

P'(dM)dM =
(dM)dM = -
A large number of Events populate Bins into the tail$@iM). Different regions oP(dM) could be
used to calculate a piegise X to compare to onX ove the full region, with respect to sensitivities of
values obtained foB,

1 _ [VaR-my, |

Qzée X (33)

Note that ixing Q, VaR, and my, fixes the full shape of the portfolioxponential distribtion. Sampling
of the NC; is used to adapt to this shape constraint.

4.4.9. Multiple Trading Systems

TRD is designed to process multiple trading systefsop-level text parameter file read in by the
running code adapily decides which trading systems to include ay apcoming epoch, without
requiring recompilation of code.

For example, a master controller of system libraries could change this parameter fildiateaso that at

the next epoch of real-time trading amset of systems could be in force, or depending on the etsark
contts a set of top-kel mastercontroller parameters could decide in training (and used for real-time
this way as well) which libraries to use. The flag to include a system is a number whiet aerthe

weight to be used invaraging wer signals generated by the systems prior to taking a true posifiois.
approach permits the possibility of encasing all trading systems in a global risk-management and a global
optimization of all releant trading-rule parameters.

TRD is designed to easily insert and run multiple trading systems, e.g., to add furthgfictition to
risk-managing a portfolio. Some trading systems may share indicators and parameters, etc.

4.4.10. \alue-Weighting

Some trading systems easily coded into TRD include trend and volatility based indicators and rules,
including price and CMI based indicators and rules, aidev(volume, time, alatility, etc.) weighted
indicators and rules based on these.
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4.4.11. Bst-Processing of Multiple Optima/“Mutations”

Within a chosen resolution of future contracts and trading parameters, the huge numbers of possible states
to be importance-sampled presents multiple optima and sometimes multiple optimal\&tiaitesthese

can be iftered during sampling with various criteria, it is more useful not to include all filters during
sampling, but rather to use ASAMULTI_MIN OPTIONS to sae any @sired number of these optimal

states for further post-processing to examine possible benefgasvrisk according to various desired
important considerations, e.g., weighting by correlations, adding additional metrics of performance, etc.

5. Future Research

5.1. Anticipated Results

If this project is successful it will ke been established that SMNI and TRD algorithms, supported by
computational algorithms such as ASA aiT RINT/PATHTREE, is a very viable approach tovdep
Ideas by Statistical Mechanics (ISM) for decision support for DIsliEadirs of propaafion/evolution of
ideas.

5.2. Signifcance of Initial Efforts

Endogenous and exogenous interactions among local populations, one or some of vehteemdit to

an ldea(s) will be tuned to determine circumstances under which the Idea(s) can batedopag
stopped. ltis possible that only populations already approximately fit/prepared for the ldeas(s) may be
most receptie, and the degree of such preparedness must be determifri&dNI is ary guide, it is easy

to see har long-ranged connectivity can sometimes be dactfe substitute for having tuned local
interactions.

6. Commerialization

This product can be used for decision support for projects ranging from diplomatic, information,,military
and economic (DIME) factors of propatgn/e/olution of ideas, to commercial sales, trading indicators
across sectors of financial markets, advertising and political campaigns, etc.

7. Conclusion

Many disciplines nav require or will require processing comyplpatterns of information deséd from
multiple sources.ldeas by Statistical Mechanics (ISM) is a biologically inspired approach to computing
such multvariate systemsISM uses algorithms and tools applied and testedvieraleother disciplines,
including multvariate nonequilibrium nonlinear statistical mechanics, neuroscience of neocortical
interactions, simulated annealing global optimization, path integolit®n of probability distrilations,

and copula methods of financial risk management.

The power of processing “ideas” is extremely powerful, indeed wenbal that artificial intelligence has
yet to match human processing of ideas inymaspects. Thetrength of utilizing neocortical processing
of information as the backbone of ISM lies not just in its inteigppeal, lnt on details of use of multiple
algorithms and tools.

Prior work in statistical mechanics of neocortical interactions has detailed columnar processing of short-
term memory and large-scale processing of information across multiple regions of neoSartgarly,

ISM develops multiple scales of information processing in quite generic stochastic systems, which are
described by their own probability distributions and obyectiinctions. Multiplestates of these systems
represent transitory patterns of short-term memory and hard-coded patterns of long-term memories, which
may arise across patterns of information from multiple sources in multiple representations.

Prior work in statistical mechanics of financial markets and copula methods of risk management has
detailed processing and trading of multiple stochasti@ntial instruments.Similarly, ISM processes
non-Gaussian probability distributions of mudtiate systems, assessing their correlations in a copula-
transformed spaceSome algebraic and numerical details inherent in the Trading in Risk Dimensions
(TRD) code serves to emphasize some real-world aspects of dealing with>cepspdens that must be
addressed using ISM.
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Multivariate nonequilibrium nonlinear statistical mechanics, although tested and detailed for a couple of
decades —in disciples ranging from neuroscience to combat analysisnémdial markets to other
nonlinear stochastic systems — still is a comliscipline in itself. The trade-dfin using such compie
algebra is that this approach often provides remarkably simple underlying intuitions not gawéeedrelse

for such nonlinear stochastic mudiiate systems, e.g., concepts of “momentithful to the details of
calculation and consistent with intuitions and calculations of “force”, “inertia”, etc.

These approachesverequired the deslopment of strong computational tools, e.g., Adsp@mulated
Annealing (ASA) for global optimization of nonlinear muttiiate parameters and importance sampling

of nonlinear multrariate variables, ATHINT and ATHTREE codes for time adelopment of probability
distributions with moments nonlinear in their mudtiiate \ariables, and copula codes for transforming
multivariate non-Gaussian probability distributions into Gaussian spaces where calculations of
correlations makes sense.

ISM represents a synthesis of these tools and algorithms. Of course, ISM muusé fested on ng
systems of data.
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