
Making use cases precise Page 1 of 15 Franco Civello, RDF Group, UK

Abstract
This paper presents a method of object-oriented analysis (OOA) that combines the informality

and user-friendliness of use cases, with the formality and precision of the Unified Modelling

Language (UML), augmented with constraints and definitions written in the Object Constraint

Language (OCL). The method is illustrated with an example. The benefits of producing precise

functional specifications before coding starts are discussed.

Introduction
Use cases are probably the best known and most popular technique for capturing functional

requirements. However use cases suffer from the drawbacks that all narrative specification

techniques suffer from, that is: possible misinterpretation due to their inherent imprecision,

difficulty to uncover inconsistencies, and difficulty to check for missing specifications, such as a

missing flow or a missing outcome.

The analysis approach presented in this paper increases the quality of use case specifications,

making it far easier to uncover problems while the specifications are being built. Our

approach uses the full descriptive power of UML [Fowler04] and, optionally, OCL [Warmer03],

to capture functional requirements.

The fundamental principles of our approach can be summarised as follows:

 The system under construction is modelled as an object. Like all objects, it has behaviour

and state, described in its class. The behaviour is captured as operations. The state is

captured with a class model.

 The operations that implement a use case are identified by formalising each meaningful

flow in the use case as a system dialogue, which is represented as a sequence diagram

showing the interactions between the actor(s) and the system object.

 Each operation is further specified in a declarative style, stating its pre- and postconditions,

based on a UML model of the system state and on the operation input and output

arguments. They can, optionally, be written in OCL for added precision.

Target audience
This paper is aimed primarily at use case analysts. It should also be useful to test analysts,

designers and developers who need to understand use case specifications and associated

models.

A working knowledge of object-oriented concepts and UML is a pre-requisite. No previous

knowledge of OCL is assumed. OCL is an optional ingredient in this method and is confined to

a single sub-section of this paper.

Making Use Cases precise:

 a model driven approach

Making use cases precise Page 2 of 15 Franco Civello, RDF Group, UK

Example system
A simple, fictitious example system is used to illustrate the method. An informal description of

the system is provided in the box below.

A Mortgage Manager system is required by a financial institution to keep track of residential

mortgage accounts, i.e. loans secured on a residential property. At a very high level, the

system requirements are:

 to capture information and provide on-demand statements on mortgage accounts and

mortgage products

 to manage the details and life of each account

The users (actors in UML parlance) of the system are:

 account administrators

 account holders (through a Web interface)

Sources and References
Our modelling approach draws heavily on the principles of the Catalysis method [D’Souza99].

The rigorous approach of modelling behaviour using operation specifications based on an

underlying type model is based on both Catalysis and Syntropy [Cook94]. The first OO method

that modelled the system as an object was Fusion [Coleman94].

Making use cases precise Page 3 of 15 Franco Civello, RDF Group, UK

2 Method Description
One of our key modelling principles, initially proposed in the Fusion [Coleman94] method and

elaborated further in Catalysis [D’Souza99], is that the system is itself modelled as an object,

instance of a <<system>> type, and that system functionality is modelled as the behaviour

and state of that type.

Figure 1 shows the MortgageManager system type. To start with, the type has no attributes

and no operations. At the end of our use case analysis, the type will have been populated

with all the system operations required to support the use cases in scope, and all the types

required to write precise specifications of the behaviour of those operations.

cd System Type

«system»

MortgageManager

Figure 1: The System Type

Our analysis method starts with an informal description of the system functionality based on

use cases, and ends up with formal and precise system operation specifications, written in

English and (optionally) in OCL. These are the main steps of our method:

1. Describe Use Case Flows

Identify actors and use cases and produce informal descriptions of use case flows.

2. Identify system operations

Capture the system-actor(s) dialogue in each use case flow using a sequence

diagram and identify system operations required to support that flow.

3. Specify system operations

Represent each system directed interaction identified in step 2 as an operation on the

system type. Formalise its input and output arguments in UML, and provide a

specification of its precondition and its outcome (postcondition). In parallel, build an

abstract model of the system state. We call this the System Type Model (STM), since the

classes that appear within it are not software classes with methods and instance

variables. Instead, their purpose is to provide a business-oriented vocabulary, free from

design and implementation details, to specify the behaviour of the system operations.

Ensure that the operation outcome is specified using only terms from the system type

model. Anything that cannot be described in these terms should be considered wishful

thinking, and not an implementable specification of behaviour.

4. Add precision with OCL

If more precision is required, write a specification of each system operation in OCL.

Invariants and definitions in the System Type Model can also be described in OCL.

Making use cases precise Page 4 of 15 Franco Civello, RDF Group, UK

Step 1 - Describe use case flows
Let us assume we have a simple use case, where the actor is the Account Administrator, and

his/her goal is obtain a breakdown of money on loan by mortgage product.

Let us also assume that an initial sketch of the main use case flow has already been agreed

with the business users, with the aid of a user interface prototype, and is as follows:

1. The actor asks the system for the mortgage balance breakdown by MortgageProduct

2. The system calculates the balance on loan for all the MortgageAccounts, broken

down by MortgageProduct, and displays the result to the actor (Screen 1)

3. The actor selects one of the MortgageProducts from the list and asks the system to

show the balance composition for that MortgageProduct

4. The system calculates and shows the composition of the selected balance (Screen 2)

The two screens’ logical contents may be as follows, with the product/balance table ordered

by descending balance value:

Screen 1 - Balance Breakdown by Product

 Product Balance

□ 2 Year Fixed £25.000,000

□ Flexi Tracker £15.000,000

□ 3 Year Fixed £13.000,000

Total £53.000,000

 Show Balance Composition

Screen 2 - Product Balance Composition for Product: Flexi Tracker

Approved Completed Secured Unsecured Accounts Acc

Elements

£10.000,000 £15.000,000 £23.200,000 £1.800,000 254 367

Step 2 - Identify system operations
Each use case flow is modelled as a system dialogue, i.e. a sequence of interactions between

the actor and the system, and illustrated in a sequence diagram (Fig. 2).

Making use cases precise Page 5 of 15 Franco Civello, RDF Group, UK

sd balance breakdown by product

:AccountAdministrator

«system»

MortgageManager

1. The actor asks the system for the

mortgage balance breakdown by

MortgageProduct

2. The system calculates the balance on

loan for all the MortgageAccounts, broken

down by MortgageProduct, and displays the

result to the actor

3. The actor selects one of the products

from the list and asks the system to show the

balance composition for that product

4. The system calculates and shows the

composition of the selected balance

getBalanceByProduct()

GetBalanceByProductResult

getProductBalanceComposition(inProductName)

GetProductBalanceCompositionResult

Figure 2: System Dialogue

The requests from the actor to the system are formalised as operations getBalanceByProduct()

and getProductBalanceComposition() on the system object, as shown in the diagram.

Note how the diagram does not introduce new classes to support system functionality. The

MortgageManager system supports all the functionality that the use case requires. However,

as we will see, the specification of that functionality can be factored out into the types in the

System Type Model, by attaching definitions to individual types. For example, the rule that

calculates the balance for a MortgageProduct, productBalance(), is attached to the

MortgageProduct type.

Step 3 - Specify system operations
Each interaction initiated by the actor is modelled as an operation on the system type. The

input arguments of the operation are the data entered by the actor, if any. The result is the

data, together with any errors, returned by the system.

The next step is to write a specification for the operations, containing definitions of their input

and output data, and the rules for producing the output data. The most useful technique to

write implementation-independent operation specifications is to use pre- and postconditions.

The box below provides some details of this technique.

Making use cases precise Page 6 of 15 Franco Civello, RDF Group, UK

The postcondition of an operation is a boolean expression that is guaranteed to be true when

the operation completes, provided that the precondition, itself a boolean expression, is true

when the operation is invoked.

A precondition must only refer to properties of the input arguments and of the system state at

the start of the operation. A postcondition can use properties of the input and output

arguments and of the system state, before and after the execution of the operation.

The postcondition of an operation expresses how the output arguments are derived from the

input arguments and from the system state, and how the system state after the operation is

derived from the state before the operation and the input arguments.

A postcondition cannot say anything about the state of the system while the operation is

being executed. It can only mention system state before and after the execution. Hence

writing a postcondition forces the analyst to consider the effect of an operation without

considering its internal algorithm, a useful discipline to avoid mixing design considerations with

business results.

Both operations in hand are of the query type, which means they do not change the state of

the system. All we need to say is how the result of each operation is derived from its input data

and from the system state. But so far the system has no state in our model! (see Fig 1). Let us

write specifications for these operations to see how the state can be derived from the

behavioural requirements.

System Operation: getBalanceByProduct()

Input arguments: None

Result: GetBalanceByProductResult (see Figure 3)

Precondition: None

Postcondition: The result of the operation is a collection of ProductBalances, one for

each MortgageProduct known to the system. Each consists of the name of the

MortgageProduct and the total amount on loan for all MortgageAccounts associated with

that MortgageProduct. The balances must be sorted by descending value, i.e. higher

balances first.

cd getBalanceByProduct - Result

GetBalanceByProductResult

ProductBalance

+ balance: Money

+ productName: String

ordered by descending

balance

1..*

{ordered}

Figure 3: getBalanceByProduct() result type

Making use cases precise Page 7 of 15 Franco Civello, RDF Group, UK

As shown in figure 3, the result type of the operation is represented as a UML class. From the

postcondition, we can start forming a picture of the information the system needs to hold to

answer the query:-

 all MortgageProducts for which MortgageAccounts can exist, with their product name

 all MortgageAccounts linked to each MortgageProduct

 all MortgageAccountElements linked to each MortgageAccount, with their balance.

The fact that the balance is held within each MortgageAccountElement, and not in each

MortgageAccount, is assumed to be part of domain knowledge1.

Figure 4 shows the resulting System Type Model, with explanatory notes to show where the

model elements come from:

cd MortgageManager

«system»

MortgageManager

+ getBalanceByProduct() : GetBalanceByProductResult

MortgageProduct

+ productName: String

system must keep

track of all known

MortgageProducts

MortgageAccount

system must keep

track of all

accounts

associated with a

MortgageProduct

MortgageAccountElement

+ balance: Money

system must keep

track of all

account elements

for each account

and their balance

1..*

*

*

Figure 4: System Type Model with first operation and supporting state

An informal review of the operation postcondition against the model should be sufficient to

convince us we have all the required attributes and associations. The system can navigate to

its attached MortgageProduct instances. For each, it can navigate to its MortgageAccounts,

and add up the balances of all the MortgageAccountElements linked to these

MortgageAccounts. The result can easily be constructed from these objects and their

attributes.

1 Even though we are pretending to start with no model of the system, in most situations a Domain

Model will exist, and the types, attributes and associations required to write our postconditions will

be in that model. However for now we will stick with the assumption that we are building the

System Type model from scratch.

Making use cases precise Page 8 of 15 Franco Civello, RDF Group, UK

The second operation takes a product name as input argument and returns an instance of

GetProductBalanceCompositionResult (Figure 5)

cd GetProductBalanceCompositionResult

GetProductBalanceCompositionResult

+ approvedBalance: Money

+ completedBalance: Money

+ numberOfAccountElements: int

+ numberOfAccounts: int

+ securedBalance: Money

+ unsecuredBalance: Money

Figure 5: result type of getProductBalanceComposition()

System Operation: getProductBalanceComposition()

Input arguments: inProductName : String

Result: GetProductBalanceCompositionResult (see Figure 5)

Precondition: A MortgageProduct by the given product name (inProductName) must

be known to the system

Postcondition: The result of the operation contains:-

 approvedBalance - sum of all balances of MortgageAccountElements for the given

MortgageProduct, considering only MortgageAccountElements with status=Approved

 completedBalance - sum of all balances of MortgageAccountElements for the given

MortgageProduct, considering only MortgageAccountElements with status=Completed

 securedBalance - sum of all balances of MortgageAccountElements for the given

MortgageProduct, considering only MortgageAccountElements with status=Approved or

Completed, and isSecured=true

 unsecuredBalance - sum of all balances of MortgageAccountElements for the given

MortgageProduct, considering only MortgageAccountElements with status=Approved or

Completed, and isSecured=false

 numberOfAccounts - counts how many MortgageAccounts are linked to the given

MortgageProduct, considering only MortgageAccounts with at least one

MortgageAccountElement with status=Completed or Approved

 numberOfAccountElements- counts how many MortgageAccountElements exist for

MortgageAccounts linked to the given MortgageProduct, considering only

MortgageAccountElements with status=Completed or Approved

Note how writing the postcondition in terms of types and attributes in the system type model

has forced into the open the issue of the status of MortgageAccountElements, easily missed if

the analysis had stopped at the narrative level in the use case flows. Further investigation with

the business users reveals that a MortgageAccountElement can be in one of three states, as

depicted in the state diagram in Figure 62. The balance of elements in the Redeemed state

should not be included in the total product balance, hence the postcondition only includes

those in the Completed and Approved state.

2 State models such as this one should be produced for all types with an interesting lifecycle - the

presence of a status attribute is a good indicator of a need for this.

Making use cases precise Page 9 of 15 Franco Civello, RDF Group, UK

sm MortgageAccountElement

Approv ed Completed

Redeemed

application accepted

redemption

archival

no legal completion for 60 days

legal

completion

undo redemption

Figure 6: state model of a MortgageAccountElement

Note that the first operation, getBalanceByProduct(), should have also ignored such account

elements. The operation specification can be rewritten to reflect this (new clause in bold):

System Operation: getBalanceByProduct()

Input arguments: None

Result: GetBalanceByProductResult (see Figure 3)

Precondition: None

Postcondition: The result of the operation is a collection of ProductBalances, one for

each MortgageProduct known to the system. Each consists of the name of the

MortgageProduct and the total amount on loan for all MortgageAccounts associated with

that MortgageProduct, excluding MortgageAccountElements in the Redeemed state. The

balances must be sorted by descending value, i.e. higher balances first.

In order to support the second operation, MortgageAccountElement needs two new

attributes - see Figure 7.

Making use cases precise Page 10 of 15 Franco Civello, RDF Group, UK

cd MortgageManager

«system»

MortgageManager

+ getBalanceByProduct() : GetBalanceByProductResult

+ getProductBalanceComposition(String) : GetProductBalanceCompositionResult

MortgageProduct

+ productName: String

system must keep

track of all known

MortgageProducts

MortgageAccount

system must keep

track of all

accounts

associated with a

MortgageProduct

MortgageAccountElement

+ balance: Money

+ isSecured: boolean

+ status: MortgageAccountElementStatus

system must keep track

of all account

elements for each

account and their

balance, status and

whether they are

secured or not

1..*

*

*

Figure 7: System Type Model with both operations and supporting state

The use case flow can now be improved, adding two business rules and inserting references to

the operation specifications:

1. The actor asks the system for the mortgage balance breakdown by MortgageProduct.

2. The system calculates the balance on loan for all the MortgageAccounts, broken down by

MortgageProduct, and displays the result to the actor (Screen 1) (B1)

3. The actor selects one of the products from the list and asks the system to show the

balance composition for that product

4. The system calculates and shows the composition of the selected balance (Screen 2) (B2)

Business Rules

B1. the balance of account elements with status=redeemed must not be included (see

getBalanceByProduct() operation specification)

B2. see the getProductBalanceComposition() operation specification for the derivation of the

data shown to the user

As use case flows are brought into scope and analysed, the System Type Model grows by

including all the types, attributes and associations needed to support the operation

specifications, and the use case specifications updated to reflect the new, improved

understanding.

The reader is reminded that the types in this model are not meant to stand for software classes

with executable methods. Their role is to provide the vocabulary to support the behavioural

specifications, hence they are stereotyped as <<specification>>. There is no implication that

they will exist as classes in the implementation, although it would be a poor implementation

that did not follow the structure of the specification.

Making use cases precise Page 11 of 15 Franco Civello, RDF Group, UK

Step 4 - Add precision with OCL
To increase our confidence that the desired behaviour is correctly and fully specified, we can

write system operation specifications in OCL. This is an optional step. A reader unfamiliar with

the basic concepts of OCL may wish to omit this sub-section.

We only provide an OCL specification for the first operation, getBalanceByProduct(), to

demonstrate the approach.

As a convention, we write reserved OCL words in bold, and auxiliary definitions in italics. All

OCL text is written in the Courier font.

To make our OCL operation specification simpler, we attach some definitions to the types in

the model. We could have done this even if the specification was written only in English,

however the discipline of writing OCL aids the discovery of these additional model elements.

We define a query, accountBalance(), on the MortgageAccount type, to return the total

balance of all its elements, as follows:

context MortgageAccount

def: accountBalance () : Money =

 self.MortgageAccountElement->

 select(status <> MortgageAccountElementStatus::Redeemed).

 balance->sum()

-- end definition

Writing the definition in OCL brings to light the potential problem of a MortgageAccount

whose elements are all in the Redeemed state. In this case we want the balance to be zero,

but the select operator would return an empty collection, and attempting to sum the

balances of its elements would yield an undefined result. Let us rewrite the definition to cover

this case explicitly:

context MortgageAccount

def: accountBalance () : Money =

 let

 activeElements = self.MortgageAccountElement->

 select(status <> MortgageAccountElementStatus::Redeemed)

 in

 if activeElements()->isEmpty()

 then Money (0.0)

 else activeElements.balance->sum()

 endif

-- end definition

We also attach a definition productBalance() to the MortgageProduct type, to return the total

balance for all its accounts. Note how this definition makes use of the previous one on

MortgageAccount.

context MortgageProduct

def: productBalance() : Money =

 self.MortgageAccount->accountBalance ->sum()

-- end definition

Finally, we attach a definition to ProductBalance, (the type used in the result of the operation,

see figure 8). The definition, derivedFromProduct(), returns true if the ProductBalance is derived

from the given MortgageProduct. Note how this definition uses the previous one on

MortgageProduct.

Making use cases precise Page 12 of 15 Franco Civello, RDF Group, UK

context ProductBalance

def: derivedFromProduct(mp : MortgageProduct) : boolean =

self.productName = mp.productName

and

self.balance = mp.productBalance()

-- end definition

cd getBalanceByProduct - Result

GetBalanceByProductResult

ProductBalance

+ balance: Money

+ productName: String

constraints

{derivedFromProduct}

ordered by descending

balance

1..*

{ordered}

Figure 8: ProductBalance with the new definition

It is important to note that the definitions we have added are not UML methods, just like

attributes are not instance variables. Definitions return values but do not alter the state of the

objects. Writing them in OCL enforces this discipline since OCL expressions are side-effect free.

With these three auxiliary definitions, the first operation can be specified in OCL as follows:

-- signature

context MortgageManager::getBalanceByProduct ()

 : GetBalanceByProductResult

pre:

 true -- i.e. no precondition

-- postcondition starts here

post:

-- local definition (let … in) to select a product in the system by name

let

productWithName(name:String) : MortgageProduct =

 self.MortgageProduct->select(productName=name)

in

-- ‘result’ is an instance of GetBalanceByProductResult

-- and must contain one ProductBalance for each MortgageProduct

result.ProductBalance->size() = self.MortgageProduct->size()

and

-- the names in the result must come from the MortgageProducts

result.ProductBalance.productName =

 self.MortgageProduct->collect(productName)

and

Making use cases precise Page 13 of 15 Franco Civello, RDF Group, UK

-- each object within the result

-- must be derived from the MortgageProduct with the same name

result.ProductBalance->

 forAll(derivedFromProduct(productWithName(productName)))

and

result.ProductBalance->sortedBy(-balance) -- descending order

-- end postcondition

Figure 9 shows the System Type model with the new definitions (OCL constraints) on

MortgageProduct and MortgageAccount

cd MortgageManager

«system»

MortgageManager

+ getBalanceByProduct() : GetBalanceByProductResult

+ getProductBalanceComposition(String) : GetProductBalanceCompositionResult

MortgageProduct

+ productName: String

constraints

{productBalance}

system must keep

track of all known

MortgageProducts

MortgageAccount

constraints

{accountBalance}

system must keep

track of all

accounts

associated with a

MortgageProduct

MortgageAccountElement

+ balance: Money

+ isSecured: boolean

+ status: MortgageAccountElementStatus

system must keep track

of all account

elements for each

account and their

balance, status and

whether they are

secured or not

1..*

*

*

Figure 9: System Type Model showing two new OCL constraints

OCL is not a mandatory part of our process, partly because it is not yet well supported by

modelling tools. The value of writing OCL constraints lies in the positive effect that this

formal discipline has on the quality of the UML model, uncovering behaviour and data

that had been incompletely or wrongly specified, and providing a precise, unequivocal

representation for business rules.

3 Review and conclusions
Our method offers a well defined process for moving from informal, imprecise

descriptions to formal, precise specifications, providing traceability between the two

levels. The method has been used with a high degree of success at RDF Group, a UK

software house, for several years. A number of complex and mission critical financial

applications have been delivered on time and within budget utilising the analysis

method described in this paper, within an iterative and agile process loosely based on

the Rational Unified Process [Jacobson99], where functionality is specified and moved

into design, coding and testing in tight time-boxed timescales.

Making use cases precise Page 14 of 15 Franco Civello, RDF Group, UK

The main additional deliverable of our method is the System Type Model, with the

associated system dialogues and system operation specifications. While it is undeniable

that these artefacts need to be kept up-to-date as changes occur, this cost is far

outweighed by the many tangible benefits:-

 The analysts writing use case descriptions can produce far better documents as a result of

producing precise UML models in parallel with the narrative text. Issues can be identified

and resolved earlier, and the impact of proposed changes assessed more accurately.

 Traceability is improved and design is simplified. Use case realisations can now be

produced for each system operation, which are far more precisely specified and easier to

implement correctly than textual narratives. In a multi-tier component-based

implementation, component operations are linked to the system operations they

implement, providing a guide to the designer, developer and maintainer. Business rules

attached to specification types can be implemented as methods on the classes that

implement those types. Value Object classes are traceable to the argument types used by

the system operations. Database tables and fields are traceable to specification types.

 The added effort in analysis is also more than compensated by the savings achieved in

downstream activities, as fewer queries and issues are raised in design, coding and testing.

Making use cases precise Page 15 of 15 Franco Civello, RDF Group, UK

References

[Coleman94] Derek Coleman, P.Arnold, S.Bodoff, C. Dollin, H.Chilchrisr, F. Hayes and P.

Jeremaes, Object-Oriented Development: the Fusion Method, Prentice-Hall, 1994

[Cook94] Steve Cook and John Daniels, Designing Object Systems - Object Oriented

Modelling with Syntropy, Prentice-Hall, 1994

[D’Souza99] Desmond D’Souza and Alan Wills, Objects, Components and Frameworks with

UML: the Catalysis Approach, Addison-Wesley, 1999

 [Fowler04] Martin Fowler, UML Distilled Third Edition - A Brief Guide to the Standard Object

Modeling Language, Addison-Wesley 2004

[Jacobson99] Ivar Jacobson, Grady Booch and James Rumbaugh, The Unified Software

Development Process, Addison-Wesley 1999

[Warmer03] Jos Warmer and Anneke Kleppe, The Object Constraint Language, Second

Edition - Getting Your Models Ready for MDA, Addison-Wesley, 2003

Author

Franco Civello is Lead Analyst at RDF Group, Brighton, UK. He received a PhD in Software

Engineering from the University of Brighton, and is a Member of the BCS and the IEEE and a

Chartered Engineer. Contact: franco.civello@rdfgroup.com

