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Motivation: want answers to

How to interpolate vector fields with staggered components?

• Arakawa C/D grids
• Components are on cell faces or edges
• Arises in computational fluid dynamics and electromagnetics

Arakawa C-grid Arakawa D-grid
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Currently used interpolation methods in earth sciences

Is there hope to unify these?

• Linear
• Conservative or area weighted, used in climate studies to enforce conservation of
total mass, energy

Babylonian tablet (1700BC) Bilinear Conservative (used since the 1990s)
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Earth science grids are curvilinear

Example: cubed-sphere grid employed by exascale weather prediction/climate
modelling system LFRic developed at UK Met Office

• Six logically rectangular grids (cannot be represented as a single structured grid)
• No pole-like singularity but some distortion where three tiles meet
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Interpolation is required for

• regridding/remapping fields deom one grid to another
• computing fluxes across an area
• advecting fields
• visualising streamlines
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Four types of fields - four types of interpolation methods

Type of field determines staggering and interpolation method

• “Correct” discretisation ensures that mimetic properties such as
∇×∇ = ∇ · ∇× = 0 are satisfied
• “Correct” interpolation ensures conservation of line, surface and volume integrals
(as appropriate)

field type num.comp. example staggering target method
scalar 1 temperature nodal point bilinear
vector 3 velocity edges/Arakawa D line this talk

pseudo-vector 3 magnetic field faces/Arakawa C surface this talk
pseudo-scalar 1 mass density cell centred volume conservative
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Generalizing “interpolation” to work for nodal, edge, face and cell fields

One formula for all cases∫
f =

∑
i fi

∫
T φi

• φi is basis k-form, k = 0, 1, 2 or 3
• T is target (point, line, area or volume)
• fi is field integral over cell element k (node, edge, face or cell)
• ∫

T φi ≡ interpolation weight
• i index runs over all the degrees of freedom (points, edges, faces etc., as
appropriate)
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Basis functions φj satisfy orthogonality condition
∫

i φj = δij

i is cell element (node, edge, face, cell), j is basis function index

Edge basis is perpendicular Face basis is tangent
to neighbouring edges to neighbouring faces
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Result 1: divergence-free field v = dz ∧ dψ
Flux integral depends only on distance of endpoints to nearest grid node

Closed loop integral is exact!
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Result 2: Singular, polar vector field v = xdx+ydy
2π(x2+y2)

Loop integral is 1 if singularity is inside contour, 0 otherwise. Getting exact 0 for
E0 and E1, exact 1 for E6-E9 and in between values for contours that intersect
the cell containing (0,0)
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Result 3: flux on the cubed sphere v = dψ ∧ dr

Edge/face interpolation works for highly distorted cells. Zero error start/end
points fall onto grid nodes.

Integration path/surface Error is ∼ 1/N2
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Summary

Type of field → discretised field staggering → basis functions → interpolation
method

• use bilinear for nodal (scalar) field
• use edge for vector field - conserves line integrals (e.g. voltage)
• use face for pseudo-vector field - conserves flux integrals (magnetic flux)
• use cell for pseudo-scalar fields - conserves volume integrals (total mass)

Masking and partially valid cells?
Ok if taking account of partial cell, faces, edges when setting cell, face and edge
integrals. Done!
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Summary (2)

What about tetrahedra?
Similar approach except that the basis functions are Whitney’s bases (1957)

Higher order basis functions?
Initial work indicates that higher order basis functions can be used. These also satisfy
the orthogonality condition

∫
i φj = δij on sub-cell edges, faces and cells. Quadratic

elements effectively split each cell into 8 sub-cells, each face into 4 sub-faces and each
edge into 2 sub-edges.

The time is ripe to treat interpolation with the same rigour as modelling
“Mimetic Interpolation of Vector Fields on Arakawa C/D Grids”:
https://journals.ametsoc.org/doi/10.1175/MWR-D-18-0146.1
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