
 © CCS, 2004 1

Software Process Improvement and Rapid Process Improvement

Software process improvement (SPI) is one of the many approaches used to improve the

quality and predictability of software development. It has its origins in the larger U.S.

organizations, especially defense contractors, of the 1980s. These organizations had, and

have, ongoing needs to improve ways of working to meet contractual obligations, reduce

costs and improve profitability.

As part of this drive for improved ways of working the Software Engineering Institute

and Mitre Corporation were contracted by the U.S. Department of Defense to produce a

model for evaluation software development organizations. This model, the Capability

Maturity Model, is a synthesis of many ideas and techniques from software engineering

and manufacturing. It became very successful and influential, and dominates the SPI

field. Many of the beliefs and assumptions of the model’s creators, implicit in the model,

are carried forward into many organizations undertaking process improvement, whether

using the CMM or not, such is its influence.

Some of these assumptions are:

- software development activity is best described as processes – it is acknowledged

that these include people and technology too;

- improvement is incremental or evolutionary, in contrast to ‘Business Process Re-

engineering’ which was popular at the time the CMM was developed;

- improvement takes time;

- ‘institutionalization’ (a CMM term) makes processes robust.

There are good reasons for these assumptions, and misunderstanding or ignoring them

can lead to failure to improve software development processes. However these

assumptions are not necessarily valid or helpful in all situations. They reflect the origins

of the CMM and the, primarily engineering and military cultures of the large

organizations that inspired the CMM and were evaluated using the CMM.

There are also beliefs and assumptions about the nature of software engineers (and the

term engineers is important) and their behaviour that may not be appropriate in the wider

 © CCS, 2004 2

industrial and commercial contexts were software development is now conducted, in the

early twenty first century, twenty years after the CMM was first developed. Many

organizations undertaking process improvement now do not have an engineering culture;

software developers produce software. Many organizations are small, or new, or are

reorganized frequently and have no process to improve, unlike the large corporations

with large markets or major defense contracts. And development tools have developed to

the extent that they can now determine processes and ways of working. In addition

software processes are now being offered commercially as a commodity.

In the course of process improvement work across diverse industry sectors, and in a

wide variety of organizational cultures a number of themes have emerged.

1. An ongoing and stable commitment to understanding and improving software

development practices and software quality is required from senior managers. This

need not be a detailed understanding of particular development practices; in fact this

can be a hindrance if senior managers attempt to get too closely involved. But a clear

appreciation of the value of software development processes and practices,

analogous to an appreciation of manufacturing processes is required.

2. Long term process improvement plans are of little use. They are made obsolete by

events.

3. ‘Traditional’ SPI takes too long to deliver benefits to software developers, managers

or the organization. Traditional SPI planning often schedules improvements in terms

of many months or years before useful results or objectives are achieved. Small or

rapidly changing organizations will, quite reasonably, loose patience at these

timescales, or may be reorganized or restructured before they are achieved. (It was

remarked in ‘The Capability Maturity Model’ that “… the CMM is […] an application

of the process management concepts of TQM to software...”. TQM is pervasive,

tactical, results driven process improvement; something often forgotten in process

improvement planning which treats process improvement in a similar manner to

traditional, project oriented software development.)

 © CCS, 2004 3

4. SPI is intrinsically exploratory and risky. It can be inefficient, expensive and difficult

to manage.

5. The benefits expected of SPI activity are rarely identified explicitly.

6. SPI work tends to focus on model requirements – conformance to standard for

certification or marketing purposes – rather than improving the effectiveness or

efficiency of working practices. There is a wide spread assumption that

‘implementing’ model requirements automatically delivers benefits. This is not so.

Unless software processes are consciously designed to meet business needs and

constraints there will be few benefits from conforming to model requirements or

standards alone. The models and standards are reasonable indicators of improved ways

of working, but conformance alone is no guarantee of improvement - but will

increase overheads and costs1.

7. Many benefits arise from small and simple improvements, made quickly.

8. ‘What’s in it for me?’ is fundamental and must be addressed. While no one can

gainsay the need for process improvement everyone will be looking for some

advantage from their involvement. If none is evident support will be limited. This is

not unreasonable, and can be used to validate the process improvement work: if the

benefits are all related to nominal organizational benefits, but not evident in better

day to day practice as seen by managers and developers the value of the

organizational benefits should be questioned. (See 5 above.) Furthermore if there is

no reasonable response to the ‘what’s in it for me?’ reaction then progress in making

change can be expected to be slow.

9. Some software engineering techniques are fundamental. Professional software

engineering practices, well understood in other engineering disciplines too, are essential

if working practices are to be improved. These practices may need to be recast or

1 Consider two organizations working in different industry sectors, one CMM L2 and the other CMM
L3. If they were able to swap software processes the CMM L2 organization would become CMM L3,
improved nominally, but its processes would be unsuited to its needs. Processes must be designed to
meet business needs – which may be guided, by processes models. NB This is not a criticism of the
CMM specifically, it is a limitation that applies to all models and standards that tends to be sidelined by
the need to demonstrate conformance.

 © CCS, 2004 4

reformulated to make them acceptable in particular organizational cultures but are

never-the-less essentially the same as engineering practice.

10. ‘Faster, Cheaper, Better’ is a slogan, and unhelpful. For most organizations managing

quality needs to come first; it is fundamental.2 If software quality is not managed,

neither can schedule or cost. As software quality comes under control improvements

in schedules and costs can be expected. For organizations with good software

development practices schedule, cost and quality are carefully balanced and require

well-considered engineering trade offs. If measurable improvements of all three are

necessary this will require investment in Research and Development (in contrast to

TQM approaches where improvement is intrinsic to working practices, but cannot be

expected to deliver major, predictable improvement3.)

11. ‘Think Strategically but act Locally’. Unfortunately this has become a business cliché;

never-the-less it has some truth to it. In larger organizations ‘global’ process

improvement initiatives are occasionally launched. These do have value in providing

organizational incentives and can help in sharing information. However they can

damage practical process improvement work as process experts spend their time

liasing, setting up committees, and attempt to develop a common, enterprise wide

ways of working; neglecting the day to day process improvement work. These

strategic approaches can distract from useful process improvements, or deter or

undermine it, and frequently fail to deliver anything useful. If a strategic initiative is

underway then exploit it for what it can offer but treat it with caution. In particular

do not wait for it to deliver practical solutions or useful ways of working. Useful

improvements are always developed and owned locally, albeit exploiting assets from

elsewhere. By acting locally, with small, frequent feedback loops, new ways of

working can be tried, and results assessed, with further improvements being built on

the successes.

12. Tactics determine strategy. The set of process improvement tactics and tools that will

work in any given environment is quite limited. A track record of process

improvement, with a growing understanding of which tools and tactics deliver the

2 This does not mean high or highest quality, simply the ability to manage working practices to ensure
the appropriate level of quality.
3 Unless allied to ToC, which actively searches for and manages process ‘constraints’.

 © CCS, 2004 5

best results will determine the feasibility of long term process improvement

objectives. An effective way of working is to begin making tactical fixes, establish

patterns of process improvement activity, finding out what works and what doesn’t.

This builds confidence. Then when process improvement capability is understood

decide what can and cannot be achieved. In this way risks are reduced, a track record

of improvement is established – together with their benefits.

Rapid Process Improvement (RPI) is a response to these observations. It is an attempt to

make Weinberg’s ‘Law of Twins - Inverted’4 a practical approach to process

improvement supported by methods and tools.

RPI is driven by results – either data or outcomes - that are delivered by many small

improvement cycles each with its data or outcomes. They need not all be good - but

there are results, and frequently. Those involved can learn from, and are motivated by the

successes, and can learn from the affordable, and therefore admissible, mistakes (forgive

and remember). Because the improvement activity is small scale it can be inexpensive,

easy to plan and the successes will deliver a good return on investment and necessarily

short break even times.

RPI also minimizes the use of generic solutions and training. People use their processes

not generic ones, so process improvement work focuses on specifics and making fixes,

eliminating the inessential.

In particular:

1. RPI work focuses on solving real problems. If the work is not solving problems

question why the work is being undertaken. The assumption is that software

development is difficult and should be made easier. This is done by fixing problems.

Each fix is a benefit. By focusing on solving problems to deliver benefits rather than

making difficult to substantiate leaps of faith that, for example, ‘Lifecycle model

<X> will improve development times’, or ‘achievement of CMM L3 will eliminate

our quality problems’ are kept under control. The intent is fixes, not pious hopes.

4 “Some of the time, in some places, significant change happens – especially when people aren’t
working hard at it.”

 © CCS, 2004 6

2. Desired results are stated explicitly and when possible measurably. The expenditure

of effort and difficulties encountered by changing ways of working are mitigated by a

clear, shared view of what will be achieved. By stating the desired result of the work

it is also possible to know when it has been achieved. Process improvement work will

remain focused and not become self serving.

3. RPI driven by results. This is directly inspired by the ‘plan do check act’

improvement cycle, data and outcomes provide invaluable information for evaluating

working practices and process improvement capability.

4. Speed: Work is carefully scaled and time-boxed. This is to make the work more

manageable. (Process improvement work is at best difficult to manage with limited

resources available and with operational work always taking priority.) And also to

ensure that results and out comes are produced.

5. RPI is perhaps guided by a model – but not model driven. It is rare for process

improvement to be undertaken without adopting a model, usually the CMM or

CMMI. These valuable models provide a framework and context for process

improvement but over time can come to dominate process improvement with the

achievement of capability or maturity being a seductive, and often the only way of

demonstrating ‘improvement’. RPI attempts to reduce dependence on these models

and the assumption of benefits they deliver and focuses on clearly articulated, locally

determined benefits and improvements.

6. RPI work is highly visible. While it does have a technical aspect process

improvement is primarily concerned with changing expectations and behaviour. This

is best done when people can see what is being done; it also reduces NIH (Not

Invented Here) syndrome.

7. The work is inclusive, integrating work into routine day to day work and business as

usual. It encourages involvement of everyone in process improvement, and

subsequent interest and commitment to good ways of working. (It also helps

overcome the ongoing resourcing problem of process improvement work – there is

never enough effort for process improvement.)

 © CCS, 2004 7

8. RPI is structured - for exactly the same reasons that software development work is

structured. Frameworks for working, reduce uncertainty and risk, and make process

improvement work more predictable and accountable. This is especially important

for process improvement work where the work involves dealing with social aspects –

getting interest, involvement and buy in; where results are uncertain, and many

involved may have little experience in process improvement.

9. RPI supports local ownership and accountability. This maintains involvement and

commitment to process improvement. It also helps ensure that results are useful and

satisfy the ‘what’s in it for me?’ questions.

10. RPI is opportunistic. The emphasis is on fixing problems. If a problem arises it

should be looked at. Failing to consider problems will bring the rationale for process

improvement into question. Never allow ‘That’s a CMM L3 issue, we’re L1’.

These characteristics seem to be reasonable and self evident. When people are asked to

comment on them the consensus view is that they seem, in general, to be a good way of

working. Why are they not found more commonly in practice? There are a number of

reasons that tend to drive process improvement work towards large ‘project oriented’

working with a focus on model requirements rather than measurable improvements in

product quality, or development effectiveness:

1. Process engineers tend to be trained to understand process models and

assessments and evaluations. Knowledge of models is often a prerequisite for

process improvement work. The focus of process improvement becomes, by

default, the achievement of excellence by conforming to the models’

requirements – in the mid- to long-term - with little thought to improving

performance in the near term.

2. Process engineers are often drawn from the software development community,

which is excellent for ensuring first hand knowledge of working practices, but

does mean that software development experiences and practices are applied to

process improvement, which is less satisfactory: changing behaviour is not the

 © CCS, 2004 8

same as producing software. Process engineers can spend too much time

designing and documenting new processes and not evaluating or improving

existing practices.

3. Many process engineers are new to the role (most process engineers appear to

spend between eighteen months to three years in the role) and have limited time

to develop knowledge of process improvement tools and techniques.

4. It is easier to set or accept synthetic ‘conformance to standard’ objectives, rather

than identify specific performance targets. Most senior managers will understand

and be attracted to conformance targets rather than difficult to define, less easy

understood or justify performance targets. Low level process and performance

improvement is even more difficult to justify when busy managers and

developers are focussed on operational matters, rather than ‘overhead’ activities.

5. Process improvement plans will tend to mimic project plans, with a tendency to

overlong phases, distinct tangible deliverables (documents usually)- rather than

changed practices, and a waterfall type approach that defers benefits until late in

the project. This leads, unknowingly, towards risky and over-ambitious objectives

that often only become evident late in the project (assuming the plan is not

overtaken by events).

To minimize these problems sets of process improvement tools that support RPI type

approaches, with continuous improvement, rapid feedback, low costs, low risks and

widespread involvement, have been collected, developed and documented.

PS. With the rise of ‘agile’ software development methods it is striking how many characteristics are

shared by these and RPI; and for the same reasons. Could RPI be considered as an agile improvement

method – and this something that all SPI should exhibit?

CCS - 2009

