

2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting

Produced by AEA for the Department of Energy and Climate Change (DECC) and the Department for Environment, Food and Rural Affairs (Defra)

Version 2.0 Updated 30/09/2009

Key

- Data entry field Fixed factors used in calculations = =
- = Calculation results

Introduction Last updated: Sep-09

General Introduction

What are Greenhouse Gas Conversion Factors?

Greenhouse Gases can be measured by recording emissions at source by continuous emissions monitoring <u>or</u> by estimating the amount emitted using activity data (such as the amount of fuel used) and applying relevant conversion factors (e.g. calorific values, emission factors, oxidation factors).

These conversion factors allow organisations and individuals to calculate greenhouse gas (GHG) emissions from a range of activities, including energy use, water consumption, waste disposal, recycling and transport activities. For instance, a conversion factor can be used to calculate the amount of greenhouse gases emitted as a result of burning a particular quantity of oil in a heating boiler.

These conversion factors will enable you to convert activity data (e.g. litres of fuel used, number of miles driven, tonnes of waste sent to landfill) into kilograms of carbon dioxide equivalent (CO_2eq). Carbon dioxide equivalent is a universal unit of measurement used to indicate the global warming potential of one unit of carbon dioxide. It is used to evaluate the releasing of different greenhouse gases against a common basis.

What are the major changes and updates from the June 2008 version?

Major changes and updates from the June 2008 version are as follows:

i. In previous versions of the conversion factors, emissions factors have only been provided for CO₂. The 2009 update provides emissions factors for the non-CO₂ greenhouse gases methane (CH₄) and nitrous oxide (N₂O) as well, based upon the emission factors used in UK Greenhouse Gas Inventory (GHGI). Values for CH₄ and N₂O are presented as CO₂ equivalents (CO₂eq) using Global Warming Potential (GWP) factors (GWP for CH₄ = 21, GWP for N₂O = 310), consistent with reporting under the Kyoto Protocol and the second assessment report of the Intergovernmental Panel on Climate Change (IPCC).

ii. Lifecycle emissions factors for water, waste, biofuels and biomass have been added. These emission factors include both direct and indirect emissions. For example in the case of biofuels, these emission factors incorporate emissions associated with the production and transportation of the fuel, as well as the direct emissions from fuel combustion. As a result, these emission factors are different from all other emissions factors in the annexes which only account for direct emissions.

iii. Global Warming Potentials for greenhouse gases not covered by the Kyoto Protocol have been added.

iv. Emission factors for air conditioning and refrigeration have been added.

v. International electricity emission factors have been added

vi. A supporting methodological paper to explain how all of the emission factors have been derived has been produced. This methodological paper can be found here: <u>http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm</u>

Who should use these factors?

These factors are publicly available for use by organisations and individuals within the UK. We **do not recommend** that they are used by organisations or individuals overseas as the emission factors are specific to the UK and many will vary to a very significant degree for other countries. For example, the electricity emission factors are based on the UK grid average mix of different types of generation and average factors for transport are based the composition of the UK fleet and UK-specific occupancy/loading factors where relevant.

What should I use these factors for?

These conversion factors should be used to measure and report GHG emissions for:

1. Your organisation's greenhouse gas emissions - Organisations that wish to calculate their greenhouse gas emissions that they are responsible for should refer to Defra's website for guidance on how to measure and report GHG emissions in a clear and consistent manner. The Conversion factors assist organisations in doing this.

2. Your personal carbon footprint - Individuals who wish to calculate their carbon footprint from their dayto-day activity may be interested in the Government's Act on CO2 carbon calculator, (<u>http://actonco2.direct.gov.uk/index.html?fullscreen=yes</u>).

3. Other reasons such as project planning and greenhouse gas emission reductions projects.

What should I not use the factors for?

These factors are not for use with mandatory or legal reporting.

For reporting emissions under the EU Emissions Trading Scheme, please refer to: http://www.defra.gov.uk/environment/climatechange/trading/eu/index.htm

For reporting emissions under Climate Change Agreements, please refer to: <u>http://www.defra.gov.uk/environment/climatechange/uk/business/cca/index.htm</u>

For reporting emissions under the new Carbon Reduction Commitment (CRC), please refer to: <u>http://www.defra.gov.uk/environment/climatechange/uk/business/crc/index.htm</u>

Policymakers in National, Regional and Local Government should consult the document *Greenhouse Gas Policy Evaluation and Appraisal in Government Departments.*

Do I need to update all my calculations using the new conversion factors each year?

Only in certain cases will you need to update previous calculations due to the release of the annual update to the GHG conversion factors. The conversion factors provided in these annexes provide broadly two types of data:

(a) **Emission factors provide in a time-series (e.g. Annex 3 - Electricity Factors):** These <u>should be</u> <u>updated</u> for historical reporting with *each annual update* - i.e. you should recalculate emissions from previous years using the latest time-series dataset. This is because there can be revisions to earlier emission factor data due to improvements in the calculation methodology or UK GHG inventory datasets they are based upon. For example in this 2009 update:

Electricity consumption year:	EF to use reporting in 2009:	EF used in 2008 reporting:
2009	new 2007*	N/A
2008	new 2007*	2006*
2007	new 2007*	2006*
2006	new 2006	2006*
2005	new 2005	2005
etc.	etc.	etc.

* This is the most recent year for which an emission factor is available for the reporting year

(b) **Other emission factors:** The other factors provided in the annexes are figures produced generally for the *most recent year available*. In the majority of cases this is 2 years behind the update year (i.e. based on 2007 data for the current 2009 update)². A company **should not** generally recalculate their emissions for all previous years using the newer factors. The most recent factors should only be applied for reporting on years up to 2 years prior to the most recent dataset.

In most cases (except for natural gas, and perhaps bioenergy due to changing sources) the fuel emission factors in general are unlikely to vary very significantly between different years. However, specific transport factors generally *do* change on an annual basis and the new factors should only be used for the most relevant/recent year of reporting. Earlier versions of the conversion factors from previous updates may therefore be used for older data as necessary/appropriate.

In summary, you should **only** recalculate previous year's emissions using the new factors in the following cases:

A. When calculating emissions from use of electricity (or when using any other time series emission factors). In this case the updated emission factor time series should be checked to see if they have changed for relevant previous years and time series data updated as necessary in reporting.

B. When recalculating emissions for a year consistent with the data basis of the new update. For example, if you are now reporting emissions for 2008-9, you should also recalculate the 2007-8 emissions using the 2009 update data, as these are for the most part based on 2007 datasets. Figures reported for 2006 should use emission factors from the 2008 update, which are mostly based on 2006 data.

Which Conversion Factors should I use?

- To calculate emissions from the use of Fuels, see Annex 1
- To calculate emissions from Combined Heat and Power (CHP), see Annex 2
- To calculate emissions from the use of Electricity, see <u>Annex 3</u>
- To understand which industrial processes lead to GHG emissions, see Annex 4
- To convert greenhouse gases into carbon dioxide equivalents, see <u>Annex 5</u>
- To calculate emissions associated with Passenger Transport, see Annex 6
- To calculate emissions associated with Freight Transport, see <u>Annex 7</u>
- To calculate emissions from the use of Refrigeration and Air Conditioning Equipment, see Annex 8

• To calculate life-cycle emissions from the use of Water, Biomass and Biofuels, and from Waste Disposal, see <u>Annex 9</u>

- To calculate emissions from the use of Overseas Electricity, see Annex 10
- For the typical Calorific Values and Densities of UK Fuels, see <u>Annex 11</u>
- To convert between common units of energy, volume, mass and distance, see Annex 12
- To estimate emissions from your supply chain, see Annex 13

Units

All emissions factors are given in units of kg (kilograms) of carbon dioxide (CO_2) equivalent. GHG emissions are sometimes quoted in figures of mass of *Carbon equivalent*, rather than *Carbon Dioxide equivalent*. To convert carbon equivalents into carbon dioxide equivalents (CO_2 eq), multiply by 44/12.

To convert emissions of greenhouse gases to carbon dioxide equivalent units, see **Annex 5**. For other unit conversions see **Annexes 11** and **12**.

Missing factors and additional guidance

If you require GHG conversion factors that you cannot find here, or this guidance is unclear, or you have additional questions, please send us an email at <u>ghgreporting@defra.gsi.gov.uk.</u> We cannot undertake to provide all the conversion factors.

Useful links:

The Carbon Trust also provides information about carbon footprinting for companies available at www.carbontrust.co.uk/footprinting.

The Carbon Trust has developed a carbon footprint calculator for organisations, which uses the factors contained in this document. Visit <u>http://www.carbontrust.co.uk/carboncalculator</u>.

The Publicly Available Specification (PAS): 2050 provides a method for measuring the lifecycle greenhouse gas emissions from goods and services. It is available at http://www.bsigroup.com/en/Standards-and-Publications/Industry-Sectors/Energy/PAS-2050/

Annex 1 - Converting from fuel use to carbon dioxide equivalent emissions Last updated: Sep-09

How to use this Annex

1) Identify the amount of fuel used

2) Identify the units. Are you measuring fuel use in terms of mass, volume or energy?

3) If you are measuring fuel use in terms of *energy* is your unit of measurement *net energy* or *gross energy*? (In the event that this is unclear you should contact your fuel supplier).

4) Identify the appropriate conversion factor that matches the unit you are using. If you cannot find a factor for that unit, **Annex 12** gives guidance on converting between different units of mass, volume, length and energy.

5) Multiply the amount of fuel used by the conversion factor to get total emissions in kilograms of carbon dioxide equivalent (kg CO₂eq). The excel spreadsheet calculates this automatically following your entry of the amount of fuel used into the appropriate box.

How were these factors calculated?

For further explanation on how these emission factors have been derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm

Two tables are presented here, the first provides emission factors on a Net CV basis and the second on a Gross CV basis. Emission factors per unit mass or volume are identical in these two tables. However values on an energy basis are different - emission factors on a Net CV basis are higher (see definition of Gross CV and Net CV in *italics* below). It is important to use the correct emission factor, otherwise emissions calculations will over- or under-estimate the results. If you are making calculations based on energy use, you must check (e.g. with your fuel supplier) whether these values were calculated on a Gross CV on Net CV basis and use the appropriate factor. Natural Gas consumption figures quoted in kWh by suppliers in the UK are generally calculated (from the volume of gas used) on a Gross CV basis - see Transco website: http://www.transco.co.uk/services/cvalue/cvinfo.htm. Therefore the emission factor in Table 1b (Gross CV basis) should be used by default for calculation of emissions from Natural Gas in kWh, unless your supplier specifically states they have used Net CV basis in their calculations instead.

Gross CV or higher heating value (HHV) is the CV under laboratory conditions. Net CV or 'lower heating value (LHV) is the useful calorific value in typical real world conditions (e.g. boiler plant). The difference is essentially the latent heat of the water vapour produced (which can be recovered in laboratory conditions).

Table 1a

Converting fuel types on a	a Net CV Basis	5		CO2			CH4		N ₂ O		Total GHG
Fuel Type	Amount used	Units	х	kg CO ₂ per	Total kg	×	kg CO2eq Total kg		kg CO2eq Total kg	11	x kg CO2eq Total kg
	per year			unit	CO ₂		per unit CO ₂ eq		per unit CO2eq		per unit CO2eq
Aviation Spirit		tonnes	х	3127.7		x	30.4		x 31.0	1	x 3189.1
· · · ·		kWh	х	0.25023		х	0.00243		x 0.00248	1	x 0.25514
		litres	х	2.2261		х	0.0216		x 0.0221	1 [x 2.2698
Aviation Turbine Fuel ¹		tonnes	х	3149.7		х	1.6		x 31.0		x 3182.3
		kWh	х	0.25837		х	0.00013		x 0.00254		x 0.26104
		litres	х	2.5278		х	0.0013		x 0.0249		x 2.5540
Biofuels		See Annex	٤ ۵				See Annex 8] [See Annex 8		See Annex 8
Burning Oil ¹		tonnes	х	3149.7		х	6.7		x 8.6		x 3164.9
		kWh	х	0.25847		x	0.00055		x 0.00071		x 0.25972
		litres	х	2.5319		х	0.0054		x 0.0069		x 2.5442
Coal (industrial) ²		tonnes	х	2301.0		х	0.1		x 36.9		x 2338.1
		kWh	х	0.32415		х	0.00002		x 0.00520		x 0.32937
Coal (electricity generation) ³		tonnes	х	2256.5		х	0.4		x 19.5		x 2276.4
		kWh	х	0.32637		х	0.00006		x 0.00282		x 0.32925
Coal (domestic) ⁴		tonnes	х	2506.3		х	329.7		x 37.8		x 2873.8
		kWh	х	0.31139		х	0.04096		x 0.00470		x 0.35705
Coking Coal		tonnes	х	2931.5		х	26.9		x 70.6		x 3029.1
		kWh	х	0.36423		х	0.00335		x 0.00877		x 0.37635
Diesel		tonnes	х	3164.3		х	2.3		x 34.0		x 3200.6
		kWh	х	0.26328		х	0.00019		x 0.00283		x 0.26630
		litres	х	2.6391		х	0.0019		x 0.0283		x 2.6694
Electricity		See Annex	(3			_	See Annex 3		See Annex 3		0
Fuel Oil		tonnes	х	3215.9		х	2.4		x 11.2		x 3229.5
		kWh	х	0.27927		х	0.00021		x 0.00097		x 0.28045
Gas Oil		tonnes	х	3190.0		x	3.3		x 305.1		x 3498.4
		kWh	х	0.26542		x	0.00027		x 0.02539		x 0.29108
1.00		litres	x	2.7619		x	0.0028		0.2642		x 3.0289
LPG		kvvn	X	0.22546		X	0.00009		0.00017		x 0.22572
		therms	X	6.6077		×	0.0026		0.0049		X 0.0153
Lukricente		Itres	X	1.4951		×	0.0006		x 0.0011		X 1.4908
Eublicants		LIMIN	×	0.07507			0.00017		0.00074		x 0.07609
N I In Alin		KVVN	X	0.27537		×	0.00017		0.00074		X 0.27628
Naphtha		tonnes	X	3131.3		×	2.9		x 8.0		X 3142.2
Natural Gas		kWh	Ĵ	0.24909		÷	0.00023	1 1	0.00004	-	x 0.20417
Ivaturai Gas		cubic metre	Ŷ	2 0091		÷	0.00031	1 1	0.00012	-	x 2.0133
		therms	Ĵ	5 9712		Ŷ	0.0090	1	0.0036		x 5.9837
Other Petroleum Gas		tonnes	Ŷ	2894.0		Ŷ	3.6	1	66.5		x 2964.2
		kWh	Ŷ	0 21651		x	0.00027	1 1	0.00497		x 0.22175
Petrol		tonnes	x	3135.0		x	6.4	1 1	30.7		x 3172.1
		kWh	x	0.25238		¥	0.00052	1 1	x 0.00247	1	x 0.25537
		litres	x	2.3035		×	0.0047		0.0226		x 2.3307
Petroleum Coke		tonnes	x	3422.7		×	2.2	1 1	x 74.7	1 1	x 3499.7
		kWh	x	0.36301		x	0.00024	1 1	x 0.00792	1 1	x 0.37117
Refinery Miscellaneous		kWh	x	0.25693		×	0.00025	1 1	× 0.00070	1 1	x 0.25789
		therms	x	7.5300		x	0.0074	1 1	x 0.0206	1 1	x 7.5580
Wood		See Annex	(8				See Annex 8	1	See Annex 8	1 f	See Annex 8
Total			Ť								

Annex 1 - Converting from fuel use	e to carbon dioxide equivalent emissions
Last updated: Sep-09	

Table 1b

Converting fuel types or	a Gross CV Ba	sis ⁶		CO ₂			CH4		N ₂ O		Total GHG
Fuel Type	Amount used per year	Units	х	kg CO ₂ per T unit C	otal kg CO ₂	>	kg CO ₂ eq Total kg per unit CO ₂ eq		x kg CO ₂ eq Total kg per unit CO ₂ eq	2	k kg CO ₂ eq Total kg per unit CO ₂ eq
Aviation Spirit		tonnes	х	3127.7)	30.4		x 31.0		x 3189.1
		kWh	х	0.23771)	0.00231		x 0.00236		x 0.24238
		litres	х	2.2261)	0.0216		x 0.0221		x 2.2698
Aviation Turbine Fuel ¹		tonnes	х	3149.7)	c 1.6		x 31.0		x 3182.3
		kWh	х	0.24545)	0.00013		x 0.00242		x 0.24799
		litres	х	2.5278)	0.0013		x 0.0249		x 2.5540
Biofuels		See Annex	8				See Annex 8		See Annex 8		See Annex 8
Burning Oil ¹		tonnes	х	3149.7)	6.7		x 8.6		x 3164.9
		kWh	х	0.24555)	0.00052		x 0.00067		x 0.24674
		litres	х	2.5319)	0.0054		x 0.0069		x 2.5442
Coal (industrial) ²		tonnes	х	2301.0)	0.1		x 36.9		x 2338.1
		kWh	х	0.30794)	0.00002		x 0.00494		x 0.31290
Coal (electricity generation) ³		tonnes	х	2256.5)	26.9		x 70.6		x 2354.0
		kWh	х	0.31005)	0.00318		x 0.00833	- [x 0.32157
Coal (domestic) ⁴		tonnes	х	2506.3)	329.7		x 37.8	Γ	x 2873.8
		kWh	х	0.29582)	0.03892		x 0.00447	Γ	x 0.33920
Coking Coal		tonnes	х	2931.5)	26.9		x 70.6	Γ	x 3029.1
		kWh	х	0.34601)	0.00318		x 0.00833	Γ	x 0.35753
Diesel		tonnes	х	3164.3)	2.3		x 34.0	Ē	x 3200.6
		kWh	х	0.25012)	0.00018		x 0.00268	Γ	x 0.25298
		litres	х	2.6391)	0.0019		x 0.0283	Ē	x 2.6694
Electricity		See Annex	: 3				See Annex 3		See Annex 3	Ē	See Annex 3
Fuel Oil		tonnes	х	3215.9)	2.4		x 11.2	Γ	x 3229.5
		kWh	х	0.26530		,	0.00020		x 0.00092	Ē	x 0.26643
Gas Oil		tonnes	х	3190.0)	3.3		x 305.1	Γ	x 3498.4
		kWh	х	0.25215		,	0.00026		x 0.02412	Ē	x 0.27652
		litres	х	2.7619)	0.0028		x 0.2642	Ē	x 3.0289
LPG		kWh	х	0.21419)	0.00009		x 0.00016	Ē	x 0.21444
		therms	х	6.2773)	0.0025		x 0.0047	Ē	x 6.2846
		litres	х	1.4951)	0.0006		x 0.0011	Ē	x 1.4968
Lubricants		tonnes	х	3171.1)	(1.9		x 8.5	Ē	x 3181.5
		kWh	х	0.26161		,	0.00016		x 0.00070	Ē	x 0.26246
Naphtha		tonnes	х	3131.3)	2.9		x 8.0	Ē	x 3142.2
		kWh	х	0.23740		,	0.00022		x 0.00061	Ē	x 0.23822
Natural Gas		kWh	х	0.18358)	0.00028		x 0.00011	Ē	x 0.18396
		cubic metre	х	2.0091)	0.0030		x 0.0012	Ē	x 2.0133
		therms	х	5.3801)	0.0081		x 0.0033	Ē	x 5.3914
Other Petroleum Gas		tonnes	х	2894.0		,	3.6		x 66.5	Ē	x 2964.2
		kWh	x	0.20568		,	0.00026		x 0.00472	Ē	x 0.21066
Petrol		tonnes	x	3135.0		5	6.4		x 30.7	Ē	x 3172.1
		kWh	x	0.23976		5	0.00049		x 0.00235	Ē	x 0.24260
		litres	x	2.3035		5	0.0047		x 0.0226	Ē	x 2.3307
Petroleum Coke		tonnes	x	3422.7		5	2.2		x 74.7	Ē	x 3499.7
		kWh	x	0.34486		5	0.00023		x 0.00753	Ē	x 0.35261
Refinery Miscellaneous		kWh	x	0.24444		5	0.00024		x 0.00067	ŀ	x 0.24535
,		therms	x	7,1640		5	0.0070		x 0.0196	F	x 7.1906
Wood		See Annex	8			f	See Annex 8		See Annex 8	ŀ	See Annex 8
Total			Ť		0)	0		

UK Greenhouse Gas Inventory for 2007 (AEA) Digest of UK Energy Statistics 2008 (BERR), available at: Sources

http://www.berr.gov.uk/whatwedo/energy/statistics/publications/dukes/page45537.ht

Notes

¹ Burning oil is also known as kerosene or paraffin used for heating systems. Aviation Turbine fuel is a similar kerosene fuel specifically refined to a higher quality for aviation.

² Average emission factor for coal used in sources other than power stations and domestic, i.e. industry sources including collieries, Iron & Steel, Autogeneration, Cement production, Lime production, Other industry, Miscellaneous, Public Sector, Stationary combustion - railways and Agriculture. Users who wish to use coal factors for types of coal used in specific industry applications should use the factors given in the UK ETS.

³ This emission factor should only be used for coal supplied for electricity generation (power stations. Coal supplied for domestic or industrial purposes have different emission factors.
 ⁴ This emission factor should only be used for coal supplied for domestic purposes. Coal supplied to power stations or for industrial purposes have different emission factors.

⁵ Emission factors calculated on a Net Calorific Value basis.

⁶ Emission factors calculated on a Gross Calorific Value basis

Annex 2 - Combined Heat and Power - Imports and Exports

Last updated: Jun-09

How to use this Annex

If you use all the output of a Combined Heat and Power (CHP) plant to meet the energy needs of your business (i.e. you are not exporting any of the electricity or heat for others to use), there is no need for you to attribute the emissions from the CHP plant between the electricity and heat output in your reporting. This is because you are in this case responsible for the full emissions resulting from the fuel used for CHP. You can calculate the total CHP plant emissions from the fuel used with the standard conversion factors at **Annex 1**.

If the *heat user* and the *electricity user* are different individuals/installations, greenhouse gas emissions should be calculated as per **Annex 1** (i.e. calculate fuel consumption then apply the appropriate conversion factor for that fuel) and then divided between the *heat user* and the *electricity user*.

It is typically roughly twice as efficient to generate heat from fossil fuels as it is to generate electricity. Therefore you can attribute the greenhouse gas emissions from the CHP plant in the ratio 1:2 respectively per kWh of heat and electricity generated. Emissions per kWh of heat or electricity produced by the CHP plant may be calculated in this way using the appropriate formula below:

	Emissions (in kaCO-ea) per kWb electricity –	twice total emissions (in kgCO ₂ eq)
		twice total electricity produced + total heat produced (in kWh)
	Emissions (in $kaCO2aa$) per kWb best –	total emissions (in kgCO ₂ eq)
		twice total electricity produced + total heat produced (in kWh)
Table 2a	Calculate emissions per kWh electricity	

Calculate enlissi	ons per kwin elect	incity	
Total emissions	Total electricity	Total heat	kg CO ₂ eq/kWh
(kg CO ₂ eq)	produced	produced	electricity

Table 2b	Calculate emission	ons per kWh heat		
	Total emissions	Total electricity	Total heat	kgCO ₂ eq/kWh
	(kg CO ₂ eq)	produced	produced	heat

I buy my electricity from a producer/plant that I know is CHP. Which factor should I use?

If you purchase electricity for own consumption from a CHP plant, you should use the 'Grid Rolling Average' factor in Annex 3.

How were these factors calculated?

For further explanation on how these emission factors have been derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm

Annex 3 - Converting from purchased electricity use to carbon dioxide equivalent emissions Last updated: Sep-09

How to use this Annex

The factors presented in the three tables below are a timeseries of electricity CO₂ emission factors per kWh GENERATED (Table 3a, i.e. before losses in transmission/distribution), electricity CO₂ emission factors per kWh LOSSES in transmission/distribution (Table 3b) and per kWh CONSUMED (Table 3c, i.e. for the final consumer, including transmission/distribution losses).

To calculate emissions of carbon dioxide associated with use of UK grid electricity:

1) Identify the amount electricity used, in units of kWh;

2) Multiply this value by the conversion factor for UK Grid Rolling Average electricity use provided in **Table 3c** for electricity provided from the national/local grid.

How are the factors calculated?

The electricity conversion factors given represent the average carbon dioxide emission from the UK national grid per kWh of electricity used at the point of final consumption (i.e. transmission and distribution losses are included). These factors include only carbon dioxide, methane and nitrous oxide emissions at UK power stations and do not include emissions resulting from production and delivery of fuel to these power stations (i.e. from gas rigs, refineries and collieries, etc).

This factor changes from year to year, as the fuel mix consumed in UK power stations changes. Because these annual changes can be large (the factor depends very heavily on the relative prices of coal and natural gas), and to assist companies with year to year comparability, the factor presented is the *average* of the grid Conversion factor over the last 5 years. This factor is updated annually.

I generate my electricity onsite. How do I calculate emissions from this?

If you generate electricity from 'owned or controlled' renewable sources backed by Renewable Energy Guarantee of Origin (REGOs) within the UK, you should account for these emissions using the 'Renewables' factor.

How should I report the carbon emissions from my use of green tariffs?

You should account for all electricity purchased for own consumption from the national grid or a third party using the 'Grid Rolling Average' factor (irrespective of the source of the electricity).

How should I report the carbon emissions from my use of CHP-backed tariff?

You should account for all electricity purchased for own consumption from the national grid or a third party using the 'Grid Rolling Average' factor (irrespective of the source of the electricity).

Do I need to update all my calculations using the new conversion factors each year?

Emission factors for electricity are provided in time-series (e.g. for grid electricity) and <u>should</u> be updated for historical reporting with the annual update. This is because there can be revisions for earlier data due to the improvements in the calculation methodology or UK GHG inventory datasets they are base upon. Please refer to the general introduction for further details.

How were these factors calculated?

For further explanation on how these emission factors have been derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm

Annex 3 - Converting from purchased electricity use to carbon dioxide equivalent emissions

Table 3a

Electricity emission factors from 1990 to					Grid Rolling									
2007 per kWh (electricity GENERATED):	CO ₂	CH₄	N₂O	Total GHG	Average ¹ :		CO2		CH ₄		N ₂ O	Т	otal GHG	% Transmission
UK Grid Electricity Year	kg CO ₂	kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq per	Amount used per	kg CO ₂	Total kg CO ₂	kg CO ₂ eo	Total kg CO2eq	kg CO ₂ eq	Total kg CO2eq	kg CO ₂ eq	Total kg CO2eq	and Distribution
	per kWh	per kWh	per kWh	kWh	year, kWh	per kWh		per kWh		per kWh		per kWh		Losses
1990	0.71225	0.00019	0.00582	0.71827		0.71225		0.00019		0.00582		0.71827		7.5%
1991	0.69375	0.00018	0.00565	0.69959		0.70300		0.00019		0.00574		0.70893		7.5%
1992	0.64750	0.00018	0.00527	0.65295		0.68450		0.00018		0.00558		0.69027		7.5%
1993	0.57350	0.00017	0.00437	0.57804		0.65675		0.00018		0.00528		0.66221		7.5%
1994	0.56425	0.00018	0.00421	0.56864		0.63825		0.00018		0.00507		0.64350		7.5%
1995	0.53650	0.00018	0.00392	0.54060		0.60310		0.00018		0.00468		0.60796		7.5%
1996	0.52220	0.00018	0.00354	0.52593		0.56879		0.00018		0.00426		0.57323		8.1%
1997	0.48181	0.00017	0.00304	0.48503		0.53565		0.00018		0.00382		0.53965		8.1%
1998	0.48313	0.00018	0.00305	0.48637		0.51758		0.00018		0.00355		0.52131		8.1%
1999	0.45367	0.00019	0.00262	0.45648		0.49546		0.00018		0.00323		0.49888		8.1%
2000	0.48044	0.00019	0.00289	0.48352		0.48425		0.00018		0.00303		0.48747		8.3%
2001	0.49512	0.00020	0.00308	0.49840		0.47884		0.00019		0.00294		0.48196		8.5%
2002	0.47990	0.00020	0.00289	0.48299		0.47845		0.00019		0.00290		0.48155		8.3%
2003	0.49466	0.00020	0.00309	0.49795		0.48076		0.00020		0.00291		0.48387		8.2%
2004	0.49461	0.00020	0.00299	0.49780		0.48895		0.00020		0.00299		0.49213		8.3%
2005	0.48770	0.00022	0.00308	0.49100		0.49040		0.00021		0.00302		0.49363		7.4%
2006	0.51405	0.00023	0.00339	0.51767		0.49418		0.00021		0.00309		0.49748		7.4%
2007	0.50411	0.00023	0.00315	0.50748		0.49902		0.00022		0.00314		0.50238		7.2%
Electricity from CHP ²														
2005	0.28500	0.00245	0.00014	0.28759		0.29500		0.00254		0.00014		0.29768		7.4%
2006	0.29500	0.00275	0.00016	0.29792		0.29500		0.00275		0.00016		0.29792		7.4%
2007	0.26492	0.00258	0.00015	0.26765		0.28918		0.00282		0.00017		0.29216		7.2%
Other electricity factor														
Renewables ³	0	0	0	0		0		0		0		0		
Total							0		0		0		0	

Table 3b

Electricity emission factors from 1990 to					Grid Rolling									
2007 per kWh (electricity LOSSES):	CO ₂	CH₄	N ₂ O	Total GHG	Average ¹ :		CO ₂		CH ₄		N ₂ O	Т	otal GHG	% Transmission
UK Grid Electricity Year	kg CO ₂	kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq per	Amount used per	kg CO ₂	Total kg CO ₂	kg CO ₂ eq	Total kg CO ₂ eq	kg CO ₂ eq	Total kg CO ₂ eq	kg CO ₂ eq	Total kg CO ₂ eq	and Distribution
	per kWh	per kWh	per kWh	kWh	year, kWh	per kWh		per kWh		per kWh		per kWh		Losses
1990	0.05775	0.00002	0.00048	0.05824		0.05775		0.00002		0.00048		0.05824		7.5%
1991	0.05625	0.00002	0.00046	0.05672		0.05700		0.00001		0.00046		0.05748		7.5%
1992	0.05250	0.00001	0.00043	0.05294		0.05550		0.00002		0.00046		0.05597		7.5%
1993	0.04650	0.00002	0.00035	0.04687		0.05325		0.00002		0.00043		0.05369		7.5%
1994	0.04575	0.00002	0.00034	0.04611		0.05175		0.00002		0.00041		0.05217		7.5%
1995	0.04350	0.00002	0.00031	0.04383		0.04890		0.00001		0.00038		0.04930		7.5%
1996	0.04625	0.00002	0.00032	0.04657		0.04690		0.00001		0.00035		0.04727		8.1%
1997	0.04267	0.00002	0.00027	0.04295		0.04494		0.00001		0.00031		0.04526		8.1%
1998	0.04279	0.00002	0.00027	0.04307		0.04419		0.00002		0.00030		0.04451		8.1%
1999	0.03978	0.00001	0.00023	0.04002		0.04300		0.00002		0.00028		0.04329		8.1%
2000	0.04324	0.00002	0.00026	0.04352		0.04295		0.00002		0.00027		0.04322		8.3%
2001	0.04598	0.00002	0.00028	0.04629		0.04289		0.00001		0.00026		0.04317		8.5%
2002	0.04316	0.00002	0.00026	0.04343		0.04299		0.00002		0.00027		0.04327		8.3%
2003	0.04393	0.00002	0.00027	0.04423		0.04322		0.00001		0.00026		0.04350		8.2%
2004	0.04484	0.00002	0.00027	0.04513		0.04423		0.00002		0.00027		0.04452		8.3%
2005	0.03895	0.00002	0.00025	0.03922		0.04337		0.00001		0.00027		0.04366		7.4%
2006	0.04097	0.00001	0.00027	0.04125		0.04237		0.00002		0.00026		0.04265		7.4%
2007	0.03892	0.00002	0.00024	0.03919		0.04153		0.00001		0.00026		0.04180		7.2%
Electricity from CHP ²														
2005	0.00869	0.00007	0.00000	0.00877		0.00900		0.00008		0.00000		0.00908		7.4%
2006	0.00900	0.00008	0.00000	0.00909		0.00900		0.00008		0.00000		0.00909		7.4%
2007	0.00808	0.00008	0.00000	0.00817		0.00882		0.00009		0.00001		0.00891		7.2%
Other electricity factor														
Renewables ³	0	0	0	0		0		0		0		0		
Total							0		0		0		0	

Annex 3 - Converting from purchased electricity use to carbon dioxide equivalent emissions

Table 3c

Electricity emission factors from 1990 to					Grid Rolling									
2007 per kWh (electricity CONSUMED):	CO ₂	CH₄	N ₂ O	Total GHG	Average ¹ :		CO ₂		CH₄		N ₂ O	Т	otal GHG	% Transmission
UK Grid Electricity Year	kg CO ₂	kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq per	Amount used per	kg CO ₂	Total kg CO ₂	kg CO ₂ e	Total kg CO2eq	kg CO ₂ eq	Total kg CO2eq	kg CO ₂ eq	Total kg CO ₂ eq	and Distribution
	per kWh	per kWh	per kWh	kWh	year, kWh	per kWh	-	per kWh		per kWh		per kWh		Losses
1990	0.77000	0.00021	0.00630	0.77651		0.77000		0.00021		0.00630		0.77651		7.5%
1991	0.75000	0.00020	0.00611	0.75631		0.76000		0.00020		0.00620		0.76641		7.5%
1992	0.70000	0.00019	0.00570	0.70589		0.74000		0.00020		0.00604		0.74624		7.5%
1993	0.62000	0.00019	0.00472	0.62491		0.71000		0.00020		0.00571		0.71590		7.5%
1994	0.61000	0.00020	0.00455	0.61475		0.69000		0.00020		0.00548		0.69567		7.5%
1995	0.58000	0.00020	0.00423	0.58443		0.65200		0.00019		0.00506		0.65726		7.5%
1996	0.56845	0.00020	0.00386	0.57250		0.61569		0.00019		0.00461		0.62050		8.1%
1997	0.52448	0.00019	0.00331	0.52798		0.58059		0.00019		0.00413		0.58491		8.1%
1998	0.52592	0.00020	0.00332	0.52944		0.56177		0.00020		0.00385		0.56582		8.1%
1999	0.49345	0.00020	0.00285	0.49650		0.53846		0.00020		0.00351		0.54217		8.1%
2000	0.52368	0.00021	0.00315	0.52704		0.52720		0.00020		0.00330		0.53069		8.3%
2001	0.54110	0.00022	0.00336	0.54469		0.52173		0.00020		0.00320		0.52513		8.5%
2002	0.52306	0.00022	0.00315	0.52642		0.52144		0.00021		0.00317		0.52482		8.3%
2003	0.53859	0.00022	0.00336	0.54218		0.52398		0.00021		0.00317		0.52737		8.2%
2004	0.53945	0.00022	0.00326	0.54293		0.53318		0.00022		0.00326		0.53665		8.3%
2005	0.52665	0.00024	0.00333	0.53022		0.53377		0.00022		0.00329		0.53729		7.4%
2006	0.55502	0.00024	0.00366	0.55892		0.53655		0.00023		0.00335		0.54013		7.4%
2007	0.54303	0.00025	0.00339	0.54667		0.54055		0.00023		0.00340		0.54418		7.2%
Electricity from CHP ²														
2005	0.29369	0.00252	0.00014	0.29636		0.30400		0.00261		0.00015		0.30676		7.4%
2006	0.30400	0.00284	0.00017	0.30700		0.30400		0.00284		0.00017		0.30700		7.4%
2007	0.27300	0.00266	0.00016	0.27582		0.29800		0.00290		0.00017		0.30107		7.2%
Other electricity factor														
Renewables ³	0	0	0	0		0		0		0		0		
Total							0		0		0		0	

Sources Based on UK Greenhouse Gas Inventory for 2007 (AEA) according to the amount of CO₂, CH₄ and N₂O emitted from major power stations per unit of electricity consumed from the BERR's Digest of UK Energy Statistics (DUKES) 2008 Table 5.6, available at: http://www.berr.gov.uk/whatwedo/energy/statistics/publications/dukes/page45537.html

Notes

Emission Factor (Electricity CONSUMED) = Emission Factor (Electricity GENERATED) + Emission Factor (Electricity LOSSES) ¹ The electricity conversion factors given represent the average carbon dioxide emission from the UK national grid per kWh of electricity generated (supplied to grid) in Table 3a, and in Table 3c for electricity used at the point of final consumption (i.e. transmission and distribution losses are included, from Table 3b). These factors include only direct carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) emissions at UK power stations and do not include emissions resulting from production and delivery of fuel to these power stations (i.e. from gas rigs, refineries and collieries, etc.).

This factor changes from year to year, as the fuel mix consumed in UK power stations changes. Because these annual changes can be large (the factor depends very heavily on the relative prices of coal and natural gas), and to assist companies with year to year comparability, the factor presented is the grid rolling average of the grid conversion factor over the previous 5 years. This factor is updated annually.

² Organisations should use the 'Grid Rolling Average' factor for reporting emissions from the use of CHP-backed tariffs.

³ Organisations should only use the 'Renewables' factor for reporting emissions from electricity generated from owned or controlled renewable sources backed by Renewable Energy Guarantee of Origin (REGOs) certificates.

Annex 4 - Typical Process Emissions

Last updated: Jun-09

How to use this Annex

The Kyoto protocol seeks to reduce emissions of the following six greenhouse gases.

Carbon Dioxide CO₂ Methane CH₄ Nitrous oxide N₂O Perfluorocarbons PFC Sulphur Hexafluoride SF₆ Hydrofluorocarbons HFC

Below is a table that highlights the gases that are likely to be produced by a variety of tr industries in the UK that are most likely to have a significant impact on climate change. The dark areas represent the gases that are likely to be produced.

Table 4

Notes

Process r	related emissions ¹						
Process				Emi	ssion		
		CO_2	CH_4	N_2O	PFC	SF_6	HFC
Mineral	Cement Production						
Products	Lime Production						
	Limestone Use ²						
	Soda Ash Production and Use						
	Fletton Brick Manufacture ³						
Chemical	Ammonia						
Industry	Nitric Acid						
	Adpic Acid						
	Urea						
	Carbides						
	Caprolactam						
	Petrochemicals						
Metal	Iron, Steel and Ferroalloys						
Production	Aluminium						
	Magnesium						
	Other Metals						
Energy	Coal mining						
Industry	Solid fuel transformation						
	Oil production						
	Gas production and distribution						
	Venting and flaring from oil/gas production						
Other	Production of Halocarbons	$\begin{tabular}{ c c c } \hline c c c c c } \hline c c c c c c c c c c c c c c c c c c $					
	Use of Halocarbons and SF ₆		1				
	Organic waste management						

If you have identified process emissions of greenhouse gases other than those covered in this Annex these may be converted to carbon dioxide equivalents by using the factors provided in **Annex 5**.

Sources Greenhouse Gas Inventory Reference Manual, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 1997)

adapted for UK processes by AEA

- ¹ These process related emissions refer to the types of processes that are used specifically in the UK. Process emissions might be slightly different for processes operated in other countries.
- ² For use of limestone in Flue Gas Desulphurisation (FGD) and processes such as those in the glass industry. Not all uses of limestone release CO₂.
- ³ This is specific to Fletton brick manufacture at the mineral processing stage, a process that uses clay with high organic content. Other types of brick manufacturing in the UK do not release Greenhouse Gases during the processing stage.

Annex 5 - Emission Factors for converting Greenhouse Gas Emissions into Carbon Dioxide Equivalents (including emissions from refrigerants and air conditioning systems) Last updated: Jun-09

How to use this Annex

Global Warming Potentials (GWPs) are used to compare the impact of the emission of equivalent masses of different GHGs relative to carbon dioxide. For example, it is estimated that the emission of 1 kilogram of methane will have the same warming impact ¹ as 21 kilograms of carbon dioxide. Therefore the GWP of methane is 21. The GWP of carbon dioxide is, by definition, 1.

The conversion factors in **Table 5a** incorporate (GWP) values relevant to reporting under UNFCCC, as published by the IPCC in its <u>Second</u> <u>Assessment Report</u>, *Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. (Eds. J. T Houghton et al, 1996).*

Revised GWP values have since been published by the IPCC in the Fourth Assessment Report (2007) but current UNFCCC Guidelines on Reporting and Review, adopted before the publication of the Fourth Assessment Report, require emission estimates to be based on the GWPs in the IPCC Second Assessment Report. A second table, **Table 5b**, includes other greenhouse gases not listed in the Kyoto protocol or covered by reporting under UNFCCC. These GWP conversion factors have been taken from the IPCC's Fourth Assessment Report (2007).

CFCs and HCFCs

Table 5a

Not all refrigerants in use are classified as greenhouse gases for the purposes of the UNFCCC and Kyoto Protocol (e.g. CFCs, HCFCs). These gases are controlled under the Montreal Protocol and as such GWP values are listed in **Table 5b**

Mixed/Blended gases

GWP values for refrigerant blends should be calculated on the basis of the percentage blend composition (e.g. the GWP for R404a that comprises is 44% HFC125, 52% HFC143a and 4% HFC134a is $[2800 \times 0.44] + [3800 \times 0.52] + [1300 \times 0.04] = 3260$). A limited selection of common blends is presented in Tables 5a and 5b.

How were these factors calculated?

For further explanation on how these emission factors have been derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors/htm

Factors for Process Emissions - Greenhouse Gases Listed in the Kyoto Protocol

Emission	Chemical formula	Amount	х	Conversio	х	Unit	Total kg CO ₂
		Emitted per		n Factor		conversion	equivalent
		Year in tonnes		(GWP)		tonnes to kg	
Carbon Dioxide	CO ₂		х	1	х	1,000	
Methane	CH ₄		х	21	х	1,000	
Nitrous Oxide	N ₂ O		х	310	х	1,000	
HFC-23	CHF ₃		х	11,700	х	1,000	
HFC-32	CH ₂ F ₂		х	650	х	1,000	
HFC-41	CH₃F		х	150	х	1,000	
HFC-125	CHF ₂ CF ₃		х	2,800	х	1,000	
HFC-134	CHF ₂ CHF ₂		х	1,000	х	1,000	
HFC-134a	CH ₂ FCF ₃		х	1,300	х	1,000	
HFC-143	CH ₃ CF ₃		х	300	х	1,000	
HFC-143a	CH ₃ CHF ₂		х	3,800	х	1,000	
HFC-152a	CF ₃ CHFCF ₃		х	140	х	1,000	
HFC-227ea	CF ₃ CH ₂ CF ₃		х	2,900	х	1,000	
HFC-236fa	CHF ₂ CH ₂ CF ₃		х	6,300	х	1,000	
HFC-245fa	CH ₃ CF ₂ CH ₂ CF ₃		х	560	х	1,000	
HFC-43-I0mee	CF ₃ CHFCHFCF ₂ CF ₃		х	1,300	х	1,000	
Perfluoromethane (PFC-14)	CF ₄		х	6,500	х	1,000	
Perfluoroethane (PFC-116)	C_2F_6		х	9,200	х	1,000	
Perfluoropropane (PFC-218)	C ₃ F ₈		х	7,000	х	1,000	
Perfluorocyclobutane (PFC-318)	c-C ₄ F ₈		х	8,700	х	1,000	
Perfluorobutane (PFC-3-1-10)	C ₄ F ₁₀		х	7,000	х	1,000	
Perfluoropentane (PFC-4-1-12)	C ₅ F ₁₂		х	7,500	х	1,000	
Perfluorohexane (PFC-5-1-14)	C ₆ F ₁₄		х	7,400	х	1,000	
Sulphur hexafluoride	SF ₆		х	23,900	х	1,000	
Blends							
R404A	52:44:4 blend of HFC-143a, -125 and -134a		х	3,260	х	1,000	
R407C	23:25:52 blend of HFC-32, -125 and -134a		х	1,526	х	1,000	
R408A	47:7:46 blend HCFC-22, HFC-125 and HFC-143a		х	2,795	х	1,000	
R410A	50:50 blend of HFC-32 and -125		х	1,725	х	1,000	
R507	50:50 blend of HFC-125 and HFC-143a		х	3,300	х	1,000	
R508B	46:54 blend of HFC-23 and PFC-116		х	10,350	х	1,000	
Total							0

¹ Over the period of one century. The length of time a GWP is referenced to is important. 100 year GWPs were adopted for use under the UNFCCC and Kyoto F

Annex 5 - Emission Factors for converting Greenhouse Gas Emissions into Carbon Dioxide Equivalents (including emissions from refrigerants and air conditioning systems)

Table 5b

Factors for Process Emissions - Ot	her Greenhouse Gases (e.g. other refrigerants)						
Emission		Amount	х	Conversio	х	Unit	Total kg CO ₂
		Emitted per		n Factor		conversion	equivalent
		Year in tonnes		(GWP)		tonnes to kg	•
Substances controlled by the Montreal	Protocol						
CFC-11/R11 = Trichlorofluoromethane	CCI ₃ F		х	4,750	х	1,000	
CFC-12/R12 = Dichlorodifluoromethane	CCI ₂ F ₂		х	10,900	х	1,000	
CFC-13	CCIF ₃		х	14,400	х	1,000	
CFC-113	CCI ₂ FCCIF ₂		х	6,130	х	1,000	
CFC-114	CCIF ₂ CCIF ₂		х	10,000	х	1,000	
CFC-115	CCIF ₂ CF ₃		х	7,370	х	1,000	
Halon-1211	CBrCIF ₂		х	1,890	х	1,000	
Halon-1301	CBrF ₃		х	7,140	х	1,000	
Halon-2402	CBrF ₂ CBrF ₂		х	1,640	х	1,000	
Carbon tetrachloride	CCI ₄		х	1,400	х	1,000	
Methyl bromide	CH₃Br		х	5	х	1,000	
Methyl chloroform	CH ₃ CCI ₃		х	146	х	1,000	
HCFC-22/R22 = Chlorodifluoromethane	CHCIF ₂		х	1,810	х	1,000	
HCFC-123	CHCl ₂ CF ₃		х	77	х	1,000	
HCFC-124	CHCIFCF ₃		х	609	х	1,000	
HCFC-141b	CH ₃ CCl ₂ F		х	725	х	1,000	
HCFC-142b	CH ₃ CCIF ₂		х	2,310	х	1,000	
HCFC-225ca	CHCl ₂ CF ₂ CF ₃		х	122	х	1,000	
HCFC-225cb	CHCIFCF2CCIF2		х	595	х	1,000	
Other Perfluorinated compounds							
Nitrogen trifluoride	NF ₃		х	17,200	х	1,000	
PFC-4-1-12	C ₅ F ₁₂		х	9,160	х	1,000	
PFC-9-1-18	C ₁₀ F ₁₈		х	7,500	х	1,000	
trifluoromethyl sulphur pentafluoride	SF₅CF ₃		х	17,700	х	1,000	
Fluorinated ethers	•						
HFE-125	CHF ₂ OCF ₃		х	14,900	х	1,000	
HFE-134	CHF ₂ OCHF ₂		х	6,320	х	1,000	
HFE-143a	CH ₃ OCF ₃		х	756	х	1,000	
HCFE-235da2	CHF ₂ OCHCICF ₃		х	350	х	1,000	
HFE-245cb2	CH ₃ OCF ₂ CHF ₂		х	708	х	1,000	
HFE-245fa2	CHF ₂ OCH ₂ CF ₃		х	659	х	1,000	
HFE-254cb2	CH ₃ OCF ₂ CHF ₂		х	359	х	1,000	
HFE-347mcc3	CH ₃ OCF ₂ CF ₂ CF ₃		х	575	х	1,000	
HFE-347pcf2	CHF ₂ CF ₂ OCH ₂ CF ₃		х	580	х	1,000	
HFE-356pcc3	CH ₃ OCF ₂ CF ₂ CHF ₂		х	110	х	1,000	
HFE-449sl (HFE-7100)	C ₄ F ₉ OCH ₃		х	297	х	1,000	
HFE-569sf2 (HFE-7200)	C ₄ F ₉ OC ₂ H ₅		х	59	х	1,000	
HFE-43-10pccc124 (H-Galden1040x)	CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂		х	1,870	х	1,000	
HFE-236ca12 (HG-10)	CHF ₂ OCF ₂ OCHF ₂		х	2,800	х	1,000	
HFE-338pcc13 (HG-01)	CHF ₂ OCF ₂ CF ₂ OCHF ₂		х	1,500	х	1,000	
Others							
PFPMIE	CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃		х	10,300	х	1,000	
Dimethylether	CH ₃ OCH ₃		х	1	х	1,000	
Methylene chloride	CH ₂ Cl ₂		х	8.7	х	1,000	
Methyl chloride	CH ₃ Cl		х	13	х	1,000	
R290 = Propane	C ₃ H ₈		х	3.3	х	1,000	
R600A = Isobutane	C ₄ H ₁₀		х	0.001	х	1,000	
Blends							
R406A	55:41:4 blend of HCFC-22, HCFC-142b and R600A		х	1,943	х	1,000	
R409A	60:25:15 blend of HCFC-22, HCFC-124 and HCFC-142b		х	1,585	х	1,000	
R502	48.8:51.2 blend of HCFC-22 and CFC-115		х	4,657	х	1,000	
Total							0

Sources The conversion factors in Table 4a above incorporate global warming potential (GWP) values published by the IPCC in its Second Assessment Report (Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. (Eds. J.T. Houghton et al). Published for the Intergovernmental Panel on Climate Change by Cambridge University Press 1996). Revised GWP values have since been published by the IPCC in the Third Assessment Report (2001) and Fourth Assessment Report (2007) but current UNFCCC Guidelines on Reporting and Review, adopted before the publication of the Third and Fourth Assessment Report, require emission estimates to be based on the GWPs in the IPCC Second Assessment Report.

The conversion factors in Table 5b above incorporate (GWP) values published by the IPCC in its Fourth Assessment Report (Working Group I Report "The Physical Science Basis", 2007, available at: http://www.ipcc.ch/ipccreports/ar4-wq1.htm).

Notes Not all refrigerants in use are classified as greenhouse gases for the purposes of the Climate Change Programme (e.g. CFCs, HCFCs, other substances listed in Table 5b). GWP values for refrigerant HFC blends should be calculated on the basis of the percentage blend composition. For example, the GWP for R404A that comprises is 44% HFC125, 52% HFC143a and 4% HFC134a is 2800 x 0.44 + 3800 x 0.52 + 1300 x 0.04 = 3260. Similarly R407C is a blend of 23% of R122, 25% of R134a = 650 x 0.23 + 2800 x 0.25 + 1300 x 0.52 = 1526. Information on blends is based largely on information from the UK Institute of Refrigeration website: http://www.ior.org.uk/index.php

Last updated: Sep-09

How to use this Annex

Emissions can be calculated *either* from fuel use (see Table 6a), which is the most accurate method of calculation, or estimated from *distance* travelled using UK average emission factors for different modes of transport (other Tables 6b - 6j). For public transport (Tables 6k and 6l) emissions are presented per passenger, rather than per vehicle. Therefore enter *passenger kilometres travelled* to calculate emissions (e.g. if one person travels 500km, then *passenger kilometres travelled* are 500. If three people travel the same distance *passenger kilometres travelled* are 1500).

Simply multiply activity (either fuel used, kilometres travelled or passenger kilometres travelled) by the appropriate conversion factor. An excel spreadsheet is provided for ease of use.

How do I determine UK rail travel distances (in miles) where start and destination stations are known?

1. Click on web link: http://www.networkrail.co.uk/aspx/3828.aspx

2. Select the Route Index under Train Timetables

3. Use your mouse cursor to click on the appropriate train route in the 'Table' column that matches your starting and destination stations. This should open a corresponding timetable with rail distances.

4. In the timetable, refer to the 'Miles' columns on the left to determine mileage between your starting and destination stations.

How were these factors calculated?

For further explanation on how these emission factors have been derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm

Table 6a

Standard Road Transport Fuel Conver	andard Road Transport Fuel Conversion Factors						
Fuel used	Total units used	Units	x	kg CO ₂ per unit	Total kg CO ₂		
Petrol		litres		2.3035			
Diesel		litres		2.6391			
Compressed Natural Gas (CNG)		kg		2.7278			
Liquid Petroleum Gas (LPG)		litres		1.4951			
Total							

CH4			N	20	Total GHG		
kg CO ₂ eq	Total kg		kg CO ₂ eq	Total kg	kg CO ₂ eq	Total kg	
per unit	CO ₂ eq		per unit	CO ₂ eq	per unit	CO ₂ eq	
0.00470			0.02260		2.33070		
0.00190			0.02830		2.66940		
0.00415			0.00161		2.73356		
0.00060			0.00110		1.49680		
	0			0		0	

Sources UK Greenhouse Gas Inventory for 2007 (AEA) Digest of UK Energy Statistics 2008 (BERR), available at: <u>http://www.berr.gov.uk/whatwedo/energy/statistics/publications/dukes/page45537.html</u> Carbon factors for fuels (UKPIA, 2004)

Notes 1 imperial gallon (UK) = 4.546 litres

kg pei

CH₄

CO₂eq

kg CO2eq Total kg

per unit

0.00028

0.00018

0.00034 0.00021

0.00048

0.00030 0.00045

0.00028

0.00049

0.00030

Annex 6 - Passenger Transport Conversion Tables

Last updated: Sep-09

Table 6b

Passenger Road Transport Conversion Fa	Passenger Road Transport Conversion Factors: Petrol Cars CO ₂									
Size of car	Total units travelled	Units	х	kg CO ₂ per unit	Total kg CO ₂					
Small petrol car, up to 1.4 litre engine		miles	х	0.28944						
		km	х	0.17985						
Medium petrol car, from 1.4 - 2.0 litres		miles	х	0.34246						
		km	х	0.21280						
Large petrol cars, above 2.0 litres		miles	х	0.47555						
		km	х	0.29549						
Average petrol car		miles	х	0.33100						
		km	х	0.20567						
Total for petrol cars					0					

CI	H ₄	N ₂ O T				otal GHG		
CO ₂ eq unit	Total kg CO₂eq	kg CO₂eq per unit	Total kg CO₂eq		kg CO₂eq per unit	Total kg CO₂eq		
0.00050		0.00296			0.29290			
0.00031		0.00184			0.18200			
0.00048		0.00296			0.34590			
0.00030		0.00184			0.21493			
0.00045		0.00296			0.47897			
0.00028		0.00184			0.29762			
0.00049		0.00296			0.33445			
0.00030		0.00184			0.20781			
	0		0			0		

Table 6c

Passenger Road Transport Conversion Fac	tors: Diesel Cars			CO ₂		
Size of car	Total units travelled	Units	х	kg CO ₂ per unit	Total kg CO ₂	
Small diesel car, up to 1.7 litre or under		miles	х	0.24293		
		km	х	0.15095		
Medium diesel car, from 1.7 to 2.0 litre		miles	х	0.30187		
		km	х	0.18757		
Large diesel car, over 2.0 litre		miles	х	0.41167		
		km	х	0.25580		
Average diesel car		miles	х	0.31627		
		km	х	0.19652		
Total for diesel cars					0	

Table 6d

Passenger Road Transport Conve	rsion Factors: Alternative Fuel	Cars		CC	D ₂
Type of alternative fuel car	Total units travelled	Units	x	kg CO ₂ per unit	Total kg CO ₂
Medium petrol hybrid car		miles	x	0.20309	
Large petrol hybrid car		km	х	0.12620	
arge petrol hybrid car		miles	х	0.36042	
		km	х	0.22395	
Medium LPG or CNG car		miles	х	0.29966	
		km	х	0.18620	
Large LPG or CNG car		miles	х	0.41611	
		km	х	0.25856	
Average LPG or CNG car		miles	х	0.35788	
		km	х	0.22238	
Total for alternative fuel cars					0

C	H ₄	N	20	Total	GHG	
kg CO ₂ eq per unit	Total kg CO₂eq	kg CO ₂ eq per unit	Total kg CO₂eq	kg CO ₂ eq per unit	Total kg CO₂eq	
0.00013		0.00280		0.24586		
0.00008		0.00174		0.15277		
0.00013		0.00280		0.30480		
0.00008		0.00174		0.18939		
0.00013		0.00280		0.41460		
0.00008		0.00174		0.25762		
0.00013		0.00280		0.31921		
0.00008		0.00174		0.19835		
	0		0			

kg CO₂eq

0.00296

0.00184 0.00296

0.00184

0.00296 0.00184

0.00296

0.00184

0.00296

0.00184

per unit

 N_2

)	Total	GHG
otal kg	kg CO ₂ eq	Total kg
CO ₂ eq	per unit	CO ₂ eq
	0.20634	
	0.12821	
	0.36372	
	0.22601	
	0.30310	
	0.18834	
	0.41952	
	0.26068	
	0.36133	
	0.22452	
0		0

Last updated: Sep-09

Table 6e

Passenger Road Transport Conv	ersion Fac	tors: Cars (unknown fu	el)		C	D ₂
Size of car		Total units travelled	Units	x	kg CO ₂ per unit	Total kg CO ₂
Average car (unknown fuel)			miles	х	0.32641	
			km	х	0.20282	
Total for average cars						0

C	4	N	2 O	Total	GHG
kg CO ₂ eq per unit	Total kg CO₂eq	kg CO₂eq per unit	Total kg CO₂eq	kg CO ₂ eq per unit	Total kg CO₂eq
0.00038		0.00291		0.32970	
0.00023		0.00181		0.20487	
	0		0		0

Sources Revised factors developed by AEA and agreed with Department for Transport (2009)

Notes These factors are estimated average values for the UK car fleet in 2008 travelling on average trips in the UK. They are calculated based on data from SMMT on new car CO₂ emissions from 1997 to 2008 combined with factors from TRL as functions of average speed of vehicle derived from test data under real world testing cycles and an uplift of 15% agreed with DfT to take into account further real-world driving effects on emissions relative to test-cycle based data. Further work is ongoing to understand this figure in more detail and revise it if necessary in the future.

The hybrid car factors are calculated based on data new car CO₂ emissions averaged across the main 4 hybrid vehicles currently available on the market and an uplift of 15% agreed with DfT to take into account real-world driving effects on emissions relative to test-cycle based data.

According to the Energy Savings Trust (EST), LPG and CNG cars results in 10-15% reduction in CO₂ relative to petrol cars, similar to diesel vehicles. New factors for LPG and CNG cars were calculated based on an average 12.5% reduction in CO₂ emissions relative to the emission factors for petrol cars from Table 6b. Due to the significant size and weight of the LPG and CNG fuel tanks only medium and large sized vehicles are available.

Real world effects not covered in regular test cycles include use of accessories (air con, lights, heaters, etc), vehicle payload (only driver +25kg is considered in tests, no passengers or further luggage), poor maintenance (tyre under inflation, maladjusted tracking, etc), gradients (tests effectively assume a level road), weather, harsher driving style, etc.

More accurate calculation of emissions can be made using the actual fuel consumed, where available, and the emission factors in Table 6a. Alternatively if a figure for a specific car's fuel consumption (e.g. in miles per gallon, mpg) is known, then the CO_2 can be calculated from the total mileage and the Table 6a factors.

New emission factors for CH₄ and N₂O are based on UK Greenhouse Gas Inventory default values for 2007 (AEA)

kg pe

Annex 6 - Passenger Transport Conversion Tables

Last updated: Sep-09

Table 6f

Passenger Road Transport Conv	ersion Factors: Petrol Cars by N	larket Segment		C	\mathbf{J}_2
Market segment of car	Total units travelled	Units	x	kg CO ₂ per unit	Total kg CO ₂
A. Mini		miles	x	0.26423	
		km	x	0.16419	
B. Supermini		miles	х	0.27973	
		km	х	0.17382	
C. Lower Medium		miles	х	0.32726	
		km	х	0.20335	
D. Upper Medium		miles	x	0.37095	
		km	х	0.23050	
E. Executive		miles	х	0.44045	
		km	х	0.27368	
F. Luxury		miles	х	0.55890	
		km	х	0.34729	
G. Sports		miles	х	0.41097	
		km	х	0.25536	
H. Duel Purpose 4x4		miles	х	0.46830	
		km	x	0.29099	
I. MPV		miles	х	0.38361	
		km	x	0.23836	
Total for petrol cars					

		1		~	1		
C	H ₄		N	2 O		Total	GHG
kg CO ₂ eq	Total kg		kg CO ₂ eq	Total kg		kg CO ₂ eq	Total kg
per unit	CO ₂ eq		per unit	CO ₂ eq		per unit	CO ₂ eq
0.00050			0.00296			0.26770	
0.00031			0.00184			0.16634	
0.00050			0.00296			0.28320	
0.00031			0.00184			0.17597	
0.00048			0.00296			0.33070	
0.00030			0.00184			0.20549	
0.00048			0.00296			0.37439	
0.00030			0.00184			0.23264	
0.00045			0.00296			0.44387	
0.00028			0.00184			0.27581	
0.00045			0.00296			0.56232	
0.00028			0.00184			0.34941	
0.00045			0.00296			0.41438	
0.00028			0.00184			0.25749	
0.00045			0.00296			0.47171	
0.00028			0.00184			0.29311	
0.00048			0.00296			0.38705	
0.00030			0.00184			0.24050	
	0			0			

Table 6g

Passenger Road Transport Conversion Factors: Diesel Cars by Market Segment CO ₂								
Market segment of car	Total units travelled	Units	х	kg CO ₂ per unit	Total kg CO ₂			
A. Mini		miles	х	0.15853				
		km	х	0.09851				
B. Supermini		miles	х	0.23621				
		km	х	0.14677				
C. Lower Medium		miles	х	0.26995				
		km	х	0.16774				
D. Upper Medium		miles	х	0.29348				
		km	х	0.18236				
E. Executive		miles	х	0.34985				
		km	х	0.21739				
F. Luxury		miles	х	0.40942				
		km	х	0.25440				
G. Sports		miles	х	0.30146				
		km	х	0.18732				
H. Duel Purpose 4x4		miles	х	0.44179				
		km	х	0.27451				
I. MPV		miles	х	0.33825				
		km	х	0.21018				
Total for diesel cars								

CI	H ₄	N	20	Total	GHG
CO ₂ eq	Total kg	kg CO ₂ eq	Total kg	kg CO ₂ eq	Total kg
runit	CO_2 eq	per unit	CO ₂ eq	per unit	CO ₂ eq
0.00013		0.00280		0.16147	
0.00008		0.00174		0.10033	
0.00013		0.00280		0.23914	
0.00008		0.00174		0.14860	
0.00013		0.00280		0.27288	
0.00008		0.00174		0.16956	
0.00013		0.00280		0.29641	
0.00008		0.00174		0.18418	
0.00013		0.00280		0.35279	
0.00008		0.00174		0.21921	
0.00013		0.00280		0.41235	
0.00008		0.00174		0.25622	
0.00013		0.00280		0.30440	
0.00008		0.00174		0.18914	
0.00013		0.00280		0.44472	
0.00008		0.00174		0.27634	
0.00013		0.00280		0.34119	
0.00008		0.00174		0.21200	
	0		0		0

0

Last updated: Sep-09

Table 6h

Passenger Road Transport Conv	ersion Factors: Cars (unknown f	uel) by Market				
Segment				CO ₂		
Market segment of car	Total units travelled	Units	x	kg CO ₂ per unit	Total kg CO ₂	
A. Mini		miles	х	0.26369		
		km	х	0.16385		
B. Supermini		miles	х	0.27555		
		km	х	0.17122		
C. Lower Medium		miles	х	0.31142		
		km	x	0.19351		
D. Upper Medium		miles	х	0.33954		
		km	х	0.21098		
E. Executive		miles	х	0.40389		
		km	х	0.25097		
F. Luxury		miles	х	0.52727		
		km	х	0.32763		
G. Sports		miles	х	0.40938		
		km	х	0.25437		
H. Duel Purpose 4x4		miles	х	0.45304		
		km	х	0.28151		
I. MPV		miles	х	0.36056		
		km	х	0.22404		
Total for cars (unknown fuel)						

CI	H₄		N ₂ O		Total	GHG
kg CO ₂ eq per unit	Total kg CO ₂ eq		kg CO ₂ eq per unit	Total kg CO ₂ eq	kg CO ₂ eq per unit	Total kg CO ₂ eq
0.00045			0.00294		0.26709	
0.00028			0.00183		0.16596	
0.00045			0.00294		0.27895	
0.00028			0.00183		0.17333	
0.00043			0.00294		0.31479	
0.00027			0.00183		0.19560	
0.00037			0.00291		0.34282	
0.00023			0.00181		0.21302	
0.00030			0.00289		0.40707	
0.00019			0.00179		0.25294	
0.00030			0.00289		0.53046	
0.00019			0.00179		0.32961	
0.00030			0.00289		0.41256	
0.00019			0.00179		0.25635	
0.00030			0.00289		0.45622	
0.00019		1	0.00179		0.28349	
0.00037		1	0.00291		0.36384	
0.00023		1	0.00181		0.22608	
	0	1		0		0

Sources Factors developed by AEA and agreed with Department for Transport (2009) Notes The market segment categories are the standard segments as defined by SM

The market segment categories are the standard segments as defined by SMMT (UK Society of Motor Manufacturers and Traders). These factors are estimated average values for the UK car fleet in 2008 travelling on average trips in the UK. They are calculated based on data from SMMT on new car CO2 emissions from 1997 to 2008 by SMMT. An uplift of 15% agreed with DfT to take into account further real-world driving effects on emissions relative to test-cycle based data (as under Tables 6b-6e). Further work is ongoing to understand this figure in more detail and revise it if necessary in the future.

There is a substantial variation in emission factors across market classes due to significant variations in engine size and vehicle weight. The Department for Transport consider the emission factors by fuel and engine size to often be a closer match to actual emissions. It is preferable to use the emission factors by engine size provided in Tables 6b and 6c over the market class based factors where possible.

More accurate calculation of emissions can be made using the actual fuel consumed, where available, and the emission factors in Table 6a. Alternatively if a figure for a specific car's fuel consumption (e.g. in miles per gallon, mpg) is known, then the CO₂ can be calculated from the total mileage and the Table 6a factors.

New emission factors for CH₄ and N₂O are based on UK Greenhouse Gas Inventory default values for 2007 (AEA)

Last updated: Sep-09

Table 6i

Passenger Road Transport Conversi	on Factors: Vans (Light Con	nmercial Vehicles)		C	D ₂
Type of van	Total units travelled	Units	x	kg CO ₂ per unit	Total kg CO ₂
Petrol van up to 1.25 tonne		miles	х	0.36112	
		km	х	0.22439	
Diesel van (Class I), up to 1.305 tonne		miles	х	0.25888	
		km	х	0.16086	
Diesel van (Class II), 1.305 to 1.74 tonne		miles	х	0.36197	
		km	х	0.22492	
Diesel van (Class III), 1.74 to 3.5 tonne		miles	х	0.48172	
		km	х	0.29933	
Diesel van up to 3.5 tonne		miles	х	0.43713	
		km	х	0.27162	
LPG or CNG van up to 3.5 tonne		miles	х	0.43750	
		km	х	0.27185	
Average van up to 3.5 tonne		miles	х	0.42905	
		km	х	0.26660	
Total for vans					

C	H₄		N ₂ O			Total GHG			
kg CO ₂ eq	Total kg	k	kg CO ₂ eq	Total kg		kg CO ₂ eq	Total kg		
per unit	CO ₂ eq	p	per unit	CO ₂ eq		per unit	CO ₂ eq		
0.00055			0.00565			0.36732			
0.00034			0.00351			0.22824			
0.00007			0.00172			0.26067			
0.00004			0.00107			0.16197			
0.00007			0.00240			0.36444			
0.00004			0.00149			0.22645			
0.00007			0.00320			0.48499			
0.00004			0.00199			0.30136			
0.00007			0.00290			0.44010			
0.00004			0.00180			0.27347			
0.00055			0.00565			0.44370			
0.00034			0.00351			0.27570			
0.00012			0.00319			0.43237			
0.00008			0.00198			0.26866			
	0			0			0		

Sources Factors developed by AEA and agreed with Department for Transport (2009) Notes Emission factors for light good vehicles (vans up to 3.5 tonnes) were calculated and the second s

Emission factors for light good vehicles (vans up to 3.5 tonnes) were calculated based on revisions to the diesel emission factors used in the National Atmospheric Emissions Inventory (NAEI) proposed to DfT by AEA (2005). These test cycle based emission factors were then uplifted by 15% to represent 'real-world' emissions, consistent with the approach used for cars agreed with DfT. New factors for Class I - Class III Diesel vans were calculated based on a summary of MVRIS reported CO2 data broken down by van class from analysis of the revised database by AEA as part of work on a 'Light Goods Vehicle – CO2 Emissions Study' for DfT (2009). Emission factors for petrol vehicles were calculated from the relative emissions and vkm of petrol and diesel LGVs in the NAEI. Emission factors for LPG and CNG vans were estimated to be similar to diesel vehicles, as indicated by EST for cars. The average van emission factor was calculated on the basis of the relative NAEI vehicle km for petrol and diesel LGVs for 2005.

New emission factors for CH₄ and N₂O are based on UK Greenhouse Gas Inventory default values for 2007 (AEA)

Table 6j

Notes

Passenger Road Transport Conversio	assenger Road Transport Conversion Factors: Motorcycles						
Size of motorcycle	Total units travelled	Units	x	kg CO ₂ per unit	Total kg CO ₂		
Small petrol motorbike		miles	х	0.13677			
(mopeds/scooters up to 125cc)		km	x	0.08499			
Medium petrol motorbike		miles	х	0.16603			
(125-500cc)		km	х	0.10316			
Large petrol motorbike		miles	х	0.22087			
(over 500cc)		km	х	0.13724			
Average petrol motorbike		miles	х	0.18678			
(unknown engine size)		km	х	0.11606			
Total for motorcycles							

C	H₄	N ₂ O			Total GHG		
kg CO ₂ eq per unit	Total kg CO₂eq	kg CO ₂ eq per unit	Total kg CO₂eq		kg CO ₂ eq per unit	Total kg CO₂eq	
0.00297		0.00091			0.14065		
0.00184		0.00057			0.08740		
0.00306		0.00100			0.17008		
0.00190		0.00062			0.10569		
0.00307		0.00100			0.22494		
0.00191		0.00062			0.13977		
0.00304		0.00097			0.19080		
0.00189		0.00060			0.11856		
	0		0			0	

Sources Factors developed by AEA and agreed with Department for Transport (2009)

These factors are based on calculations of average emissions data by size category, based data provided by Clear (<u>http://www.clear-offset.com/</u>) of almost 1200 datapoints, over 300 different bikes from 50-1500cc, and from 25 manufacturers from a mix of magazine road test reports and user reported data.

More accurate calculation of emissions can be made using the actual fuel consumed, where available, and the emission factors in Table 5a. Alternatively if a figure for a specific motorbike's fuel consumption (e.g. in miles per gallon, mpg) is known, then the CO_2 can be calculated from the total mileage and the Table 6a factors.

New emission factors for CH_4 and N_2O are based on UK Greenhouse Gas Inventory default values for 2007 (AEA)

Last updated: Sep-09

Table 6k

Taxi, Bus, Rail and Ferry Pass	senger Transport Conversion Factors			C	D ₂
Method of travel		Vehicle kms travelled (vkm)		kg CO ₂ per vkm	Total kg CO ₂
Taxi ¹	Regular taxi		х	0.22169	
	Black cab		х	0.25580	
Method of travel		Passenger kms travelled (pkm)	x	kg CO ₂ per pkm	Total kg CO ₂
Taxi ¹	Regular taxi		х	0.15835	
	Black cab		х	0.17053	
Bus	Local bus ²		х	0.11037	
	London bus ³		х	0.08300	
	Average bus		х	0.10351	
	Coach 4		х	0.03000	
	Average bus and coach		х	0.06824	
Rail	National rail 5		х	0.05774	
	International rail (Eurostar) 6		х	0.01765	
	Light rail and tram 7		х	0.08340	
	London Underground ⁸		х	0.07801	
Ferry (Large RoPax) 9	Foot passengers		х	0.01912	
	Car passengers		х	0.13216	
	Average (all passengers)		х	0.11516	
Total			T		

C	H ₄	N	20	Total GHG			
kg CO ₂ eq	Total kg	kg CO ₂ eq	Total kg	kg CO ₂ eq	Total kg		
per vkm	CO ₂ eq	per vkm	CO ₂ eq	per vkm	CO ₂ eq		
0.00008		0.00174		0.22351			
0.00008		0.00174		0.25762			
kg CO ₂ eq	Total kg	kg CO ₂ eq	Total kg	kg CO ₂ eq	Total kg		
per pkm	CO ₂ eq	per pkm	CO ₂ eq	per pkm	CO ₂ eq		
0.00006		0.00124		0.15965			
0.00005		0.00116		0.17175			
0.00014		0.00102		0.11153			
0.00009		0.00068		0.08377			
0.00013		0.00098		0.10462			
0.00004		0.00058		0.03062			
0.00009		0.00079		0.06911			
0.00008		0.00331		0.06113			
0.00001		0.00012		0.01777			
0.00004		0.00055		0.08398			
0.00003		0.00051		0.07856			
0.00001		0.00015		0.01927			
0.00004		0.00102		0.13322			
0.00004		0.00089		0.11609			
	0		0		0		

Sources Department for Transport, Transport for London and AEA (2009)

Notes

¹ New emission factors for taxis were estimated on the basis of an average of the emission factors of medium and large cars from Table 6c and occupancy of 1.4 (CfIT, 2002). The emission factors for black cabs are based on the large car emission factor (consistent with the VCA dataset for London Taxis International vehicles) and an average passenger occupancy of 1.5 (average 2.5 people per cab from LTI website, 2008).

² The factor for local buses was calculated based on data publically available from the major bus service operators including Stagecoach, First Group, Arriva, National Express, Go-Ahead and from Transport for London, supplemented in some cases by average bus occupancy factors from national statistics.

The DfT is currently considering changing the methodology used to calculate local bus CO₂ emissions in future years. This approach will make use of actual fuel consumption data submitted by bus operators to the DfT as part of their Bus Service Operators Grant (BSOG) claims.

³ The London bus factor is from the Transport for London 2008 environmental report available at: <u>http://www.tfl.gov.uk/assets/downloads/corporate/environment-report-2008.pdf</u> and <u>http://www.tfl.gov.uk/assets/downloads/corporate/environment-report-2008.data-tables.pdf</u>

⁴ The emission factor for coach transport is the figure from the National Express Group's Corporate Responsibility Report, available at:

http://www.nationalexpressgroup.com/nx1/corporate/environment/climate/. National Express are responsible for the majority of long-distance coach services in the UK, so this figure is expected to be broadly representative of the overall average.

⁵ The national rail factor refers to an average emission per passenger kilometre for diesel and electric trains in 2007. The calculation of the factor is based on the total electricity and diesel consumed by the railways in 2007/08 from the DfT National Modelling Framework Environment Module, and DfT transport statistics on the total number of passenger kilometres for 2007/08. Emission factors for freight rail are provided in Annex 7, Table 7f.

⁶ The emission factor for international rail is based on an average of the figures provided on the Eurostar website for the London-Brussels and London-Paris Eurostar routes, available at: <u>http://www.eurostar.com/UK/uk/leisure/travel_information/before_you_go/Green_Eurostar.jsp</u>

⁷ The light rail and tram factors were based on an average of factors for the Docklands Light Rail (DLR) service, the Manchester Metrolink, Tyne and Wear Metro, Glasgow Underground, Supertram, Midland Metro and the Croydon Tramlink. The factors for the Tyne and Wear, Glasgow, Midland, Supertram and Manchester tram and light rail systems were based on annual electricity consumption and passenger km data provided by the network operators in 2008 (referring mostly to consumption in 2007/08) and a CO₂ emission factor for grid rolling average electricity from Table 2. DLR and Croydon Tramlink figures were recalculated using the updated 2007 grid rolling average from those available in the Transport for London 2008 environmental report available at: http://www.tfl.gov.uk/assets/downloads/corporate/environment-report-2008-data-tables.pdf

Last updated: Sep-09

⁸ The London Underground rail factor is recalculated using the updated 2007 grid rolling average from figures in the Transport for London 2007 environmental report available at: <u>http://www.tfl.gov.uk/assets/downloads/corporate/environment-report-2008.pdf</u> and <u>http://www.tfl.gov.uk/assets/downloads/corporate/environment-report-2008.pdf</u>

http://www.tfi.gov.uk/assets/downloads/corporate/environment-report-2008-data-tables.pdf

⁹ The factors for RoPax ferries (Roll-on Roll-off ferries with additional passenger capacity) are based on data provided by Best Foot Forward from work for the Passenger Shipping Association (PSA) carried out in 2007/8. The calculated figure is based on ferry service operator provided data on fuel consumption and passengers transported, but does not include any data for passenger only ferry services, which would be expected to have significantly higher emission factors per passenger km.

New emission factors for CH_4 and N_2O are based on UK Greenhouse Gas Inventory default values for 2007 (AEA)

Table 6I

Air Passenger Transport Conversion	n Factors					CO ₂	
Method of travel		Passenger kms travelled (pkm)	х	km uplift factor ¹²	х	kg CO ₂ per pkm ¹³	Total kg CO ₂
Flight type 10	Cabin class 11						
Domestic	Average		х	109%	х	0.17102	
Short-haul international	Average		х	109%	х	0.09826	
	Economy class		х	109%	х	0.09365	
	Business class		х	109%	х	0.14047	
Long-haul international	Average		х	109%	х	0.11220	
	Economy class		х	109%	x	0.08191	
	Premium economy class		х	109%	х	0.13105	
	Business class		х	109%	х	0.23753	
	First class		х	109%	х	0.32763	
Total							0

CH₄		N ₂ O			Total GHG		
kg CO ₂ eq	Total kg	kg CO ₂ eq	Total kg		kg CO ₂ eq	Total kg	
per pkm	CO ₂ eq	per pkm	CO ₂ eq		per unit	CO ₂ eq	
0.00013		0.00168			0.17283		
0.00001		0.00097			0.09924		
0.00001		0.00092			0.09457		
0.00001		0.00138			0.14186		
0.00001		0.00110			0.11331		
0.00000		0.00081			0.08272		
0.00001		0.00129			0.13235		
0.00001		0.00234			0.23988		
0.00002		0.00322			0.33087		
	0		0			0	

Source Notes

Developed by AEA (2009) using the methodology developed in discussion with the Department for Transport and the airline industry, 2008.

These emissions factors are intended to be an aggregate representation of the typical emissions per passenger km from illustrative types of aircraft for the 3 types of air services. Actual emissions will vary significantly according to the type of aircraft in use, the load, cabin class, specific conditions of the flight route, etc.

¹⁰ The emission factors refer to aviation's direct carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) emissions only. There is currently uncertainty over the other non-CO2 climate change effects of aviation (including water vapour, contrails, NOx etc) which may indicatively be accounted for by applying a multiplier. The appropriate factor to apply is subject to uncertainty but was estimated by the IPCC in 1999 to be in the range 2-4, with current best scientific evidence suggesting a factor of 1.9. If used, this factor would be applied to the emissions factors set out here.

¹¹ The 9% uplift factor comes from the IPCC Aviation and the global Atmosphere 8.2.2.3, which states that 9-10% should be added to take into account non-direct routes (i.e. not along the straight line great circle distances between destinations) and delays/circling. Airline industry representatives have indicated that the percentage uplift for short-haul flights will be higher and for long-haul flights will be lower, however specific data is not currently available to provide separate factors. This is under investigation for future versions of these guidelines.

¹² The emissions factors are based on typical aircraft fuel burn over illustrative trip distances listed in the EMEP/CORINAIR Emissions Inventory Guidebook (EIG 2007) – available at the EEA website at: http://reports.eea.europa.eu/EMEPCORINAIR5/en/B851_annex.zip. This information is combined with data from the Civil Aviation Authority (CAA) on average aircraft seating capacity, loading factors, and annual passenger-km and aircraft-km for 2007 (most recent full-year data available). The provisional evidence to date suggests an uplift in the region of 10-12% to climb/cruise/descent factors derived by the CORINAIR approach is appropriate in order to ensure consistency with estimated UK aviation emissions as reported in line with the UN Framework on Climate Change, covering UK domestic flights and departing international flights.

These emissions are based on bunker fuel consumption and are closely related to fuel on departing flights. This uplift is therefore based on comparisons of national aviation fuel consumption from this reported inventory, with detailed bottom up calculations in DFT modelling along with the similar NAEI approach, which both use detailed UK activity data (by aircraft and route) from CAA, and the CORINAIR fuel consumption approach. Therefore for this version of the Defra CO₂ emission factors an uplift of 10% is applied to the emissions from the Cruise, Climb and Decent of the aircraft based on provisional evidence. The CORINAIR uplift is in <u>addition</u> to the assumption that Great Circle Distances are increased by 9% to allow for sub-optimal routing and stacking at airports during periods of heavy congestion. It should be noted that work will continue to determine a more robust reconciliation and this will be accounted for in future versions of these factors.

The long haul estimate is based on a flight length from the Guidebook of 6482 km, short haul 1108km and domestic 463km. Actual flight distances do however vary significantly, as demonstrated in the examples in the following tables. Domestic flights are between UK airports, short haul international flights are typically to Europe (up to 3700km distance), and long haul international flights are typically to non-European destinations (or all other international flights over 3700km distance).

Last updated: Sep-09

¹³ The indicative emissions factors by passenger seating class have been produced to allow passengers to build an understanding of how emissions per passenger km are affected by load factors and seat configurations. This is in response to feedback on the previous version of the Act on CO₂ calculator. Emission factors by passenger seating class were developed on the basis of detailed analysis of the seating configurations of 24 aircraft model variants from 16 major airlines

providing services within/to/from the UK. Indicative emission factors were calculated via the relative area on the aircraft occupied by different seating classes compared to an economy class equivalent per passenger. Figures are only indicative averages and will vary considerably between different specific airline and aircraft configurations.

These indicative factors will be updated as further evidence comes to light on how these factors could more accurately be estimated. There are several ways in which these factors could be estimated, which will be kept under review.

Illustrative	lona	haul	fliaht	distances	

From London to:				
Area	Airport	Distance (km)		
North Africa	Abu Simbel/Sharm El Sheikh, Egypt	3300		
Southern Africa	Johannesburg/Pretoria, South Africa	9000		
Middle East	Dubai, UAE	5500		
North America	New York (JFK), USA	5600		
North America	Los Angeles California, USA	8900		
South America	Sao Paulo, Brazil	9400		
Indian sub-continent	Bombay/Mumbai, India	7200		
Far East	Hong Kong	9700		
Australasia	Sydney, Australia	17000		

Source Distances based on International Passenger Survey (Office for National Statistics) calculations using airport geographic information.

Illustrative short haul flight distances

From London to:		
Area	Airport	Distance (km)
Europe	Amsterdam, Netherlands	400
Europe	Prague (Ruzyne), Czech Rep	1000
Europe	Malaga, Spain	1700
Europe	Athens, Greece	1500

Source Distances based on International Passenger Survey (Office for National Statistics) calculations using airport geographic information.

New emission factors for CH₄ and N₂O are based on the UK Greenhouse Gas Inventory for 2007 (AEA)

Last updated: Sep-09

How to use this Annex

If you know how much of a particular fuel type is consumed, emissions can be calculated using Table 7a. This is the most accurate way to calculate emissions.

Table 7b gives emissions for distance travelled for vans and small trucks

Table 7c gives emissions per tonne freight carried for vans and small trucks. Emission factors for vans in tonne km were calculated from the emission factors per vehicle km provided in Table 6i (Annex 6) and an average load factor of 40%. The average cargo capacity was taken to be 0.5 tonnes for vans up to 1.25 tonnes gross vehicle weight, and 2 tonnes for vans up to 3.5 tonnes gross vehicle weight.

Table 7d gives emissions per vehicle kilometre travelled for a range of HGV sizes with a range of different loads. Use this table if you know the distance the vehicle has travelled. If you do not know the load capacity of your vehicle, apply the UK average load which is given for a range of vehicle classes.

Table 7e gives emissions per tonne kilometre travelled for a range of HGV sizes with a range of different loads. Use this table if you know the distance the freight has travelled and what the mass (in tonnes) of the freight was.

Table 7f gives emissions factors for tonne kilometres of freight for shipping, rail, and air freight

How do I determine UK rail travel distances (in miles) where start and destination stations are known?

1. Click on web link: http://www.networkrail.co.uk/aspx/3828.aspx

2. Select the Route Index under Train Timetables

3. Use your mouse cursor to click on the appropriate train route in the 'Table' column that matches your starting and destination stations. This should open a corresponding timetable with rail distances.

4. In the timetable, refer to the 'Miles' columns on the left to determine mileage between your starting and destination stations.

How were these factors calculated?

For further explanation on how these emission factors have been derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm

Table 7a

Standard Road Transport Fuel Conversion Factors				CO2		
Fuel used	Total units used	Units	х	kg CO ₂ per unit	Total kg CO₂	
Petrol		litres	х	2.3035		
Diesel		litres	х	2.6391		
Compressed Natural Gas (CNG)		kg	х	2.7278		
Liquid Petroleum Gas (LPG)		litres	x	1.4951		
Total					0	

CH,	1	
g CO ₂ eq per	Total kg	
nit	CO ₂ eq	
0.00470		
0.00190		
0.00415		
0.00060		

N ₂ C	
kg CO2eq per	Total kg
unit	CO ₂ eq
0.02260	
0.02830	
0.00161	
0.00110	
	0

Total G	Total GHG			
kg CO2eq per	Total kg			
unit	CO ₂ eq			
2.33070				
2.66940				
2.73356				
1.49680				
	0			

Sources UK Greenhouse Gas Inventory for 2007 (AEA)

Digest of UK Energy Statistics 2008 (BERR), available at: http://www.berr.gov.uk/whatwedo/energy/statistics/publications/dukes/page45537.html Carbon factors for fuels (UKPIA, 2004)

Notes 1 imperial gallon (UK) = 4.546 litres

Annex 7 - Freight Transport Conversion Tables Last updated: Sep-09

Table 7b

Van/Light Cor	nmercial Vehicle Road Freight Conversion	Factors: Vehicle km Basis		CO ₂		
Type of van	Gross Vehicle Weight (tonnes)	Total vehicle km travelled	x	kg CO ₂ per vehicle km	Total kg CO ₂	
Petrol	up to 1.25t		х	0.22439		
Diesel (Class I)	up to 1.305t		х	0.16086		
Diesel (Class II)	1.305t to 1.74t		х	0.22492		
Diesel (Class III)	1.74t to 3.5t		х	0.29933		
Diesel (average)	up to 3.5t		х	0.27162		
LPG or CNG	up to 3.5t		х	0.27185		
Average	up to 3.5t		х	0.26660		
Total					(

CH,	1
kg CO ₂ eq per vehicle km	Total kg CO₂eq
0.00034	
0.00004	
0.00004	
0.00004	
0.00004	
0.00034	
0.00008	
	0

N ₂ C	N ₂ O				
kg CO ₂ eq per vehicle km	Total kg CO₂eq				
0.00351					
0.00107					
0.00149					
0.00199					
0.00180					
0.00351					
0.00198					
	0				

Total G	Total GHG			
kg CO ₂ eq per vehicle km	Total kg CO₂eq			
0.22824				
0.16197				
0.22645				
0.30136				
0.27347				
0.27570				
0.26866				
	0			

-		L.		-	
1	а	υ	ie	1	c

Van/Light Con	nmercial Vehicle Road Freight Conversion Factors (UK Average Vehicle)		
Loads): Tonne	e.km Basis			CO	2
	Gross Vehicle Weight (tonnes)	Total tonne km travelled	x	kg CO ₂ per tonne.km	Total kg CO ₂
Petrol	up to 1.25t		х	0.92856	
Diesel (Class I)	up to 1.305t		х	0.66567	
Diesel (Class II)	1.305t to 1.74t		х	0.55845	
Diesel (Class III)	1.74t to 3.5t		х	0.37160	
Diesel (average)	up to 3.5t		x	0.33721	
LPG or CNG	up to 3.5t		х	0.33749	
Average	up to 3.5t		x	0.40006	
Total					0

CH, kg CO₂eq per tonne.km	Total kg CO ₂ eq
0.00141	
0.00018	
0.00011	
0.00005	
0.00005	
0.00042	
0.00020	
	0

N ₂ O			
kg CO₂eq per tonne.km	Total kg CO₂eq		
0.01454			
0.00442			
0.00370			
0.00246			
0.00224			
0.00436			
0.00354			
	0		

Total G	HG
kg CO2eq per	Total kg
tonne.km	CO ₂ eq
0.94450	
0.67027	
0.56226	
0.37412	
0.33950	
0.34227	
0.40380	
	0

Sources Factors developed by AEA and agreed with Department for Transport (2009) Notes Emission factors for vans in tonne km were calculated from the emission fact

Emission factors for vans in tonne km were calculated from the emission factors per vehicle km provided in Table 6i and an average load factor of 40% (estimated on the basis of DfT statistics for Vans for 2005). The average cargo capacity was taken to be 0.6 tonnes for petrol vans up to 1.25 tonnes gross vehicle weight and diesel Class I vans, 1 tonne for Class II diesel vans and 2 tonnes for vans up to 3.5 tonnes gross vehicle weight.

New emission factors for CH₄ and N₂O are based on UK Greenhouse Gas Inventory default values for 2007 (AEA)

Table 7d

Notes

Diesel HGV	Road Freight Conve	ersion Facto	rs: Vehicle km Basis			co	CO2	
	Gross Vehicle Weight (tonnes)	% weight laden		Total vehicle km travelled	x	kg CO ₂ per vehicle km	Total kg CO ₂	
Rigid	>3.5-7.5t	0%			х	0.50878		
		50%			х	0.55302		
		100%			х	0.59727		
		40%	(UK average load)		x	0.54417		
Rigid	>7.5-17t	0%			х	0.65780		
		50%			х	0.75177		
		100%			х	0.84574		
		37%	(UK average load)		x	0.72734		
Rigid	>17t	0%			х	0.75129		
		50%			х	0.91621		
		100%			х	1.08113		
		55%	(UK average load)		x	0.93362		
All rigids	UK average	53%			x	0.79311		
Articulated	>3.5-33t	0%			x	0.68943		
		50%			х	0.86179		
		100%			х	1.03415		
		43%	(UK average load)		х	0.83766		
Articulated	>33t	0%			х	0.67407		
		50%			х	0.89876		
		100%			х	1.12345		
		60%	(UK average load)		х	0.94370		
All artics	UK average	59%			x	0.93190		
ALL HGVs	UK average	56%			x	0.85754		
Total								

CH ₄		
kg CO ₂ eq per vehicle km	Total kg CO₂eq	
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00030		
0.00153		
0.00153		
0.00153		
0.00153		
0.00153		
0.00153		
0.00153		
0.00153		
0.00153		
0.00092		
	0	

N.C)
ka CO.ea per	Total kg
kg CO ₂ eq per	Total kg
venicie km	CO ₂ eq
0.00590	
0.00590	
0.00590	
0.00590	
0.00700	
0.00789	
0.00789	
0.00789	
0.00789	
0.01013	
0.01013	
0.01013	
0.01013	
0.00860	
0.00908	
0.00908	
0.00908	
0.00908	
0.01023	
0.01023	
0.01023	
0.01023	
0.01011	
0.01011	
0.00930	
	0

Total G	HG
kg CO ₂ eq per	Total kg
vehicle km	CO ₂ eq
0.51499	
0.55923	
0.60347	
0.55038	
0.66599	
0.75996	
0.85393	
0.73553	
0.76172	
0.92664	
1.09156	
0.94405	
0.80201	
0.70004	
0.87240	
1.04476	
0.84827	
0.00500	
0.68583	
0.91052	
1.13521	
0.95546	
0.94353	
0.86776	
	0

Sources Revised factors developed by AEA and agreed with Department for Transport (2009)

Factors are provided in kgCO₂/vehicle.km for 3 different gross vehicle weight ranges of rigid-axled HGVs and 2 different gross vehicle weight ranges of articulated HGVs. A vehicle km is the distance travelled by the HGV.

The % weight laden refers to the extent to which the vehicle is loaded to its maximum carrying capacity. A 0% weight laden HGV means the vehicle is travelling carrying no loads. 100% weight laden means the vehicle is travelling with loads bringing the vehicle to its maximum carrying capacity.

Factors are based on road freight statistics from the Department for Transport (DIT, 2008), from a survey on the average miles per gallon and average loading factor for different sizes of rigid and artic HGVs in the 2007 fleet, combined with test data from the European ARTEMIS project showing how fuel efficiency, and hence CO₂ emissions, varies with vehicle load.

The miles per gallon figures in Table 1.9 of DfT (2008) were converted into CO₂ factors using the diesel fuel conversion factors. Then using the ARTEMIS data, these were corrected to CO₂ factors corresponding to 0%, 50% and 100% loading in Table 7d. The correction was based on the current percent lading for different sizes of HGVs in the national fleet in 2007 given in Table 1.16 of DfT (2008).

As well as CO₂ factors for 0, 50 and 100% loading, CO₂ factors are shown for the average loading of each weight class of HGV in the UK fleet in 2005. These should be used as default values if the user does not know the loading factor to use and are based on the actual laden factors and mpg figures from tables 1.16 and 1.9 in DfT (2008).

UK average factors for all rigid and articulated HGVs are also provided in Table 7d if the user requires aggregate factors for these main classes of HGVs, perhaps because the weight class of the HGV is not known. Again, these factors represent averages for the UK HGV fleet in 2005. These are derived directly from the average mpg values for all rigid and articulated HGVs in Table 1.9 of DfT (2008).

At a more aggregated level still are factors for all HGVs representing the average mpg for all rigid and articulated HGV classes in Table 1.9 of DfT (2008). This factor should be used if the user has no knowledge of or requirement for different classes of HGV and may be suitable for analysis of HGV CO₂ emissions in, for example, inter-modal freight transport comparisons.

Reference: Transport Statistics Bulletin: Road Freight Statistics 2005, DfT SB (06) 27, June 2006

http://www.dft.gov.uk/162259/162469/221412/221522/222944/coll_roadfreightstatistics2005in/rfs05comp.pdf New emission factors for CH₄ and N₂O are based on UK Greenhouse Gas Inventory default values for 2007 (AEA)

Last updated: Sep-09 Table 7e

Diesel HGV Ro	ad Freight Conve	rsion Facto	ors (UK Average Vehicle L	oads): Tonne.km			
Basis						CC	2
	Gross Vehicle Weight (tonnes)	% weight laden	UK average tonnes goods carried per vehicle	Total tonne km travelled	x	kg CO ₂ per tonne.km	Total kg CO₂
Rigid	>3.5-7.5t	40%	0.81		х	0.67115	
Rigid	>7.5-17t	37%	2.31		х	0.31518	
Rigid	>17t	55%	5.25		х	0.17797	
All rigids	UK average	53%	3.42		x	0.23167	
		1	r				
Articulated	>3.5-33t	43%	6.00		х	0.13961	
Articulated	>33t	60%	11.46		х	0.08237	
		-					
All articulateds	UK average	59%	10.97		x	0.08492	
		1	r				
ALL HGVs	UK average	56%	7.23		x	0.11857	
Total							0

CH	
kg CO ₂ eq per	Total kg
tonne.km	CO ₂ eq
0.00038	
0.00013	
0.00006	
0.00009	
0.00025	
0.00013	
0.00014	
0.00012	
	0

N ₂ C)
kg CO ₂ eq per	Total kg
tonne.km	CO ₂ eq
0.00728	
0.00342	
0.00193	
0.00251	
0.00151	
0.00089	
0.00092	
0.00167	
0.00101	0

Total G	HG
ka CO2ea per	Total kg
toppo km	COlor
tonne.km	CO ₂ eq
0.67880	
0.31873	
0.17996	
0.23427	
0.14138	
0.08340	
0.08598	
0.12036	
	0

Sources Revised factors developed by AEA and agreed with Department for Transport (2009) Notes The user may want to use factors in kgCQ₂/tonne.km for calculating the emissions du

The user may want to use factors in kgCO₂/tonne.km for calculating the emissions due to transporting a given weight of freight a given distance for comparison with other modes of freight transport, e.g. for comparing road vs rail using tonne.km factors for other modes in Table 7f. A tonne.km is the distance travelled multiplied by the weight of freight carried by the HGV. So, for example, an HGV carrying 5 tonnes freight over 100 km has a tonne.km value of 500 tonne.km. As different users may require CO2 factors for HGVs in different levels of detail of HGV type, factors are provided in kgCO₂/tonne.km for: 3 different gross vehicle weight ranges of rigid-axled HGVs (most amount of detail) possible) and 2 different gross vehicle weight ranges of articulated HGVs; fleet averaged factors for all types of HGVs (least amount of detail).

The gCO₂/tonne.km factors in Table 7e have been calculated on the basis that a lorry will run empty for part of the time in the overall transporting of the freight. Thus the user does not need to double the distance of their freight tonne km for parts of a trip done empty loaded, as this has already been considered in the calculations. The distance should refer to the overall distance that the goods are moved.

The factors are derived from the 2005 fleet average kgCO₂ per vehicle km factors in Table 7d and the average tonne freight per vehicle lifted by each HGV weight class. The average tonne freight lifted figures are derived from the tonne.km and vehicle.km figures given for each class of HGV in Tables 1.12 and 1.13, respectively, in DfT (2008). Dividing the tonne.km by the vehicle.km figures gives the average tonnes freight lifted by each HGV class.

Tables 7d and 7e are provided as alternative methods for calculating CO_2 emissions from movement of freight by HGVs. The factors in g/vehicle.km (Table 7d) are sufficient (and with the ability to take into account different loading factors are preferential) for an operator who simply wants to calculate and compare CO_2 emissions for different ways of transporting goods around by optimising freight logistics. Factors in Table 7e may be better to use when comparing road freight with other modes for transporting a given weight of freight a given distance. To avoid double-counting, it is important that calculations **DO NOT USE BOTH** methods.

New emission factors for CH₄ and N₂O are based on UK Greenhouse Gas Inventory default values for 2007 (AEA)

Last updated: Sep-09 Table 7f

Other Freig	ht Mileage Conversion Fact	ors: Tonne.km Basis						CO ₂
Mode	Detail		Total tonne km travelled			x	kg CO ₂ per tonne.km	Total kg CO ₂
Rail	Diesel					x	0.02850	
Shipping	Туре	Vessel deadweight, tonnes						
1	Large RoPax Ferry	-					0.38434	
i	Small tanker	844				x	0.02000	
	Large tanker	18,371				x	0.00500	
	Very large tanker	100,000				x	0.00400	
	Small bulk carrier	1,720				x	0.01100	
	Large bulk carrier	14,201				x	0.00700	
(Very large bulk carrier	70,000				x	0.00600	
	Small container vessel	2,500				x	0.01500	
	Large container vessel	20,000				x	0.01300	
Mode	Detail		Total tonne km travelled	x	km uplift factor ¹	x	kg CO ₂ per tonne.km	Total kg CO ₂
Air	Domestic			х	109%	x	1.91593	
í	Short-haul international			х	109%	х	1.40441	
i	Long-haul international			х	109%	x	0.59487	
Total								

С	H ₄
kg CO2eq per	Total kg
tonne.km	CO ₂ eq
0.00007	
0.00013	
0.00001	
0.00000	
0.00000	
0.00000	
0.00000	
0.00000	
0.00001	
0.00000	
kg CO2eq per	
tonne.km	Total kg CO ₂
0.00144	
0.00008	
0.00003	
	0

N	2 0
kg CO2eq per	Total kg
tonne.km	CO ₂ eq
0.00332	
0.00299	
0.00016	
0.00004	
0.00003	
0.00009	
0.00005	
0.00005	
0.00012	
0.00010	
kg CO2eq per	
tonne.km	Total kg CO ₂
0.01886	
0.01382	
0.00585	
	0

Total C	SHG
kg CO ₂ eq per	Total kg
tonne.km	CO ₂ eq
0.03190	
0.38746	
0.02016	
0.00504	
0.00403	
0.01109	
0.00706	
0.00605	
0.01512	
0.01311	
kg CO2eq per	Total kg
tonne.km	CO ₂
1.93623	
1.41831	
0.60076	
	0

Sources Revised factors developed by AEA and agreed with Department for Transport (2009)

Notes Rail:

The CO2 value for rail freight is based on currently available information on CO2 emissions by diesel freight trains in the UK in 2007 produced by ORR (Office of the Rail Regulator) and is available at:

http://www.rail-reg.gov.uk/upload/pdf/rolling-c9-environ.pdf

The rail freight CH₄ and N₂O factors are based on those used in the UK Greenhouse Gas Inventory for diesel rail for 2007.

Shipping:

The freight CO₂ emission factor for RoPax Ferries was derived from data provided by Best Foot Forward based on work for the Passenger Shipping Association (PSA) carried out in 2007/8. The calculated figure assumes an average HGV load factor of 13.6 tonnes, based on information in Table 2.6 of Road Transport Statistics 2005 (from the Department for Transport). RoPax Ferries are Roll-on Roll-off ferries that carry both road vehicles and their passengers as well as having additional passenger-only capacity.

Factors for the other representative ships are derived from information in the EMEP-CORINAIR Handbook (2003) and a report by Entec (2002). This included fuel consumption rates for engine power and speed while cruising at sea associated with different vessels. The factors refer to kgCO₂ per deadweight tonne km. Deadweight tonnage is the weight of the cargo etc which when added to the weight of the ship's structure and equipment, will bring the vessel down to its designated waterline. This implies the factors are based on a fully loaded vessel. Because the ship's engines are propelling the weight of the ship itself which is a significant proportion of the overall weight of the vessel and its cargo, reducing the cargo load from the deadweight tonnage will not lead to a proportionate reduction in the amount of fuel required to move the vessel a given distance. For example, decreasing the cargo load to half the ship's deadweight will not reduce the ship's fuel consumption by a half.

As a consequence, the factors expressed in kgCO₂/tonne.km freight will be higher than the figures in Table 6k for ships that are only partially loaded (i.e. loaded to less than the vessel's deadweight tonnage). Figures on the typical loading factors for different vessels are not currently available in the public domain. The CO₂ factors will be reviewed and updated when the loading factors become available to provide factors that are more representative of vessel movements from UK ports. Meanwhile, the factors in Table 6k should be regarded as lower limits.

References:

EMEP/CORINAIR (2007), Atmospheric Emission Inventory Guidebook, 5th Edition.

Entec (2002), Quantification of emissions from ships associated with ship movements between ports in the European Community, Report for European Commission, DG ENV. Belgium; Main Contributors Chris Whall, Karen Archer, Layla Twigger, Neil Thurston, David Ockwell, Alun McIntyre, Alistair Ritchie (Entec) and David Cooper (IVL).

New emission factors for CH₄ and N₂O are based on the UK Greenhouse Gas Inventory for 2007 (AEA)

Last updated: Sep-09

Air:

Freight is transported by two types of aircraft - dedicated cargo aircraft which carry freight only, and passenger aircraft which carry both passengers and their luggage, as well as freight. Statistics from the CAA for 2007 suggest a large proportion of long haul air freight is transported on passenger aircraft. While it is possible to estimate freight CO₂ factors per tonne.km for dedicated cargo aircraft under the same way as the passenger.km factors for passengers, it is more difficult to generate freight CO₂ factors for aircraft that are also carrying passengers without double-counting.

The allocation of aircraft CO₂ emissions between passengers and freight on these aircraft is complex and for the purposes of these emission factors the allocation is carried out by treating freight carried on cargo or passenger services as equivalent. This is done by assuming the incorporation of the lost cargo capacity of passenger aircraft relative cargo-only equivalents into the passenger weighting. It is assumed this difference in freight cargo capacity is due to passenger-service specific equipment (such as seating, galley, toilets, food) and air frame modifications. The reference aircraft used in this calculation is the Boeing 747, as the freight configuration equivalent is used for over 90% of long-haul dedicated cargo transport from the UK.

¹ The 9% uplift factor comes from the IPCC Aviation and the global Atmosphere 8.2.2.3, which states that 9-10% should be added to take into account non-direct routes (i.e. not along the straight line great circle distances between destinations) and delays/circling. Airline industry representatives have indicated that the percentage uplift for short-haul flights will be higher and for long-haul flights will be lower, however specific data is not currently available to provide separate factors. This is under investigation for future versions of these guidelines.

Notes 10-12 from the passenger flights emission factors (Annex 6) also apply to the air freight emission factors. New emission factors for CH_4 and N_2O are based on the UK Greenhouse Gas Inventory for 2007 (AEA)

Annex 8 - Direct GHG Emissions from Use of Refrigeration and Air Conditioning Equipment

Last updated: Sep-09

How to use this Annex

There are two methods presented here for the estimation of emissions from the use of refrigeration and air conditioning equipment. For smaller users the simple **A. Screening Method** will likely be the easiest way to calculate their emissions. For some larger users of refrigerant and they should have the information necessary to perform a more accurate estimation using a **B. Simplified Material Balance Method**.

A. Screening Method

This Screening Method will help organisations to estimate emissions from refrigeration and air conditioning based on the type of equipment used and emissions factors. This approach requires relatively little actual data collection however there is a high degree of uncertainty with these emission factors. Therefore if emissions from this equipment are determined to be significant when compared to your organisation's other emissions sources, then you should apply a better estimation method (e.g. a Material Balance Method). Please note, there are extensive regulatory requirements governing the operation of stationary equipment using fluorinated greenhouse gases, including record keeping requirements for stationary refrigeration and air-conditioning equipment, heat pumps and fire protection equipment with a charge of 3kg or more. Guidance is available at http://defraweb/environment/air-atmos/fgas/index.htm

To complete these tables you will need to:

1) Carry out an inventory of equipment to find out:

(i) the number and types of each refrigeration unit;

(ii) the type of refrigerant used (e.g. HFC 134a, R404a, R407a, R407b, R407c, R410A, etc);

(iii) the total charge capacity of each piece of equipment;

(iv) the time in years used during the reporting period (e.g. 0.5 if used only during half of the reporting period then disposed)

Once you know the refrigerant type, please refer to Annex 5 to identify its Global Warming Potential (GWP). Alternatively, defaults are currently filled out automatically from selected refrigerants in the Excel spreadsheet. For further guidance on typical charge capacity, please refer to Table 8d.

- 2) Determine installation emissions: Identify any new equipment that was installed during the reporting period and was charged (filled) on-site. Emissions from equipment that was charged at the manufacturer are not the responsibility of your organisation. For each new piece of equipment charged on-site use Table 8a to estimate emissions.
- 3) Determine operating emissions: This step estimates losses from equipment leaks and service losses over the life of the equipment. For all pieces of equipment, use Table 8b to estimate emissions. You will need to determine the length of time (in years) that each piece of equipment has be used.
- 4) Determine disposal emissions: Identify any pieces of equipment that were disposed of on-site during the reporting period. Emissions from equipment that was sent offsite for third party recycling, reclamation or disposal are not the responsibility of your organisation. For each piece disposed equipment, use Table 8c to estimate emissions.
- 5) Calculate total emissions: Add the emissions from each piece of equipment for each of emission installation, operation and disposal to get total emissions. Calculate separate totals for each type of refrigerant used.

Information on refrigerant type and kilograms (kg) of charge capacity can be sourced from:

(a) Air conditioning chillers and modular units: visual readings on the equipment, equipment manuals or maintenance records;

(b) Refrigeration units: visual readings on the equipment

How were these factors calculated?

For further explanation on how these emission factors have been derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm

Table 8a

Emissions from Installation of Refrigeration and Air-conditioning Equipment											
Type of Equipment	Number of Units	x	Equipment Charge Capacity (kg)	x	Installation Emission Factor	x			Refrigerant type (select from list from Annex 5)	Global Warming Potential (GWP)	Total kg CO ₂ x equivalent
Domestic Refrigeration		х		х	1.0%	х					x
Stand-alone Commercial Applications		х		х	1.5%	х					x
Medium & Large Commercial Applications		х		х	2.0%	х					х
Transport Refrigeration		х		х	1.0%	х					x
Industrial Refrigeration (inc. food processing and cold storage)		х		х	1.0%	х					х
Chillers		х		х	1.0%	х					x
Residential and Commercial A/C including Heat Pumps		х		х	1.0%	х					х
Mobile Air Conditioning		х		х	1.0%	х					x
Total											(

Annex 8 - Direct GHG Emissions from Use of Refrigeration and Air Conditioning Equipment

Last updated: Sep-09

Table 8b

Emissions from operation of Refrigeration and Air-conditioning Equipment										
		Equipment		Time used						
	Number of	Charge Capacity		during reporting		Annual Leak		Refrigerant type	Global Warming	Total kg CO ₂
Type of Equipment	Units x	(kg)	х	period (years)	х	Rate	x	(select from list from Annex 5)	Potential (GWP)	x equivalent
Domestic Refrigeration)		х		х	0.3%	х			x
Stand-alone Commercial Applications)		х		х	2.0%	х			x
Medium & Large Commercial Applications)		х		х	11.0%	х			x
Transport Refrigeration)		х		х	8.0%	х			x
Industrial Refrigeration (inc. food processing and cold storage))		х		х	8.0%	х			x
Chillers)		х		х	3.0%	х			x
Residential and Commercial A/C including Heat Pumps)		х		х	8.5%	х			x
Mobile Air Conditioning)		х		х	7.5%	х			x
Total										0

Table 8c

Emissions from Disposal of Refrigeration and Air-conditioning Equipment											
			Equipment		Capacity						
	Number of		Charge Capacity		remaining at		Refrigerant		Refrigerant type	Global Warming	Total kg CO ₂
Refrigerant Type	Units	х	(kg)	х	disposal (%)	х	recovered (%)	х	(select from list from Annex 5)	Potential (GWP)	x equivalent
Domestic Refrigeration		х		х	80%	x	99.0%	х			x
Stand-alone Commercial Applications		х		х	80%	х	94.5%	х			x
Medium & Large Commercial Applications		х		х	100%	х	95.0%	х			x
Transport Refrigeration		х		х	50%	х	94.0%	х			x
Industrial Refrigeration (inc. food processing and cold storage)		х		х	100%	х	95.0%	х			x
Chillers		х		х	100%	x	95.0%	х			x
Residential and Commercial A/C including Heat Pumps		х		х	80%	х	95.0%	х			x
Mobile Air Conditioning		х		х	50%	x	88.0%	х			x
Total											0

Table 8d

Typical Charge Capacity for Equipment								
	Typical Range in							
	Charge Capacity							
Type of Equipment	(kg)							
Domestic Refrigeration	0.05 - 0.5							
Stand-alone Commercial Applications	0.2 - 6							
Medium & Large Commercial Applications	50 - 2,000							
Transport Refrigeration	3 to 8							
Industrial Refrigeration (inc. food processing and cold storage)	10 - 10,000							
Chillers	10 - 2,000							
Residential and Commercial A/C including Heat Pumps	0.5 - 100							
Mobile Air Conditioning	0.5 - 1.5							

Sources UK Greenhouse Gas Inventory for 2007 (AEA)

2006 IPCC Guidelines Gas Inventory of Controls (http://www.ipcc-ngqip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_7_Ch7_ODS_Substitutes.pdf) US EPA Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance - Direct HFC and PFC Emissions from use of Refrigeration and Air Conditioning Equipment (see: http://www.epa.gov/stateply/documents/resources/mfgrfg.pdf)

Annex 8 - Direct GHG Emissions from Use of Refrigeration and Air Conditioning Equipment

Last updated: Sep-09

B. Simplified Material Balance Method

This is a simplified material balance method. This will enable more accurate estimation of refrigerant leakage than the Screening Method (Table 8a - d). To complete Table 8e, you will need to:

1) Calculate installation emissions.

This step is only necessary if your organisation installed any new equipment during the reporting period that was not pre-charged by the equipment supplier. Emissions are calculated by taking the difference between the amount of refrigerant used to charge the equipment and the total capacity of the equipment. The difference is assumed to be released into the environment.

2) Determine equipment servicing emissions

Equipment servicing emissions result from the refrigerant that is used to service operating equipment. It is assumed that the servicing refrigerant is replacing the same amount that was lost to the environment.

3) Calculate disposal emissions

This step is only necessary if your organisation disposed of equipment during the reporting period. Emissions are calculated by taking the difference between the total capacity of the equipment disposed and the amount of refrigerant recovered. The difference is assumed to be released to the environment.

4) Calculate emissions

Emissions are calculated by summing the results of the first three steps.

This approach should be used for each type of refrigerant and blend.

This method requires the following information:

a) Refrigerant used to fill new equipment (set to 0 if the equipment has been pre-charged by the manufacturer);

b) Refrigerant used to fill equipment retrofitted to use this refrigerant (set to 0 if the equipment has been pre-charged by the manufacturer);

c) Total full capacity of new equipment using this refrigerant (set to 0 if the equipment has been pre-charged by the manufacturer);

d) Total full capacity of equipment that is retrofitted to use this refrigerant (set to 0 if the equipment has been pre-charged by the manufacturer);

e) Refrigerant used to service equipment;

f) Total full capacity of retiring equipment;

g) Total full capacity of equipment that is retrofitted away from this refrigerant to a different refrigerant;

h) Refrigerant recovered from retiring equipment;

i) Refrigerant recovered from equipment that is retrofitted away from this refrigerant to a different refrigerant.

Estimating Refrigerant Emissions with Simplified Material Balance Method Table 8e

			Quantity of		Total full					Global		
		Total full capacity	refrigerant used	1	capacity of				Refrigerant type	Warming		
		of the new	to service		retiring		Refrigerant recovered from retiring equipment		(select from list	Potential		Total kg CO ₂
Purchases of refrigerant used to charge new equ	ipment (kg) -	equipment (kg)	+ equipment (kg)	+	equipment (kg)	-	(kg)	х	from Annex 5)	(GWP)	=	equivalent
Refrigerant 1	-		+	+		-		х			=	
Refrigerant 2	-		+	+		-		х			=	
Refrigerant 3	-		+	+		-		х			=	
Refrigerant 4	-		+	+		-		х			=	
Refrigerant 5	-		+	+		-		х			=	
Refrigerant 6	-		+	+		-		х			=	
Refrigerant 7	-		+	+		-		х			=	
Refrigerant 8	-		+	+		-		х			=	
Refrigerant 9	-		+	+		-		х			=	
Refrigerant 10	-		+	+		-		х			=	
Total												0

Sources

2006 IPCC Guidelines for National Greenhouse Inventories (http://www.ipcc-nggip.iges.or.ip/public/2006al/pdf/3_Volume3/V3_7_Ch7_ODS_Substitutes.pdf) US EPA Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance - Direct HFC and PFC Emissions from use of Refrigeration and Air Conditioning Equipment (see: http://www.epa.gov/stateply/documents/resources/mfgrfg.pdf)

Last updated: Sep-09

<u>Unlike</u> the emission factors provided in other Annexes, the emission factors presented in *this* Annex incorporate emissions from the full life-cycle and include net CO₂, CH₄ and N₂O emissions. They are therefore <u>not directly comparable</u> with the other emission factors in other Annexes, which only include direct emissions.

How to use this Annex

Table 9a provides life-cycle conversion factors for water, biofuels and biomass:

1) Identify the amount of substance used

2) Identify the units. Are you measuring your fuel use in terms of mass, volume or energy?

3) Convert to the appropriate unit of volume or mass for the table:

(i) If you cannot find a factor for that unit, Annex 12 gives guidance on converting between different units of mass, volume, length and energy.

(ii) If you measuring fuel use in terms of energy is your unit of measurement net energy or gross energy (in the event that this is unclear you should contact your fuel supplier)? <u>Annex 11</u> gives typical/average net/gross calorific values and the densities

4) Multiply the amount of fuel used by the conversion factor to get total emissions in kilograms of carbon dioxide equivalent (kg CO₂eq). The excel spreadsheet does this automatically following your entry of the amount of fuel used into the appropriate box.

Please note that these emission factors **do not** enable you to calculate direct emissions of carbon dioxide for the combustion of biomass and biofuels. Further updates to these Guidelines will seek to address this issue. In the interim, please refer to the following weblink for direct CO₂ emissions from combustion:

http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,163182&_dad=portal&_schema=PORTAL

Table 9b provides life-cycle conversion factors for waste disposal:

To complete this table, you will need to:

1) Check for existing data. Data on waste arisings will be contained in waste transfer/consignment notes or receipts provided for individual waste transfers. All waste producers are legally required to retain these notes for a specified period. These may identify the quantity of waste arising and the company collecting the waste.

Has your organisation carried out a waste audit recently? This may provide further useful information, such as the composition of mixed waste sent for proposal.

2) **Speak to your waste contractor(s)**. Your waste contractor will be able to advise you to which location your wastes have subsequently been delivered (i.e. landfill site, recycling operation, compositing, or energy recovery facility).

Depending on the level of information that your waste contractor can provide, you will need to carry out step 3.

Last updated: Sep-09

3) Carry out a waste audit

If you do not have detailed waste data from your waste contractors, you should carry out a waste inventory to determine:

(i) The total waste sent to landfill, recycled or composted. This can be done through sampling your waste in order to approximate total waste for each different waste treatment method

(ii) The waste composition (in tonnes) for each waste treatment method. This can be done through sampling, sorting, and weighing your waste to determine its percentage composition in tonnes. If you choose to do this, please wear the appropriate protective clothing and do not attempt to sample any hazardous, toxic or radioactive waste.

(iii) If known, the proportion of recycled material contained in each waste fraction (e.g. the disposed of paper might contain 10% recycled material)

4) Enter the data in the table. Enter the weight (in tonnes) for each waste fraction (e.g. paper and card, textiles, etc) into the appropriate treatment method column along with the recycled material content of disposed waste (if known). The total net kgCO₂eq emissions resulting from the waste will be automatically calculated as the sum of kgCO2eq emissions from the total tonnes of waste produced and the kgCO2eq emissions per tonne of waste for each waste treatment method.

For further assistance, please see Envirowise Guide GG414 Measuring to manage: the key to reducing waste costs, available free of charge from the Envirowise website.

Key information:

The tonnes of waste prevented column should be used if you want to determine the reduction in emissions associated with reduced procurement of materials.

Are these factors directly comparable to those in the other annexes?

No. The emission factors provided in this annex are for net life-cycle emissions of GHG resulting from water supply, water treatment, use of biofuels and biomass and from waste disposal. Because they encompass the whole life-cycle (i.e. direct and indirect emissions) these emission factors are **not directly comparable** with those from other annexes, which **only** include emissions from the point of use (generation for electricity).

Work is still being carried out looking to better understand indirect/life-cycle emissions, which may allow expansion to include the indirect emissions component to other annexes in the future.

How were these factors calculated?

For further explanation on how these emission factors have been derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm

Last updated: Sep-09

Table 9a

Life-Cycle Conversion Factors for	Life-Cycle Conversion Factors for water, biofuels and biomass								
Fuel used	Total units used	Units	x	kg CO ₂ eq per unit	Total kg CO₂eq				
Water supply		million litres	х	276					
		cubic metres	х	0.2760					
Water treatment		million litres	х	693					
		cubic metres	х	0.6930					
Biodiesel (ME) 1		litres	х	2.8605					
Biodiesel (HVO) ²		litres	х	2.9652					
Bioethanol		litres	х	1.8045					
BioETBE (refinery)		litres	х	2.3087					
BioETBE (non-refinery)		litres	х	2.3087					
Biomethane		kg	х	3.0380					
Wood Pellets ³		tonnes	х	121.5					
Total					0				

Sources Water UK Sustainability Indicators 2007/08, available at:

http://www.water.org.uk/home/policy/reports/sustainability/sustainability-indicators-2007-08

Renewable Fuels Agency (2009)

Notes Emissions factors for biofuels are RFA calculation defaults where the source/production pathway of the biofuel is unknown. Detailed factors by source/supplier are provided and updated regularly in the RFA Quarterly Reports, available on the RFA's website at: http://www.renewablefuelsagency.org/reportsandpublications/rtforeports.cfm

¹ Biodiesel (ME) = Biodiesel (Methyl Ester), biodiesel produced from oils using conventional esterification processes.

² Biodiesel (HVO) = Biodiesel (Hydrotreated Vegetable Oil), biodiesel produced from vegetable oils using hydroprocessing.

³ Wood pellets are used in domestic biomass heating systems. The emission factors are based on the factor of 0.025 kgCO₂/kWh provided in SAP2005, Table

12.

Last updated: Sep-09

Table 9b

Life-Cycle Conversion Factors for Waste Di	sposal									J
Waste fraction		kg CO ₂ eq	kg CO ₂ eq	Net kg	CO2eq emitted	d per tonne of v	vaste treate	d / disposed of	f by ⁴:	l
		emitted per	emitted per	Recy	/cling	Energy fro	m waste			
		tonne recycled	tonne virgin			Power only	Anaerohic			
		material 5	material 5	Closed Loop	Open Loop	moving grate	Digestion	Composting	Landfill	1
Paper and Card		950	950	-713		-500	-121	57	550	1
Kitchen/food waste			2,428			-89	-100	30	365	
Garden/plant waste			89			-121	-100	57	210	
Other organic		0	0	44		-271	-330	34	230	
Wood		6	256	250		-700		250	930	
Textiles			19,294	-3,800		600			300	
Plastic (dense)		1,600	3,100	-1,500		1,800			40	
Plastic (film)		1,500	2,500	-1,000		1,800			35	
Ferrous metal		1,800	3,100	-1,300		-786			10	
Non-ferrous metal		2,000	11,000	-9,000		23			10	
Silt/soil		4	4	16		35			10	
Aggregate materials		4	8	-4		35			10	
Misc combustibles			102	58		242			305	
Glass		525	840	-315	0	5			10	
Estimated impact of other materials (municipal and C&I)		2,860	2,860	-259		97	-13	7	81	
Waste fraction		Recycled Mat	erial Content of		Tonnes of	of waste treated	d /disposed	of by [°] :		Total Net kg
	Tonnes of waste	Dispose	ed Waste	Recycling		Energy from waste				CO ₂ eq
	PRODUCED	% Recycled				Power only	Anaerobic			emissions by
		Material	% Virgin Material	Closed Loop	Open Loop	moving grate	Digestion	Composting	Landfill	waste fraction
Paper and Card		Matorial	100%	0.0000 2000			Digeotion	Composing	Landin	0
Kitchen/food waste			100%							Ő
Garden/plant waste			100%							Ő
Other organic			100%							0
Wood			100%							0
Textiles			100%							0
Plastic (dense)			100%							0
Plastic (film)			100%							0
Ferrous metal			100%							0
Non-ferrous metal			100%							0
Silt/soil			100%							0
Aggregate materials			100%							0
Misc combustibles			100%							0
Glass			100%							0
Estimated impact of other materials (municipal and C&I)			100%							0
Total Net kgCO ₂ eq emissions by category		0	0	0	0	0	0	0	0	
Grand Total Net kgCO ₂ eq emissions										0

Sources

Defra Waste Strategy, Table A.28: Emission factors for waste treatment processes (kg carbon dioxide equivalents/tonne of waste processed) <u>http://www.defra.gov.uk/environment/waste/strategy/07/pdf/waste07-annex-a.pdf</u> Updated figures in **BOLD** provided by WRAP, 2009.

Last updated: Sep-09

Notes The data summarised in the table covers the life cycle stages highlighted below. It excludes use of the product as this will be variable. For example, plastic may be used as automotive parts or as drinks packaging amongst other things. If it is used as drinks packaging it will require filling. As it is not known what the final use of the material is, this section of the life cycle is excluded for all materials. For some products forming is also excluded. Metals may be made into various products by different methods, excluded from these figures.

⁴ Impact of other treatments as in pRIA – <u>http://www.defra.gov.uk/corporate/consult/wastestratreview/partialRIA.pdf</u> – p.58.

⁵ The waste production figure for textiles currently does not account for the split of material types on the UK market. Improvements will be made to this figure in future updates Savings from embodied fossil energy resulting from avoiding waste are the negative of these figures.

⁶ On average in the UK 88% of non-recycled waste goes to landfill and 12% goes to energy from waste (power only moving grate).

More information on WRAP can be found at: <u>http://www.wrap.org.uk/</u>

Life Cycle Stages Covered:

Annex 10 - International Electricity Emission Factors

Last updated: Sep-09

The factors presented in the three tables below are a timeseries of combined electricity and heat CO₂ emission factors per kWh **GENERATED** (Table 10a, i.e. before losses in transmission/distribution), electricity and heat CO₂ emission factors per kWh **LOSSES** in transmission/distribution (Table 10b) and per kWh **CONSUMED** (Table 10c, i.e. for the final consumer, including transmission/distribution losses).

How to use this Annex

To calculate emissions of carbon dioxide associated with use of overseas grid electricity:

1) Identify the amount electricity used, in units of kWh, for the relevant country.

2) Multiply this value by the conversion factor for the country or grid rolling average electricity use. You should use emission factors from Table 10c for electricity consumed from the national/local electricity grid for consistency with those provided for the UK in Annex 3.

3) Repeat the process for other countries and sum the totals.

The country I am looking for is not included, where can I find information?

We have provided emission factors for all EU member states and the major UK trading partners. Additional emission factors for other countries not included in this list can be found at the GHG Protocol website, though it should be noted the figures supplied there **do not** include losses from transmission and distribution of heat and electricity.

Data source

Emission factor data is from International Energy Agency (IEA) Data Services, 2006 and 2008 for "CO₂ Emissions per kWh Electricity and Heat Generated" and mainly sourced from the GHG Protocol website.

Data on losses in distribution of electricity and heat is calculated from 2006 country energy balances available at the IEA website.

How were these factors calculated?

For further explanation on how these emission factors have derived, please refer to the GHG conversion factor methodology paper available here: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm

Table 10a

Overseas Electricity/Heat Co	onversior	n Factors	from 199	0 to 2006	: kgCO ₂ p	er kWh e	lectricity	and heat	GENERA	TED ¹								2006 5	yr rolling	average	% Tota	GWh	% Distributi	ion Losses
																		Amount used	kg CO ₂					
Country	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	per year, kWh	per kWh	Total kg CO ₂	Electricity	Heat	Electricity	Heat
European Union																								
Austria	0.2447	0.2519	0.2088	0.1937	0.2070	0.2140	0.2296	0.2278	0.2078	0.1950	0.1833	0.1940	0.1944	0.2360	0.2300	0.2249	0.2140		0.2199		80.4%	19.6%	5.7%	8.0%
Belgium	0.3485	0.3423	0.3317	0.3460	0.3656	0.3582	0.3399	0.3110	0.3154	0.2784	0.2849	0.2719	0.2664	0.2736	0.2685	0.2680	0.2600		0.2673		93.4%	6.6%	4.9%	7.8%
Bulgaria			0.4760	0.4825	0.4566	0.4296	0.4184	0.4749	0.4806	0.4456	0.4307	0.4634	0.4329	0.4703	0.4706	0.4480	0.4480		0.4540		74.9%	25.1%	16.0%	13.0%
Cyprus			0.8315	0.8321	0.8359	0.8264	0.8368	0.8455	0.8475	0.8608	0.8419	0.7812	0.7597	0.8372	0.7764	0.7923	0.7580		0.7847		100.0%	0.0%	3.9%	0.0%
Czech Republic	0.5993	0.5902	0.5867	0.5822	0.5857	0.5848	0.5814	0.5616	0.5693	0.5593	0.5675	0.5600	0.5461	0.5019	0.5035	0.5156	0.5270		0.5188		68.1%	31.9%	8.3%	16.8%
Denmark	0.4762	0.5061	0.4697	0.4566	0.4699	0.4300	0.4669	0.4215	0.3897	0.3633	0.3393	0.3359	0.3320	0.3572	0.3082	0.2836	0.3410		0.3244		50.6%	49.4%	4.4%	20.1%
Estonia			0.6487	0.6199	0.6188	0.6890	0.6791	0.6797	0.7196	0.7065	0.6972	0.6854	0.6722	0.7233	0.7009	0.6649	0.6400		0.6803		57.8%	42.2%	15.5%	13.3%
Finland	0.2304	0.2350	0.2074	0.2324	0.2687	0.2498	0.2897	0.2678	0.2123	0.2116	0.2110	0.2395	0.2529	0.2929	0.2546	0.1936	0.2420		0.2472		60.9%	39.1%	3.5%	6.7%
France	0.1099	0.1245	0.0995	0.0691	0.0698	0.0770	0.0780	0.0719	0.0974	0.0864	0.0827	0.0708	0.0763	0.0804	0.0781	0.0909	0.0850		0.0821		91.7%	8.3%	7.0%	0.0%
Germany	0.5714	0.5837	0.5527	0.5499	0.5477	0.5325	0.5249	0.5175	0.5083	0.4946	0.4959	0.5062	0.5184	0.4379	0.4357	0.3492	0.4040		0.4290		63.6%	36.4%	5.4%	7.8%
Greece	0.9912	0.9408	0.9585	0.9336	0.8841	0.8723	0.8282	0.8690	0.8602	0.8216	0.8136	0.8323	0.8152	0.7739	0.7772	0.7765	0.7250		0.7736		99.1%	0.9%	9.9%	0.0%
Hungary	0.4693	0.4603	0.4853	0.4587	0.4419	0.4457	0.4331	0.4313	0.4273	0.4144	0.4118	0.3948	0.3916	0.4209	0.3895	0.3387	0.3440		0.3769		66.9%	33.1%	10.9%	0.0%
Ireland	0.7500	0.7533	0.7595	0.7366	0.7292	0.7287	0.7279	0.7196	0.7152	0.6978	0.6392	0.6751	0.6371	0.5974	0.5715	0.5842	0.5350		0.5850		100.0%	0.0%	7.9%	0.0%
Italy	0.5739	0.5490	0.5356	0.5252	0.5165	0.5467	0.5253	0.5151	0.5161	0.4980	0.5038	0.4852	0.5090	0.5248	0.4106	0.4054	0.4040		0.4508		85.0%	15.0%	6.4%	0.0%
Latvia			0.2763	0.2688	0.2504	0.2381	0.2625	0.2182	0.1973	0.2168	0.2002	0.1897	0.1881	0.1829	0.1665	0.1620	0.1670		0.1733		36.2%	63.8%	12.7%	16.7%
Lithuania			0.1858	0.1859	0.2151	0.1727	0.1731	0.1654	0.1722	0.1765	0.1578	0.1437	0.1198	0.1123	0.1102	0.1296	0.1390		0.1222		51.6%	48.4%	13.3%	16.4%
Luxembourg	2.5884	2.4703	2.4837	2.4643	2.1074	1.3400	1.1929	0.8100	0.2489	0.2577	0.2551	0.2399	0.3288	0.3302	0.3338	0.3278	0.3260		0.3293		85.4%	14.6%	1.7%	0.0%
Malta			1.0235	1.3916	1.1640	0.9617	0.9789	0.9416	0.9365	0.9086	0.8678	1.0282	0.8195	0.8138	0.9016	0.8919	0.8340		0.8522		100.0%	0.0%	11.6%	0.0%
Netherlands	0.6022	0.5838	0.5709	0.5745	0.5382	0.5294	0.5007	0.4992	0.4694	0.4675	0.4468	0.4624	0.4586	0.4671	0.4399	0.3867	0.3940		0.4293		67.9%	32.1%	4.1%	17.0%
Poland	0.6563	0.6507	0.6526	0.6403	0.6432	0.6752	0.6646	0.6669	0.6643	0.6651	0.6716	0.6604	0.6624	0.6623	0.6650	0.6589	0.6590		0.6615		62.4%	37.6%	12.8%	0.0%
Portugal	0.5173	0.5224	0.6219	0.5459	0.4970	0.5696	0.4291	0.4667	0.4642	0.5393	0.4801	0.4425	0.5127	0.4139	0.4523	0.4982	0.4160		0.4586		92.4%	7.6%	8.3%	0.0%
Romania			0.4096	0.3844	0.4561	0.4405	0.4443	0.3853	0.3513	0.3599	0.3954	0.4122	0.4124	0.4512	0.4183	0.3941	0.4290		0.4210		62.6%	37.4%	13.0%	22.0%
Slovak Republic	0.3785	0.3887	0.3603	0.4125	0.3607	0.3698	0.3627	0.3789	0.3512	0.3487	0.2668	0.2488	0.2239	0.2555	0.2473	0.2321	0.2230		0.2364		68.3%	31.7%	6.9%	12.9%
Slovenia			0.3662	0.3732	0.3345	0.3371	0.3175	0.3870	0.3937	0.3670	0.3313	0.3410	0.3719	0.3673	0.3366	0.3283	0.3320		0.3472		84.4%	15.6%	7.0%	16.9%
Spain	0.4279	0.4237	0.4817	0.4192	0.4166	0.4566	0.3587	0.3919	0.3806	0.4448	0.4296	0.3833	0.4371	0.3810	0.3826	0.3943	0.3500		0.3890		100.0%	0.0%	9.7%	0.0%
Sweden	0.0480	0.0581	0.0508	0.0520	0.0558	0.0500	0.0733	0.0503	0.0544	0.0481	0.0421	0.0432	0.0520	0.0595	0.0512	0.0445	0.0440		0.0502		75.9%	24.1%	8.2%	3.5%
European Union - 27			0.4431	0.4217	0.4205	0.4190	0.4092	0.3986	0.3932	0.3837	0.3808	0.3780	0.3838	0.3767	0.3623	0.3409	0.3540		0.3635		78.1%	21.9%	7.4%	7.7%
SUBTOTAL																				0				

Overseas Electricity/Heat Col	nversion	Factors f	rom 1990) to 2006:	kgCO ₂ p	er kWh el	ectricity a	and heat	GENERA	TED ¹								2006 5	yr rolling	average	% Tota	GWh	% Distribution	on Losses
																		Amount used	kg CO ₂					
Country	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	per year, kWh	per kWh	Total kg CO ₂	Electricity	Heat	Electricity	Heat
Other countries																								
Australia	0.8111	0.8143	0.8211	0.8058	0.7821	0.7758	0.8233	0.8655	0.8799	0.8720	0.8647	0.8449	0.8922	0.8717	0.8438	0.8733	0.9210		0.8804		100.0%	0.0%	7.6%	0.0%
Brazil			0.0608	0.0553	0.0510	0.0552	0.0570	0.0620	0.0622	0.0825	0.0879	0.1039	0.0856	0.0792	0.0852	0.0842	0.0810		0.0830		99.7%	0.3%	15.6%	0.0%
Canada	0.1950	0.1873	0.1961	0.1751	0.1718	0.1766	0.1706	0.1897	0.2160	0.2070	0.2166	0.2260	0.2134	0.2248	0.2066	0.1987	0.1840		0.2055		98.5%	1.5%	8.2%	0.0%
China, People's Republic of			0.7943	0.7939	0.7679	0.8029	0.8206	0.8042	0.8232	0.7978	0.7649	0.7399	0.7485	0.7761	0.8056	0.7879	0.7880		0.7812		79.7%	20.3%	7.8%	1.4%
Chinese Taipei			0.4899	0.5056	0.5035	0.5144	0.5211	0.5505	0.5596	0.5797	0.6038	0.6158	0.6057	0.6327	0.6277	0.6317	0.6590		0.6314		100.0%	0.0%	3.7%	0.0%
Croatia			0.3251	0.3279	0.2499	0.2726	0.2536	0.2983	0.3233	0.3032	0.2993	0.3097	0.3538	0.3768	0.2978	0.3113	0.3180		0.3315		77.1%	22.9%	12.9%	13.5%
Egypt			0.5296	0.5032	0.4665	0.4433	0.4327	0.4422	0.4675	0.4545	0.4118	0.3810	0.4367	0.4325	0.4731	0.4714	0.4700		0.4567		100.0%	0.0%	16.4%	0.0%
Gibraltar			0.7774	0.7771	0.7551	0.7696	0.7556	0.7766	0.7696	0.7696	0.7635	0.7574	0.7637	0.7581	0.7696	0.7431	0.7300		0.7529		100.0%	0.0%	0.0%	0.0%
Hong Kong (China)			0.8191	0.8604	0.8710	0.8524	0.8296	0.7239	0.7401	0.7150	0.7108	0.7189	0.7240	0.7937	0.8294	0.8098	0.8550		0.8024		100.0%	0.0%	10.9%	0.0%
celand	0.0005	0.0005	0.0005	0.0008	0.0008	0.0016	0.0012	0.0011	0.0029	0.0038	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0010		0.0007		77.1%	22.9%	4.7%	10.4%
ndia			0.8890	0.9112	0.8757	0.9258	0.9706	0.9426	0.9214	0.9191	0.9385	0.9341	0.9190	0.9031	0.9420	0.9434	0.9440		0.9303		100.0%	0.0%	26.8%	0.0%
ndonesia			0.6393	0.7561	0.6416	0.5819	0.6382	0.6755	0.6506	0.6765	0.6428	0.7393	0.7135	0.7752	0.7504	0.7707	0.6770		0.7374		100.0%	0.0%	12.3%	0.0%
srael			0.8204	0.8224	0.8209	0.8213	0.8271	0.8218	0.7657	0.7673	0.7609	0.7728	0.8228	0.8176	0.8075	0.7675	0.7740		0.7979		100.0%	0.0%	2.9%	0.0%
Japan	0.4305	0.4210	0.4269	0.4086	0.4261	0.4082	0.4056	0.3912	0.3791	0.3949	0.3986	0.3997	0.4197	0.4415	0.4248	0.4285	0.4180		0.4265		99.3%	0.7%	4.9%	0.0%
Korea, Republic of	0.5123	0.5504	0.5779	0.5593	0.5431	0.5315	0.5281	0.5497	0.4944	0.4792	0.5011	0.5019	0.4251	0.4453	0.4440	0.4182	0.5330		0.4531		87.9%	12.1%	3.7%	1.9%
Valaysia			0.6233	0.6044	0.5563	0.5564	0.5591	0.4661	0.5394	0.5277	0.5167	0.5407	0.5911	0.5255	0.5312	0.5570	0.6550		0.5720		100.0%	0.0%	4.3%	0.0%
Mexico	0.5355	0.5348	0.5095	0.5099	0.5611	0.5068	0.5062	0.5219	0.5716	0.5612	0.5662	0.5685	0.5581	0.5599	0.5223	0.5155	0.5410		0.5394		100.0%	0.0%	17.6%	0.0%
New Zealand	0.1280	0.1303	0.1741	0.1387	0.1155	0.1117	0.1393	0.2130	0.2140	0.2376	0.2303	0.2758	0.2468	0.2900	0.2407	0.2754	0.3090		0.2724		99.7%	0.3%	7.6%	0.0%
Norway	0.0034	0.0045	0.0039	0.0042	0.0052	0.0045	0.0063	0.0055	0.0055	0.0060	0.0041	0.0058	0.0053	0.0083	0.0070	0.0055	0.0070		0.0066		97.5%	2.5%	8.1%	16.1%
Pakistan			0.3932	0.3842	0.3911	0.4049	0.4426	0.4537	0.4114	0.4678	0.4794	0.4628	0.4425	0.3700	0.3967	0.3796	0.4130		0.4004		100.0%	0.0%	25.2%	0.0%
Philippines			0.4834	0.4790	0.5188	0.5086	0.5140	0.5699	0.5914	0.5009	0.4981	0.5299	0.4822	0.4602	0.4570	0.4951	0.4350		0.4659		100.0%	0.0%	13.1%	0.0%
Russian Federation			0.3084	0.2913	0.2962	0.2919	0.3420	0.3284	0.3265	0.3271	0.3209	0.3216	0.3268	0.3294	0.3249	0.3380	0.3290		0.3296		36.9%	63.1%	14.8%	2.6%
Saudi Arabia			0.8329	0.8377	0.8157	0.8151	0.8020	0.8087	0.8149	0.8116	0.8098	0.7782	0.7513	0.7395	0.7595	0.7476	0.7550		0.7506		100.0%	0.0%	7.8%	0.0%
Singapore			0.8412	1.0040	0.9765	0.9384	0.8798	0.7692	0.7742	0.6560	0.6637	0.6346	0.5950	0.5737	0.5562	0.5439	0.5360		0.5610		100.0%	0.0%	5.5%	0.0%
South Africa			0.8553	0.8805	0.8636	0.8781	0.8607	0.8695	0.9275	0.8897	0.8930	0.8289	0.8194	0.8452	0.8655	0.8484	0.8690		0.8495		100.0%	0.0%	7.2%	0.0%
Switzerland	0.0218	0.0244	0.0278	0.0207	0.0198	0.0219	0.0255	0.0227	0.0277	0.0220	0.0221	0.0214	0.0218	0.0226	0.0237	0.0262	0.0260		0.0241		92.5%	7.5%	6.8%	7.5%
Thailand			0.6463	0.6301	0.6234	0.6061	0.6254	0.6337	0.6082	0.5961	0.5641	0.5624	0.5385	0.5279	0.5379	0.5313	0.5110		0.5293		100.0%	0.0%	8.0%	0.0%
Turkey	0.5840	0.5933	0.5938	0.5242	0.5727	0.5325	0.5385	0.5506	0.5584	0.5772	0.5259	0.5505	0.4785	0.4483	0.4270	0.4328	0.4380		0.4449		94.2%	5.8%	15.7%	0.0%
Ukraine			0.3667	0.3836	0.3548	0.3643	0.3310	0.3210	0.3294	0.3365	0.3443	0.3273	0.3227	0.3786	0.3127	0.3143	0.3440		0.3345		52.5%	47.5%	15.6%	25.2%
United States			0.5882	0.5903	0.5872	0.5710	0.5801	0.6039	0.6045	0.5961	0.5861	0.6023	0.5748	0.5748	0.5754	0.5729	0.5590		0.5714		98.4%	1.6%	6.6%	18.0%
Africa			0.6786	0.6899	0.6822	0.6871	0.6711	0.6788	0.7100	0.6799	0.6670	0.6221	0.6228	0.6366	0.6508	0.6427	0.6450		0.6396		99.9%	0.1%	12.0%	0.0%
Latin America			0.1921	0.1832	0.1780	0.1820	0.1868	0.1929	0.2008	0.2039	0.1958	0.2057	0.1975	0.1932	0.2029	0.1970	0.1940		0.1969		99.9%	0.1%	16.7%	0.0%
Middle-East			0.7163	0.7222	0.7256	0.7279	0.7205	0.7189	0.7051	0.7089	0.7056	0.7056	0.6918	0.6873	0.6966	0.6901	0.6700		0.6872		100.0%	0.0%	14.0%	0.0%
Non-OECD Europe			0.4792	0.4680	0.4798	0.4834	0.4705	0.4805	0.4770	0.4494	0.4737	0.4871	0.4853	0.5126	0.4893	0.4786	0.4990		0.4930		74.7%	25.3%	15.7%	15.4%

Source

Emission factor data is from International Energy Agency Data Services, 2006 and 2008 for "CO2 Emissions per kWh Electricity and Heat Generated" and mainly sourced from the GHG Protocol website http://www.ghgprotocol.org/calculation-tools

Data on the proportion of electricity and heat (for 2006) is sourced from the IEA website at: http://www.iea.org/Textbase/stats/prodresult.asp?PRODUCT=Electricity/Heat Data on losses in distribution of electricity and heat is calculated from 2006 country energy balances available at the IEA website at: http://www.iea.org/Textbase/stats/prodresult.asp?PRODUCT=Balances

Notes

¹ Emissions factors for electricity and heat GENERATED (and supplied to the grid where relevant) - EXCLUDES losses from the transmission and distribution grid. If you cannot find an emission factor for a particular country, please refer to the larger list available on the GHG Protocol website at the link above.

Table 10b

Overseas Electricity/Heat C	onversion	Factors	from 199	0 to 2006:	kgCO ₂ p	er kWh el	ectricity	and heat	LOSSES	in transn	nission ar	nd distrib	ution ²					2006 5	yr rolling	average	% Total	GWh	% Distribution	on Losse
																		Amount used	kg CO ₂					
Country	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	per year, kWh	per kWh	Total kg CO ₂	Electricity	Heat	Electricity	Heat
European Union																								
Austria	0.0161	0.0166	0.0137	0.0126	0.0136	0.0140	0.0151	0.0149	0.0136	0.0127	0.0120	0.0127	0.0127	0.0154	0.0150	0.0147	0.0140		0.0143		79.5%	20.5%	5.7%	8.0%
Belgium	0.0187	0.0183	0.0178	0.0187	0.0197	0.0192	0.0183	0.0167	0.0170	0.0150	0.0153	0.0147	0.0144	0.0147	0.0145	0.0144	0.0140		0.0144		94.2%	5.8%	4.9%	7.8%
Bulgaria			0.0845	0.0865	0.0818	0.0770	0.0751	0.0852	0.0862	0.0799	0.0773	0.0831	0.0777	0.0843	0.0844	0.0804	0.0804		0.0814		70.2%	29.8%	16.0%	13.0%
Cyprus			0.0342	0.0342	0.0343	0.0339	0.0344	0.0347	0.0348	0.0353	0.0346	0.0321	0.0312	0.0343	0.0319	0.0326	0.0311		0.0322		100.0%	0.0%	3.9%	0.0%
Czech Republic	0.0758	0.0748	0.0742	0.0722	0.0727	0.0726	0.0721	0.0697	0.0706	0.0694	0.0704	0.0695	0.0677	0.0622	0.0625	0.0639	0.0654		0.0644		65.7%	34.3%	8.3%	16.8%
Denmark	0.0622	0.0661	0.0613	0.0632	0.0650	0.0596	0.0646	0.0584	0.0540	0.0503	0.0469	0.0465	0.0459	0.0494	0.0426	0.0392	0.0472		0.0449		54.5%	45.5%	4.4%	20.1%
Estonia			0.1090	0.1058	0.1056	0.1175	0.1158	0.1160	0.1228	0.1206	0.1189	0.1170	0.1147	0.1234	0.1196	0.1135	0.1092		0.1160		48.6%	51.4%	15.5%	13.3%
Finland	0.0112	0.0114	0.0101	0.0117	0.0135	0.0125	0.0146	0.0134	0.0107	0.0107	0.0106	0.0121	0.0127	0.0148	0.0128	0.0097	0.0122		0.0124		65.9%	34.1%	3.5%	6.7%
France	0.0074	0.0083	0.0066	0.0048	0.0048	0.0053	0.0054	0.0049	0.0067	0.0059	0.0057	0.0048	0.0052	0.0055	0.0054	0.0062	0.0058		0.0057		89.0%	11.0%	7.0%	0.0%
Germany	0.0385	0.0393	0.0372	0.0367	0.0366	0.0355	0.0350	0.0345	0.0339	0.0330	0.0331	0.0338	0.0346	0.0292	0.0290	0.0233	0.0269		0.0286		61.3%	38.7%	5.4%	7.8%
Greece	0.1076	0.1021	0.1041	0.1015	0.0961	0.0948	0.0901	0.0944	0.0935	0.0893	0.0884	0.0905	0.0886	0.0841	0.0845	0.0844	0.0788		0.0840		98.9%	1.1%	9.9%	0.0%
Hungary	0.0374	0.0367	0.0387	0.0359	0.0346	0.0350	0.0340	0.0338	0.0335	0.0325	0.0323	0.0310	0.0307	0.0330	0.0306	0.0266	0.0270		0.0296		68.0%	32.0%	10.9%	0.0%
Ireland	0.0644	0.0648	0.0653	0.0633	0.0627	0.0627	0.0626	0.0619	0.0615	0.0600	0.0550	0.0580	0.0548	0.0513	0.0492	0.0502	0.0460		0.0503		100.0%	0.0%	7.9%	0.0%
Italy	0.0331	0.0316	0.0308	0.0303	0.0298	0.0316	0.0303	0.0297	0.0297	0.0287	0.0290	0.0280	0.0294	0.0303	0.0237	0.0234	0.0233		0.0260		84.9%	15.1%	6.4%	0.0%
Latvia			0.0485	0.0485	0.0452	0.0430	0.0474	0.0393	0.0357	0.0392	0.0362	0.0342	0.0340	0.0330	0.0301	0.0293	0.0301		0.0313		45.2%	54.8%	12.7%	16.7%
Lithuania			0.0330	0.0323	0.0374	0.0300	0.0301	0.0287	0.0300	0.0306	0.0274	0.0250	0.0208	0.0195	0.0192	0.0225	0.0242		0.0212		43.1%	56.9%	13.3%	16.4%
Luxembourg	0.0393	0.0375	0.0378	0.0357	0.0305	0.0194	0.0173	0.0118	0.0036	0.0037	0.0037	0.0035	0.0047	0.0048	0.0048	0.0047	0.0047		0.0048		89.7%	10.3%	1.7%	0.0%
Malta			0.1340	0.1823	0.1524	0.1260	0.1282	0.1233	0.1227	0.1190	0.1137	0.1347	0.1073	0.1065	0.1180	0.1168	0.1092		0.1115		100.0%	0.0%	11.6%	0.0%
Netherlands	0.0476	0.0462	0.0452	0.0517	0.0484	0.0477	0.0451	0.0450	0.0423	0.0421	0.0402	0.0417	0.0413	0.0421	0.0396	0.0348	0.0355		0.0386		75.1%	24.9%	4.1%	17.0%
Poland	0.0495	0.0490	0.0491	0.0555	0.0557	0.0586	0.0576	0.0578	0.0576	0.0577	0.0582	0.0572	0.0574	0.0574	0.0576	0.0571	0.0571		0.0573		54.7%	45.3%	12.8%	0.0%
Portugal	0.0431	0.0435	0.0519	0.0456	0.0415	0.0476	0.0358	0.0389	0.0387	0.0450	0.0400	0.0369	0.0427	0.0345	0.0377	0.0416	0.0347		0.0383		92.4%	7.6%	8.3%	0.0%
Romania			0.0809	0.0752	0.0893	0.0861	0.0869	0.0754	0.0687	0.0704	0.0774	0.0806	0.0807	0.0883	0.0818	0.0771	0.0839		0.0824		61.2%	38.8%	13.0%	22.0%
Slovak Republic	0.0367	0.0377	0.0349	0.0397	0.0347	0.0357	0.0350	0.0365	0.0338	0.0336	0.0257	0.0239	0.0215	0.0246	0.0238	0.0223	0.0215		0.0227		67.4%	32.6%	6.9%	12.9%
Slovenia			0.0339	0.0347	0.0312	0.0314	0.0296	0.0361	0.0367	0.0342	0.0309	0.0318	0.0347	0.0342	0.0314	0.0306	0.0309		0.0324		84.8%	15.2%	7.0%	16.9%
Spain	0.0459	0.0455	0.0516	0.0450	0.0446	0.0490	0.0385	0.0420	0.0408	0.0476	0.0460	0.0410	0.0469	0.0408	0.0410	0.0423	0.0375		0.0417		100.0%	0.0%	9.7%	0.0%
Sweden	0.0036	0.0044	0.0038	0.0040	0.0043	0.0038	0.0056	0.0038	0.0041	0.0036	0.0032	0.0033	0.0040	0.0046	0.0039	0.0034	0.0034		0.0039		72.9%	27.1%	8.2%	3.5%
European Union - 27			0.0359	0.0342	0.0341	0.0340	0.0331	0.0323	0.0318	0.0311	0.0309	0.0306	0.0310	0.0305	0.0293	0.0276	0.0287		0.0295		77.0%	23.0%	7.4%	7.7%
SUBTOTAL																				0				
-																								

Overseas Electricity/Heat Co	nversion	Factors f	rom 1990	to 2006:	kgCO ₂ p	er kWh el	ectricity	and heat	LOSSES	in transm	nission ar	nd distrib	ution ²					2006 5-	yr rolling	average	% Tota	l GWh	% Distributi	ion Losse
																		Amount used	kg CO ₂					
Country	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	per year, kWh	per kWh	Total kg CO ₂	Electricity	Heat	Electricity	Heat
Other countries																							-	
Australia	0.0665	0.0667	0.0672	0.0661	0.0640	0.0636	0.0675	0.0709	0.0721	0.0715	0.0709	0.0692	0.0731	0.0714	0.0691	0.0716	0.0755		0.0721		100.0%	0.0%	7.6%	0.0%
Brazil			0.0113	0.0102	0.0095	0.0101	0.0105	0.0114	0.0115	0.0152	0.0163	0.0191	0.0158	0.0146	0.0158	0.0155	0.0149		0.0154		100.0%	0.0%	15.6%	0.0%
Canada	0.0171	0.0164	0.0172	0.0154	0.0151	0.0156	0.0151	0.0167	0.0191	0.0183	0.0192	0.0200	0.0188	0.0199	0.0182	0.0175	0.0162		0.0181		98.2%	1.8%	8.2%	0.0%
China, People's Republic of			0.0553	0.0552	0.0534	0.0558	0.0571	0.0560	0.0572	0.0556	0.0532	0.0515	0.0521	0.0540	0.0561	0.0548	0.0548		0.0544		79.8%	20.2%	7.8%	1.4%
Chinese Taipei			0.0187	0.0194	0.0193	0.0197	0.0199	0.0211	0.0215	0.0223	0.0231	0.0236	0.0232	0.0243	0.0241	0.0242	0.0252		0.0242		100.0%	0.0%	3.7%	0.0%
Croatia			0.0486	0.0490	0.0374	0.0409	0.0379	0.0447	0.0484	0.0454	0.0448	0.0463	0.0530	0.0564	0.0445	0.0466	0.0476		0.0497		82.8%	17.2%	12.9%	13.5%
Egypt			0.1041	0.0988	0.0916	0.0870	0.0850	0.0869	0.0918	0.0893	0.0809	0.0748	0.0858	0.0849	0.0930	0.0926	0.0923		0.0898		100.0%	0.0%	16.4%	0.0%
Gibraltar			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		100.0%	0.0%	0.0%	0.0%
long Kong (China)			0.1003	0.1054	0.1068	0.1044	0.1016	0.0887	0.0906	0.0876	0.0871	0.0881	0.0888	0.0972	0.1017	0.0992	0.1048		0.0983		100.0%	0.0%	10.9%	0.0%
celand	0.0001	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001		0.0001		77.2%	22.8%	4.7%	10.4%
India			0.3251	0.3333	0.3202	0.3386	0.3550	0.3447	0.3369	0.3362	0.3432	0.3416	0.3361	0.3303	0.3445	0.3450	0.3453		0.3402		100.0%	0.0%	26.8%	0.0%
Indonesia			0.0897	0.1062	0.0901	0.0817	0.0896	0.0948	0.0913	0.0950	0.0902	0.1038	0.1002	0.1089	0.1053	0.1082	0.0950		0.1035		100.0%	0.0%	12.3%	0.0%
Israel			0.0247	0.0248	0.0247	0.0247	0.0249	0.0247	0.0230	0.0230	0.0229	0.0233	0.0247	0.0246	0.0242	0.0231	0.0233		0.0240		100.0%	0.0%	2.9%	0.0%
Japan	0.0219	0.0214	0.0217	0.0208	0.0217	0.0208	0.0206	0.0199	0.0193	0.0201	0.0202	0.0204	0.0213	0.0225	0.0216	0.0219	0.0213		0.0217		99.3%	0.7%	4.9%	0.0%
Korea, Republic of	0.0184	0.0199	0.0208	0.0202	0.0196	0.0192	0.0191	0.0198	0.0178	0.0173	0.0181	0.0181	0.0154	0.0161	0.0160	0.0151	0.0193		0.0164		87.2%	12.8%	3.7%	1.9%
Malaysia			0.0281	0.0272	0.0251	0.0251	0.0252	0.0210	0.0243	0.0238	0.0233	0.0244	0.0267	0.0237	0.0240	0.0251	0.0295		0.0258		100.0%	0.0%	4.3%	0.0%
Mexico	0.1146	0.1145	0.1091	0.1092	0.1202	0.1086	0.1083	0.1117	0.1224	0.1201	0.1212	0.1217	0.1195	0.1199	0.1119	0.1103	0.1158		0.1154		100.0%	0.0%	17.6%	0.0%
New Zealand	0.0105	0.0107	0.0142	0.0114	0.0094	0.0091	0.0113	0.0173	0.0175	0.0194	0.0188	0.0225	0.0201	0.0236	0.0196	0.0225	0.0252		0.0222		100.0%	0.0%	7.6%	0.0%
Norway	0.0003	0.0005	0.0003	0.0004	0.0004	0.0004	0.0006	0.0005	0.0005	0.0006	0.0003	0.0006	0.0005	0.0008	0.0006	0.0005	0.0006		0.0006		97.9%	2.1%	8.1%	16.1%
akistan			0.1324	0.1294	0.1318	0.1363	0.1490	0.1528	0.1385	0.1575	0.1615	0.1559	0.1491	0.1246	0.1336	0.1278	0.1391		0.1348		100.0%	0.0%	25.2%	0.0%
Philippines			0.0728	0.0722	0.0781	0.0766	0.0774	0.0859	0.0890	0.0755	0.0750	0.0798	0.0726	0.0693	0.0688	0.0746	0.0655		0.0702		100.0%	0.0%	13.1%	0.0%
Russian Federation			0.0214	0.0224	0.0227	0.0224	0.0262	0.0252	0.0250	0.0251	0.0246	0.0246	0.0250	0.0252	0.0249	0.0258	0.0252		0.0252		31.7%	68.3%	14.8%	2.6%
Saudi Arabia			0.0706	0.0709	0.0691	0.0690	0.0679	0.0685	0.0690	0.0687	0.0686	0.0660	0.0636	0.0626	0.0643	0.0633	0.0639		0.0635		100.0%	0.0%	7.8%	0.0%
Singapore			0.0485	0.0580	0.0564	0.0542	0.0508	0.0444	0.0447	0.0379	0.0383	0.0366	0.0343	0.0332	0.0321	0.0314	0.0310		0.0324		100.0%	0.0%	5.5%	0.0%
South Africa			0.0659	0.0678	0.0665	0.0677	0.0663	0.0670	0.0714	0.0686	0.0688	0.0639	0.0632	0.0651	0.0667	0.0653	0.0670		0.0655		100.0%	0.0%	7.2%	0.0%
Switzerland	0.0016	0.0018	0.0020	0.0015	0.0014	0.0016	0.0019	0.0016	0.0021	0.0016	0.0016	0.0016	0.0016	0.0017	0.0017	0.0020	0.0019		0.0017		92.8%	7.2%	6.8%	7.5%
Thailand			0.0565	0.0551	0.0545	0.0530	0.0547	0.0554	0.0531	0.0521	0.0493	0.0492	0.0470	0.0461	0.0471	0.0465	0.0447		0.0463		100.0%	0.0%	8.0%	0.0%
Turkey	0.1000	0.1016	0.1018	0.0914	0.0998	0.0928	0.0938	0.0959	0.0973	0.1006	0.0916	0.0960	0.0834	0.0782	0.0745	0.0755	0.0763		0.0776		92.9%	7.1%	15.7%	0.0%
Ukraine			0.0939	0.0966	0.0893	0.0918	0.0833	0.0808	0.0830	0.0848	0.0868	0.0824	0.0813	0.0954	0.0788	0.0792	0.0867		0.0842		49.9%	50.1%	15.6%	25.2%
United States			0.0426	0.0431	0.0430	0.0417	0.0424	0.0442	0.0443	0.0436	0.0429	0.0440	0.0421	0.0420	0.0422	0.0420	0.0409		0.0418		99.0%	1.0%	6.6%	18.0%
Africa			0.0930	0.0945	0.0934	0.0940	0.0918	0.0928	0.0971	0.0930	0.0913	0.0851	0.0852	0.0872	0.0891	0.0880	0.0883		0.0875		100.0%	0.0%	12.0%	0.0%
Latin America			0.0385	0.0366	0.0356	0.0363	0.0373	0.0385	0.0401	0.0407	0.0391	0.0411	0.0394	0.0386	0.0406	0.0393	0.0387		0.0393		100.0%	0.0%	16.7%	0.0%
Middle-East			0.1169	0.1179	0.1184	0.1187	0.1175	0.1173	0.1150	0.1157	0.1151	0.1151	0.1129	0.1121	0.1137	0.1126	0.1093		0.1121		100.0%	0.0%	14.0%	0.0%
Non-OECD Europe			0.0886	0.0866	0.0887	0.0895	0.0870	0.0888	0.0882	0.0831	0.0877	0.0901	0.0897	0.0948	0.0906	0.0885	0.0923		0.0911		73.5%	26.5%	15.7%	15.4%

Source

Emission factor data is from International Energy Agency Data Services, 2006 and 2008 for "CO2 Emissions per kWh Electricity and Heat Generated" and mainly sourced from the GHG Protocol website http://www.ghgprotocol.org/calculation-tools

Data on the proportion of electricity and heat (for 2006) is sourced from the IEA website at: http://www.iea.org/Textbase/stats/prodresult.asp?PRODUCT=Electricity/Heat Data on losses in distribution of electricity and heat is calculated from 2006 country energy balances available at the IEA website at: http://www.iea.org/Textbase/stats/prodresult.asp?PRODUCT=Balances

Notes

² Emissions factors for electricity and heat LOSSES from the transmission and distribution grid. If you cannot find an emission factor for a particular country, please refer to the larger list available on the GHG Protocol website at the link above. Emission factors per kWh energy LOSSESS in trasmission and distribution are calculated using % distribution losses for 2006.

Table 10c

Overseas Electricity/Heat	Conversion	Factors	from 1990	0 to 2006:	kgCO ₂ p	er kWh e	lectricity	and heat	CONSUM	IED ³								2006 5	yr rolling	average	% Tota	l GWh	% Distributi	on Losses
																		Amount used	kg CO ₂					
Country	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	per year, kWh	per kWh	Total kg CO ₂	Electricity	Heat	Electricity	Heat
European Union																								
Austria	0.2608	0.2685	0.2225	0.2063	0.2206	0.2280	0.2447	0.2427	0.2214	0.2077	0.1953	0.2067	0.2071	0.2514	0.2450	0.2396	0.2280		0.2342		79.5%	20.5%	5.7%	8.0%
Belgium	0.3672	0.3606	0.3495	0.3647	0.3853	0.3774	0.3582	0.3277	0.3324	0.2934	0.3002	0.2866	0.2808	0.2883	0.2830	0.2824	0.2740		0.2817		94.2%	5.8%	4.9%	7.8%
Bulgaria			0.5605	0.5690	0.5384	0.5066	0.4935	0.5601	0.5668	0.5255	0.5080	0.5465	0.5106	0.5546	0.5550	0.5284	0.5284		0.5354		70.2%	29.8%	16.0%	13.0%
Cyprus			0.8657	0.8663	0.8702	0.8603	0.8712	0.8802	0.8823	0.8961	0.8765	0.8133	0.7909	0.8715	0.8083	0.8249	0.7891		0.8169		100.0%	0.0%	3.9%	0.0%
Czech Republic	0.6751	0.6650	0.6609	0.6544	0.6584	0.6574	0.6535	0.6313	0.6399	0.6287	0.6379	0.6295	0.6138	0.5641	0.5660	0.5795	0.5924		0.5832		65.7%	34.3%	8.3%	16.8%
Denmark	0.5384	0.5722	0.5310	0.5198	0.5349	0.4896	0.5315	0.4799	0.4437	0.4136	0.3862	0.3824	0.3779	0.4066	0.3508	0.3228	0.3882		0.3693		54.5%	45.5%	4.4%	20.1%
Estonia			0.7577	0.7257	0.7244	0.8065	0.7949	0.7957	0.8424	0.8271	0.8161	0.8024	0.7869	0.8467	0.8205	0.7784	0.7492		0.7963		48.6%	51.4%	15.5%	13.3%
Finland	0.2416	0.2464	0.2175	0.2441	0.2822	0.2623	0.3043	0.2812	0.2230	0.2223	0.2216	0.2516	0.2656	0.3077	0.2674	0.2033	0.2542		0.2596		65.9%	34.1%	3.5%	6.7%
France	0.1173	0.1328	0.1061	0.0739	0.0746	0.0823	0.0834	0.0768	0.1041	0.0923	0.0884	0.0756	0.0815	0.0859	0.0835	0.0971	0.0908		0.0878		89.0%	11.0%	7.0%	0.0%
Germany	0.6099	0.6230	0.5899	0.5866	0.5843	0.5680	0.5599	0.5520	0.5422	0.5276	0.5290	0.5400	0.5530	0.4671	0.4647	0.3725	0.4309		0.4576		61.3%	38.7%	5.4%	7.8%
Greece	1.0988	1.0429	1.0626	1.0351	0.9802	0.9671	0.9183	0.9634	0.9537	0.9109	0.9020	0.9228	0.9038	0.8580	0.8617	0.8609	0.8038		0.8576		98.9%	1.1%	9.9%	0.0%
Hungary	0.5067	0.4970	0.5240	0.4946	0.4765	0.4807	0.4671	0.4651	0.4608	0.4469	0.4441	0.4258	0.4223	0.4539	0.4201	0.3653	0.3710		0.4065		68.0%	32.0%	10.9%	0.0%
Ireland	0.8144	0.8181	0.8248	0.7999	0.7919	0.7914	0.7905	0.7815	0.7767	0.7578	0.6942	0.7331	0.6919	0.6487	0.6207	0.6344	0.5810		0.6353		100.0%	0.0%	7.9%	0.0%
Italy	0.6070	0.5806	0.5664	0.5555	0.5463	0.5783	0.5556	0.5448	0.5458	0.5267	0.5328	0.5132	0.5384	0.5551	0.4343	0.4288	0.4273		0.4768		84.9%	15.1%	6.4%	0.0%
Latvia			0.3248	0.3173	0.2956	0.2811	0.3099	0.2575	0.2330	0.2560	0.2364	0.2239	0.2221	0.2159	0.1966	0.1913	0.1971		0.2046		45.2%	54.8%	12.7%	16.7%
Lithuania			0.2188	0.2182	0.2525	0.2027	0.2032	0.1941	0.2022	0.2071	0.1852	0.1687	0.1406	0.1318	0.1294	0.1521	0.1632		0.1434		43.1%	56.9%	13.3%	16.4%
Luxembourg	2.6277	2.5078	2.5215	2.5000	2.1379	1.3594	1.2102	0.8218	0.2525	0.2614	0.2588	0.2434	0.3335	0.3350	0.3386	0.3325	0.3307		0.3341		89.7%	10.3%	1.7%	0.0%
Malta			1.1575	1.5739	1.3164	1.0877	1.1071	1.0649	1.0592	1.0276	0.9815	1.1629	0.9268	0.9203	1.0196	1.0087	0.9432		0.9637		100.0%	0.0%	11.6%	0.0%
Netherlands	0.6498	0.6300	0.6161	0.6262	0.5866	0.5771	0.5458	0.5442	0.5117	0.5096	0.4870	0.5041	0.4999	0.5092	0.4795	0.4215	0.4295		0.4679		75.1%	24.9%	4.1%	17.0%
Poland	0.7058	0.6997	0.7017	0.6958	0.6989	0.7338	0.7222	0.7247	0.7219	0.7228	0.7298	0.7176	0.7198	0.7197	0.7226	0.7160	0.7161		0.7188		54.7%	45.3%	12.8%	0.0%
Portugal	0.5604	0.5659	0.6738	0.5915	0.5385	0.6172	0.4649	0.5056	0.5029	0.5843	0.5201	0.4794	0.5554	0.4484	0.4900	0.5398	0.4507		0.4969		92.4%	7.6%	8.3%	0.0%
Romania			0.4905	0.4596	0.5454	0.5266	0.5312	0.4607	0.4200	0.4303	0.4728	0.4928	0.4931	0.5395	0.5001	0.4712	0.5129		0.5034		61.2%	38.8%	13.0%	22.0%
Slovak Republic	0.4152	0.4264	0.3952	0.4522	0.3954	0.4055	0.3977	0.4154	0.3850	0.3823	0.2925	0.2727	0.2454	0.2801	0.2711	0.2544	0.2445		0.2591		67.4%	32.6%	6.9%	12.9%
Slovenia			0.4001	0.4079	0.3657	0.3685	0.3471	0.4231	0.4304	0.4012	0.3622	0.3728	0.4066	0.4015	0.3680	0.3589	0.3629		0.3796		84.8%	15.2%	7.0%	16.9%
Spain	0.4738	0.4692	0.5333	0.4642	0.4612	0.5056	0.3972	0.4339	0.4214	0.4924	0.4756	0.4243	0.4840	0.4218	0.4236	0.4366	0.3875		0.4307		100.0%	0.0%	9.7%	0.0%
Sweden	0.0516	0.0625	0.0546	0.0560	0.0601	0.0538	0.0789	0.0541	0.0585	0.0517	0.0453	0.0465	0.0560	0.0641	0.0551	0.0479	0.0474		0.0541		72.9%	27.1%	8.2%	3.5%
European Union - 27			0.4790	0.4559	0.4546	0.4530	0.4423	0.4309	0.4250	0.4148	0.4117	0.4086	0.4148	0.4072	0.3916	0.3685	0.3827		0.3930		77.0%	23.0%	7.4%	7.7%
SUBTOTAL														•						0				

ther countries 0.1 ustralia 0.2 razil 0.3 anada 0.2 hina, People's Republic of 0.1 hinese Taipei 0.2 roatia 0.9 gypt 0.1 ibraltar 0.0 ong Kong (China) 0.0 eland 0.0 dia 0	1990 19 0.8776 0.8 0.2121 0.2 0.2121 0.2 0.0006 0.0	91 1992 310 0.8883 0.0721 037 0.2133 0.8496 0.5086 0.3737 0.6337 0.6337 0.7772 0.9194	1993 3 0.8719 1 0.0655 3 0.1905 5 0.8491 5 0.5250 7 0.3769 7 0.6020 4 0.7771	1994 0.8461 0.0605 0.1869 0.8213 0.5228 0.2873 0.5581 0.7551	1995 0.8394 0.0653 0.1922 0.8587 0.5341 0.3135 0.5303	1996 0.8908 0.0675 0.1857 0.8777 0.5410 0.2915	1997 0.9364 0.0734 0.2064 0.8602 0.5716	1998 0.9520 0.0737 0.2351 0.8804 0.5811	1999 0.9435 0.0977 0.2253 0.8534	2000 0.9356 0.1042 0.2358	2001 0.9141 0.1230 0.2460	2002 0.9653 0.1014	2003 0.9431 0.0938	2004 0.9129	2005	2006	Amount used per year, kWh	kg CO ₂ per kWh 0.9525	Total kg CO ₂	Electricity	Heat	Electricity	Heat
ountry 1 ustralia 0.i razil	1990 19 0.8776 0.8 0.2121 0.2 0.2121 0.2	91 1992 310 0.8883 0.0721 037 0.2133 0.8496 0.5086 0.3737 0.6337 0.7774 0.919 0.950	1993 3 0.8719 4 0.0655 3 0.1905 5 0.8491 5 0.5250 7 0.3769 7 0.6020 4 0.7771 4 0.2771	1994 0.8461 0.0605 0.1869 0.8213 0.5228 0.2873 0.5581 0.7551	1995 0.8394 0.0653 0.1922 0.8587 0.5341 0.3135 0.5303	1996 0.8908 0.0675 0.1857 0.8777 0.5410 0.2915	1997 0.9364 0.0734 0.2064 0.8602 0.5716	1998 0.9520 0.0737 0.2351 0.8804 0.5811	1999 0.9435 0.0977 0.2253 0.8534	2000 0.9356 0.1042 0.2358	2001 0.9141 0.1230 0.2460	2002 0.9653 0.1014	2003 0.9431 0.0938	2004 0.9129 0.1010	2005 0.9449	2006 0.9965	per year, kWh	per kWh	Total kg CO ₂	Electricity 100.0%	Heat	Electricity 7.6%	Heat 0.0%
ther countries ustralia custralia anada custralia anad anad anad anad anad anad anad an	0.8776 0.8	310 0.8883 0.0721 037 0.2133 0.8496 0.5086 0.3737 0.6337 0.7774 0.9194	3 0.8719 1 0.0655 3 0.1905 5 0.8491 5 0.5250 7 0.3769 7 0.6020 4 0.7771	0.8461 0.0605 0.1869 0.8213 0.5228 0.2873 0.5581 0.7551	0.8394 0.0653 0.1922 0.8587 0.5341 0.3135 0.5303	0.8908 0.0675 0.1857 0.8777 0.5410 0.2915	0.9364 0.0734 0.2064 0.8602 0.5716	0.9520 0.0737 0.2351 0.8804 0.5811	0.9435 0.0977 0.2253 0.8534	0.9356 0.1042 0.2358	0.9141 0.1230 0.2460	0.9653 0.1014	0.9431	0.9129	0.9449	0.9965		0.9525		100.0%	0.0%	7.6%	0.0%
ustralia 0, razil anada 0, hina, People's Republic of hinese Taipei coatia gypt bibraltar ong Kong (China) eland 0,0 dia donesia 0,0	0.8776 0.8	310 0.8883 0.0721 0.0721 037 0.2133 0.8496 0.5086 0.3737 0.6337 0.6337 0.7774 0.9194 0.905	3 0.8719 1 0.0655 3 0.1905 6 0.8491 6 0.5250 7 0.3769 7 0.6020 4 0.7771	0.8461 0.0605 0.1869 0.8213 0.5228 0.2873 0.5581 0.7551	0.8394 0.0653 0.1922 0.8587 0.5341 0.3135 0.5303	0.8908 0.0675 0.1857 0.8777 0.5410 0.2915	0.9364 0.0734 0.2064 0.8602 0.5716	0.9520 0.0737 0.2351 0.8804 0.5811	0.9435 0.0977 0.2253 0.8534	0.9356 0.1042 0.2358	0.9141 0.1230 0.2460	0.9653 0.1014	0.9431	0.9129	0.9449	0.9965		0.9525		100.0%	0.0%	7.6%	0.0%
razil 0. anada 0. hina, People's Republic of hinese Taipei 9 roatia 9 gypt 0 biraltar 0,0,0 eland 0,0,0 dia 0 donesia 0	0.2121 0.2	0.0721 037 0.2133 0.8496 0.5086 0.3737 0.6337 0.7774 0.9194	0.0655 0.1905 0.8491 0.5250 0.3769 0.6020 0.7771	0.0605 0.1869 0.8213 0.5228 0.2873 0.5581	0.0653 0.1922 0.8587 0.5341 0.3135 0.5303	0.0675 0.1857 0.8777 0.5410 0.2915	0.0734 0.2064 0.8602 0.5716	0.0737 0.2351 0.8804 0.5811	0.0977 0.2253 0.8534	0.1042	0.1230	0.1014	0.0938	0 1010	7000 0					100.0%	0.00/	15 69/	
anada 0. hina, People's Republic of hinese Taipei 0. roatia	0.2121 0.2	0.2133 0.8496 0.5086 0.3737 0.6337 0.7774 0.9194 0.005	3 0.1905 5 0.8491 5 0.5250 7 0.3769 7 0.6020 4 0.7771	0.1869 0.8213 0.5228 0.2873 0.5581	0.1922 0.8587 0.5341 0.3135 0.5303	0.1857 0.8777 0.5410 0.2915	0.2064 0.8602 0.5716	0.2351 0.8804 0.5811	0.2253 0.8534	0.2358	0.2460			0.1010	0.0997	0.0959		0.0984		100.076	0.0%	10.0%	0.0%
hina, People's Republic of hinese Taipei roatia gypt ibraitar ong Kong (China) eland dia donesia	0.0006 0.0	0.8496 0.5086 0.3737 0.6337 0.7774 0.9194	0.8491 0.5250 0.3769 0.6020 0.7771	0.8213 0.5228 0.2873 0.5581	0.8587 0.5341 0.3135 0.5303	0.8777 0.5410 0.2915	0.8602 0.5716	0.8804	0.8534	0 0101		0.2322	0.2447	0.2248	0.2162	0.2002		0.2236		98.2%	1.8%	8.2%	0.0%
hinese Taipei roatia gypt biraltar ong Kong (China) eland 0.0 dia donesia	0.0006 0.0	0.5086 0.3737 0.6337 0.7774 0.9194	6 0.5250 7 0.3769 7 0.6020 4 0.7771	0.5228 0.2873 0.5581	0.5341 0.3135 0.5303	0.5410 0.2915	0.5716	0.5811		0.0101	0.7914	0.8006	0.8301	0.8617	0.8427	0.8428		0.8356		79.8%	20.2%	7.8%	1.4%
roatia gypt biraltar biraltar ong Kong (China) eland 0.0 dia donesia	0.0006 0.0	0.3737 0.6337 0.7774 0.9194	7 0.3769 7 0.6020 4 0.7771	0.2873	0.3135	0.2915			0.6020	0.6269	0.6394	0.6289	0.6570	0.6518	0.6559	0.6842		0.6556		100.0%	0.0%	3.7%	0.0%
gypt ibraltar ong Kong (China) eland 0.0 dia donesia	0.0006 0.0	0.6337	0.6020	0.5581	0.5303		0.3430	0.3717	0.3486	0.3441	0.3560	0.4068	0.4332	0.3423	0.3579	0.3656		0.3812		82.8%	17.2%	12.9%	13.5%
ibraltar ong Kong (China) eland 0.0 dia donesia	0.0006 0.0	0.7774	0.7771	0.7551		0.5177	0.5291	0.5593	0.5438	0.4927	0.4558	0.5225	0.5174	0.5661	0.5640	0.5623		0.5465		100.0%	0.0%	16.4%	0.0%
ong Kong (China) eland 0.0 dia 0.0 donesia 0.0	0.0006 0.0	0.9194	0.0077	0.7001	0.7696	0.7556	0.7766	0.7696	0.7696	0.7635	0.7574	0.7637	0.7581	0.7696	0.7431	0.7300		0.7529		100.0%	0.0%	0.0%	0.0%
dia 0.1 dia donesia	0.0006 0.0	0.000	0.9658	0.9778	0.9568	0.9312	0.8126	0.8307	0.8026	0.7979	0.8070	0.8128	0.8909	0.9311	0.9090	0.9598		0.9007		100.0%	0.0%	10.9%	0.0%
donesia		0.000	5 0.0009	0.0009	0.0017	0.0013	0.0012	0.0031	0.0040	0.0007	0.0006	0.0007	0.0007	0.0007	0.0007	0.0011		0.0008		77.2%	22.8%	4.7%	10.4%
donesia		1.2141	1.2445	1.1959	1.2644	1.3256	1.2873	1.2583	1.2553	1.2817	1.2757	1.2551	1.2334	1.2865	1.2884	1.2893		1.2705		100.0%	0.0%	26.8%	0.0%
		0.7290	0.8623	0.7317	0.6636	0.7278	0.7703	0.7419	0.7715	0.7330	0.8431	0.8137	0.8841	0.8557	0.8789	0.7720		0.8409		100.0%	0.0%	12.3%	0.0%
rael		0.8451	0.8472	0.8456	0.8460	0.8520	0.8465	0.7887	0.7903	0.7838	0.7961	0.8475	0.8422	0.8317	0.7906	0.7973		0.8219		100.0%	0.0%	2.9%	0.0%
apan 0.4	0.4524 0.4	424 0.4486	0.4294	0.4478	0.4290	0.4262	0.4111	0.3984	0.4150	0.4188	0.4201	0.4410	0.4640	0.4464	0.4504	0.4393		0.4482		99.3%	0.7%	4.9%	0.0%
orea, Republic of 0.f	0.5307 0.5	0.5987	0.5795	0.5627	0.5507	0.5472	0.5695	0.5122	0.4965	0.5192	0.5200	0.4405	0.4614	0.4600	0.4333	0.5523		0.4695		87.2%	12.8%	3.7%	1.9%
ialaysia		0.6514	0.6316	0.5814	0.5815	0.5843	0.4871	0.5637	0.5515	0.5400	0.5651	0.6178	0.5492	0.5552	0.5821	0.6845		0.5978		100.0%	0.0%	4.3%	0.0%
iexico 0.f	0.6501 0.6	493 0.6186	0.6191	0.6813	0.6154	0.6145	0.6336	0.6940	0.6813	0.6874	0.6902	0.6776	0.6798	0.6342	0.6258	0.6568		0.6548		100.0%	0.0%	17.6%	0.0%
ew Zealand 0.1	0.1385 0.1	410 0.1883	0.1501	0.1249	0.1208	0.1506	0.2303	0.2315	0.2570	0.2491	0.2983	0.2669	0.3136	0.2603	0.2979	0.3342		0.2946		100.0%	0.0%	7.6%	0.0%
orway 0.0	0.0037 0.0	0.0042	2 0.0046	0.0056	0.0049	0.0069	0.0060	0.0060	0.0066	0.0044	0.0064	0.0058	0.0091	0.0076	0.0060	0.0076		0.0072		97.9%	2.1%	8.1%	16.1%
akistan		0.5256	0.5136	0.5229	0.5412	0.5916	0.6065	0.5499	0.6253	0.6409	0.6187	0.5916	0.4946	0.5303	0.5074	0.5521		0.5352		100.0%	0.0%	25.2%	0.0%
hilippines		0.5562	0.5512	0.5969	0.5852	0.5914	0.6558	0.6804	0.5764	0.5731	0.6097	0.5548	0.5295	0.5258	0.5697	0.5005		0.5361		100.0%	0.0%	13.1%	0.0%
ussian Federation		0.3298	3 0.3137	0.3189	0.3143	0.3682	0.3536	0.3515	0.3522	0.3455	0.3462	0.3518	0.3546	0.3498	0.3638	0.3542		0.3548		31.7%	68.3%	14.8%	2.6%
audi Arabia		0.9035	0.9086	0.8848	0.8841	0.8699	0.8772	0.8839	0.8803	0.8784	0.8442	0.8149	0.8021	0.8238	0.8109	0.8189		0.8141		100.0%	0.0%	7.8%	0.0%
ingapore		0.8897	1.0620	1.0329	0.9926	0.9306	0.8136	0.8189	0.6939	0.7020	0.6712	0.6293	0.6069	0.5883	0.5753	0.5670		0.5934		100.0%	0.0%	5.5%	0.0%
outh Africa		0.9212	0.9483	0.9301	0.9458	0.9270	0.9365	0.9989	0.9583	0.9618	0.8928	0.8826	0.9103	0.9322	0.9137	0.9360		0.9150		100.0%	0.0%	7.2%	0.0%
witzerland 0.0	0.0234 0.0	262 0.0298	3 0.0222	0.0212	0.0235	0.0274	0.0243	0.0298	0.0236	0.0237	0.0230	0.0234	0.0243	0.0254	0.0282	0.0279		0.0258		92.8%	7.2%	6.8%	7.5%
hailand		0.7028	0.6852	0.6779	0.6591	0.6801	0.6891	0.6613	0.6482	0.6134	0.6116	0.5855	0.5740	0.5850	0.5778	0.5557		0.5756		100.0%	0.0%	8.0%	0.0%
urkey 0.f	0.6840 0.6	0.6956	0.6156	0.6725	0.6253	0.6323	0.6465	0.6557	0.6778	0.6175	0.6465	0.5619	0.5265	0.5015	0.5083	0.5143		0.5225		92.9%	7.1%	15.7%	0.0%
kraine		0.4606	0.4802	0.4441	0.4561	0.4143	0.4018	0.4124	0.4213	0.4311	0.4097	0.4040	0.4740	0.3915	0.3935	0.4307		0.4187		49.9%	50.1%	15.6%	25.2%
nited States		0.6308	0.6334	0.6302	0.6127	0.6225	0.6481	0.6488	0.6397	0.6290	0.6463	0.6169	0.6168	0.6176	0.6149	0.5999		0.6132		99.0%	1.0%	6.6%	18.0%
frica		0.7716	6 0.7844	0.7756	0.7811	0.7629	0.7716	0.8071	0.7729	0.7583	0.7072	0.7080	0.7238	0.7399	0.7307	0.7333		0.7271		100.0%	0.0%	12.0%	0.0%
atin America		0.2306	6 0.2198	0.2136	0.2183	0.2241	0.2314	0.2409	0.2446	0.2349	0.2468	0.2369	0.2318	0.2435	0.2363	0.2327		0.2362		100.0%	0.0%	16.7%	0.0%
iddle-East		0.8332	0.8401	0.8440	0.8466	0.8380	0.8362	0.8201	0.8246	0.8207	0.8207	0.8047	0.7994	0.8103	0.8027	0.7793		0.7993		100.0%	0.0%	14.0%	0.0%
on-OECD Europe		0.5678	0.5546	0.5685	0.5729	0.5575	0.5693	0.5652	0.5325	0.5614	0.5772	0.5750	0.6074	0.5799	0.5671	0.5913		0.5841		73.5%	26.5%	15.7%	15.4%

Source

Emission factor data is from International Energy Agency Data Services, 2006 and 2008 for "CO2 Emissions per kWh Electricity and Heat Generated" and mainly sourced from the GHG Protocol website http://www.ghgprotocol.org/calculation-tools

Data on the proportion of electricity and heat (for 2006) is sourced from the IEA website at: http://www.iea.org/Textbase/stats/prodresult.asp?PRODUCT=Electricity/Heat Data on losses in distribution of electricity and heat is calculated from 2006 country energy balances available at the IEA website at: http://www.iea.org/Textbase/stats/prodresult.asp?PRODUCT=Balances

Notes

³ Emissions factors for electricity and heat generated (and supplied to the grid where relevant) - INCLUDES losses from the transmission and distribution grid, i.e. Emission Factor (Electricity/Heat CONSUMED) = Emission Factor (Electricity/Heat GENERATED) + Emission Factor (Electricity/Heat LOSSES) If you cannot find an emission factor for a particular country, please refer to the larger list available on the GHG Protocol website at the link above. Emission factors per kWh energy consumed are calculated using % distribution losses for 2006.

Annex 11 - Fuel Properties

Last updated: Jun-09

How to use this Annex

This annex can be used to help you convert between common units of energy, together with the unit conversions provided in **Annex 12**. In this Annex the typical/average UK calorific values and densities of the most common fuels has been provided.

Table 11

Fuel properties	Net CV	Gross CV	Density	Density		Net CV	Gross CV
	GJ/tonne	GJ/tonne	kg/m ³	litres/tonne	1 1	kWh/kg	kWh/kg
Commonly Used Fossil Fuels							
Aviation Spirit	45.00	47.37	711.7	1405	1	12.50	13.16
Aviation Turbine Fuel	43.89	46.20	802.6	1246] [12.19	12.83
Burning Oil ¹	43.87	46.18	803.9	1244		12.19	12.83
Coal (domestic) ²	28.98	30.50	850.0	1176] [8.05	8.47
Coal (electricity generation) ³	24.89	26.20				6.91	7.28
Coal (industrial) ⁴	25.56	26.90				7.10	7.47
Coking Coal	28.98	30.50				8.05	8.47
Diesel	43.27	45.54	834.0	1199] [12.02	12.65
Fuel Oil	41.46	43.64	986.2	1014		11.52	12.12
Gas Oil	43.27	45.54	865.8	1155		12.02	12.65
LPG	46.98	49.45	508.1	1968] [13.05	13.74
Naphtha	45.11	47.48	689.7	1450		12.53	13.19
Natural Gas	47.59	52.82	0.7459	1340651	1	13.22	14.67
Petrol	44.72	47.07	734.8	1361		12.42	13.08
Other Fuels							
Biodiesel (ME) ⁵	37.20	41.04	890.0	1124		10.33	11.40
Biodiesel (BtL or HVO) ⁶	44.00	46.32	780.0	1282		12.22	12.87
Bioethanol ⁷	26.80	29.25	794.0	1259		7.44	8.13
BioETBE ⁸	36.30	39.62	750.0	1333		10.08	11.01
Biogas ⁹	30.00	33.30	0.9626	1038840		8.33	9.25
Biomethane ¹⁰	49.00	54.39	0.7263	1376907		13.61	15.11
CNG ¹¹	25.56	26.90	175.0	5714] [7.10	7.47
Wood Pellets ¹²	16.62	17.50	1538.5	650		4.62	4.86
Mothano	50.00	55 50	0.7170	1304700	4 F	13.80	15.42
Carbon Dioxido	0.00	0.00	1 0800	505051	4 F	0.00	0.00
Carbort Diuxiue	0.00	0.00	1.9000	505051		0.00	0.00

Sources

Data for Commonly Used Fossil Fuels was sourced from the Digest of UK Energy Statistics 2008 (BERR), available at: http://www.berr.gov.uk/whatwedo/energy/statistics/publications/dukes/page45537.html

Figures for CNG and biofuels are predominantly based on data from JRC/EUCAR/CONCAWE EU Well-to-Wheels study, 2007 update. Available at: http://ies.jrc.ec.europa.eu/WTW.html

Notes

¹ Burning oil is also known as kerosene or paraffin used for heating systems. Aviation Turbine fuel is a similar kerosene fuel specifically refined to a higher quality for aviation.

² Factors should only be used for coal supplied for domestic purposes. Coal supplied to power stations or for industrial purposes have different emission factors.

³ Factors should only be used for coal supplied for electricity generation (power stations). Coal supplied for domestic or industrial purposes have different emission factors.

⁴ For coal used in sources other than power stations and domestic, i.e. industry sources including collieries, Iron & Steel, Autogeneration, Cement production, Lime production, Other industry, Miscellaneous, Public Sector, Stationary combustion - railways and agriculture. Users who wish to use coal factors for types of coal used in specific industry applications should use the factors given in the UK ETS.

⁵ Biodiesel ME (Methyl Ester) is the conventionally produced biodiesel type (also known as 1st generation biodiesel).

⁶ Biodiesel, BtL (Biomass-to-Liquid) is an advanced biodiesel fuel not yet in significant commercial production (also known as 2nd generation biodiesel). Biodiesel HVO (Hydrotreated Vegetable Oil) is a new type of biodiesel, similar in properties to BtL biodiesel fuel, only recently becoming available.

⁷ Bioethanol is a biofuel commonly used in petrol engined vehicles, usually in a low % blend with conventional petrol.

⁸ BioETBE is a biofuel that can be used in petrol engined vehicles in a low % blend with conventional petrol, usually as a replacement for conventional octane enhancers.

⁹ Figures are indicative for uncompressed biogas assuming an assumed content of 60% methane and 40% of mainly carbon dioxide (with small quantities of nitrogen, oxygen, hydrogen and hydrogen disulphide). Note: the relative proportions can vary significantly depending on the source of the biogas, e.g. landfill gas, sewage gas, anaerobic digestion of biomass, etc. This will affect all physical properties.

¹⁰ Figures are for uncompressed biomethane (of suitable purity for transport applications) comprising an average of 98% methane and 2% carbon dioxide. Biomethane can be produced by upgrading biogas through removal of the majority of the carbon dioxide and other impurities.

¹¹ CNG (Compressed Natural Gas) is an alternative transport fuel, typically at 200 bar pressure.

¹² Based on average information on wood pellets sourced from the BIOMASS Energy Centre (BEC), which is owned and managed by the UK Forestry Commission, via Forest Research, its research agency. Fuel property data on a range of other wood and other heating fuels is available at: <u>http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,20041&_dad=portal&_schema=PORTAL</u>

Annex 12 - Unit Conversions

Last updated: Jun-09

How to use this Annex

This Annex can be used to help you convert between common units of energy, volume, mass or distance.

Table 12a provides conversions from common units of Energy

Table 12b provides conversions from common units of Volume

Table 12c provides conversions from common units of Weight/Mass

Table 12d provides conversions from common units of Length/Distance

If this annex does not have the conversion factor you are looking for, a more complete list of conversions is available here: http://www.onlineconversion.com/

Common unit abbreviations: kilo (k) = 1,000 or 10^3 mega (M) = 1,000,000 or 10^6 giga (G) = 1,000,000,000 or 10^9 tera (T) = 1,000,000,000,000 or 10^{12} peta (P) = 1,000,000,000,000 or 10^{15}

Table 12a Energy

From/To - multiply by	GJ	kWh	therm	toe	kcal
Gigajoule, GJ	1	277.78	9.47817	0.02388	238,903
Kilowatthour, kWh	0.0036	1	0.03412	0.00009	860.05
Therm	0.10551	29.307	1	0.00252	25,206
Tonne oil equivalent, toe	41.868	11,630	396.83	1	10,002,389
Kilocalorie, kcal	0.000004186	0.0011627	0.000039674	0.000000100	1

Table 12b Volume

From/To - multiply by	L	m ³	cu ft	Imp. gallon	US gallon	Bbl (US,P)
Litres, L	1	0.001	0.03531	0.21997	0.26417	0.0062898
Cubic metres, m ³	1000	1	35.315	219.97	264.17	6.2898
Cubic feet, cu ft	28.317	0.02832	1	6.2288	7.48052	0.17811
Imperial gallon	4.5461	0.00455	0.16054	1	1.20095	0.028594
US gallon	3.7854	0.0037854	0.13368	0.83267	1	0.023810
Barrel (US, petroleum), bbl	158.99	0.15899	5.6146	34.972	42	1

Table 12c Weight/Mass

From/To - multiply by	kg	tonne	ton (UK)	ton (US)	lb
Kilogram, kg	1	0.001	0.00098	0.00110	2.20462
tonne, t (metric ton)	1000	1	0.98421	1.10231	2204.62368
ton (UK, long ton)	1016.04642	1.01605	1	1.12000	2240
ton (US, short ton)	907.18	0.90718	0.89286	1	2000
Pound, Ib	0.45359	0.00045359	0.00044643	0.00050	1

Table 12d Length/Distance

From/To - multiply by	m	ft	mi	km	nmi
Metre, m	1	3.2808	0.00062137	0.001	0.00053996
Feet, ft	0.30480	1	0.000	0.0003048	0.00016458
Miles, mi	1609.34	5280	1	1.60934	0.86898
Kilometres, km	1000	3280.8	0.62137	1	0.53996
Nautical miles, nmi or NM	1852	6076.1	1.15078	1.852	1

From/To - multiply by	m	ft	in	cm	yd
Metre, m	1	3.28084	39.37008	100	1.09361
Feet, ft	0.30480	1	12	30.48000	0.33333
Inch, in	0.02540	0.08333	1	2.54000	0.02778
Centimetres, cm	0.01	0.03281	0.39370	1	0.01094
Yard, yd	0.91440	3	36	91.44000	1

Annex 13 - Indirect emissions from the supply chain

<u>Unlike</u> most of the emission factors provided in the annexes, the emission factors presented in *this* Annex only cover indirect emissions from the supply chain and include CO_2 , CH_4 , N_2O and F-gas emissions. Indirect emissions are those which are generated by other organisations as part of the process of providing goods and services to your company. The emission factors presented here are therefore <u>not directly comparable</u> with the emission factors in the 2009 Defra / DECC GHG Conversion Factors, which generally include only direct emissions (full life cycle emissions in the case of Annex 9).

How to use this Annex

This annex is intended to be used primarily as a high level diagnostic tool. If you have more specific information about the supply chain emissions of any particular product then this source should be used instead. Such adjustments should be clearly documented.

The table below provides emission factors for spending on different groups of products:

1) Identify the amount spent on different product groups, excluding VAT, in £s

2) Multiply the amount of spending by the conversion factor to get total emissions in kilograms of carbon dioxide equivalent (kg CO₂eq). The excel spreadsheet does this automatically following your entry of the amount of spending into the appropriate box.

For example, if £1000 is spent on 'ceramic goods', then the table calculates that 1,309 kilograms of CO2eq were released during all stages of the production of these goods, including raw material extraction, processing, manufacturing, transportation, packaging etc. As a result, these emissions factors are different from the emission factors shown in the other annexes. They are similar to life-cycle emissions, but do not account for direct emissions which are included in life-cycle estimates (e.g. from the actual combustion of the fuel).

Key information:

This Annex can be used to produce indicative estimates of the Greenhouse Gas emissions relating to the production of goods and services purchased by your company. The estimates can only be indicative as they represent the average emissions relating to each product group, and the emission factors relating to specific products within the group may be quite different. If you have specific information about the supply chain emissions of any particular product then this source should be used instead.

The information derived from this table can be combined with data on direct emissions, i.e. those relating to actual fuel use (e.g. litres of fuel used, or derived from mileage estimates). The footnotes to the table give more information about what the factors shown in the table mean in terms of purchases of energy products and transport services.

Are these factors directly comparable to those in the other annexes?

No. The emission factors provided in this annex are for the supply chain emissions of GHG resulting from the production and transportation of broad categories of goods and services. They express Scope 2 and 3 emissions as defined by the GHG Protocol. Because they encompass all the supply chain impacts (i.e. indirect emissions), these emission factors are **not directly comparable** with those from other annexes, which generally **only** include emissions from the point of use (generation for electricity). Iffe cycle in the case of Annex 9).

Which products are included in which categories?

Some guidance is available in the comment boxes in the Table. The categories are based upon the Standard Industrial Classification (SIC 2003): further information on the SIC 2003 is available here:

http://www.statistics.gov.uk/statbase/Product.asp?vlnk=14012

What are the factors for each of the individual Greenhouse Gases?

The factors for each of the six gases included in the overall calculation are included for information in Table 13.

Do the factors take into account emissions relating to imported goods, and those relating to the formation of capital assets used in making the products?

The factors are derived from a multi-region model and hence take some account of the emissions relating to the production of imports. However, the estimates do not incorporate any allowance for emissions relating to the formation of capital assets, whether in the UK or overseas.

How were these factors calculated?

The factors are based on a model of the economy, known as the input-output model, which describes in monetary terms how the goods and services produced by different sectors of the economy are used by other sectors to produce their own output. These monetary accounts are linked to information about the greenhouse gas emissions of different sectors of the economy. By using the input-output model, these emissions are then attributed to the monetary transactions taking place in the economy. The result is an estimate of the total upstream emissions associated with the supply of a particular product group.

The input-output tables used for this exercise are in 2004 basic prices (i.e. net of taxes on products and distributors' margins). It may be advisable to take subsequent price changes into account when using the factors shown below. It should also be noted that emissions in more recent years may have changed because of subsequent changes in the structure and emissions intensity of the supply chain since 2004.

For more detail on the methodology used, contact the Centre for Sustainability Accounting: info@censa.org.uk http://www.censa.org.uk

2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting

Table 1

Supply chain emission factors for spending on products: kgCO ₂ eq per £									То	tal GHG	
SIC code	Product category	Carbon	Methane	Nitrous Oxide	HFCs	PFCs	SF ₆	Amount spent by	x	Total kg	Total kg
(SIC 2003)		Dioxide (CO ₂)	(CH ₄)	(N ₂ O)				product category (£)	CC	D ₂ eq per £	CO ₂ eq
01	Aariculture products1	0.82	1.20	1.71	0.01	0.00	0.00		х	3.76	
02	Forestry products	0.63	0.07	0.03	0.04	0.00	0.00		x	0.77	
05	Fish products ¹	1.35	0.17	0.05	0.02	0.00	0.00		х	1.59	
10	Coal. lignite. peat ²	0.99	5.99	0.02	0.03	0.00	0.00		x	7.04	
11	Crude petroleum, natural gas*	1.18	0.14	0.02	12.22	0.00	0.00		x	1.35	
13	Stone, sand and clay, other minerals	1.55	0.40	0.04	0.01	0.00	0.00		x	1.89	
15	Eood and drink products ¹	0.71	0.42	0.45	0.01	0.00	0.00		x	1.59	
16	Tobacco products	0.38	0.25	0.28	0.01	0.00	0.00		х	0.93	
17	Textiles	0.80	0.08	0.04	0.02	0.00	0.00		х	0.95	
18	Wearing apparel	0.57	0.08	0.04	0.01	0.00	0.00		x	0.71	
19	Leather products, footwear	0.41	0.02	0.01	0.02	0.00	0.00		x	0.46	
20	Wood and wood products	0.90	0.06	0.02	0.01	0.00	0.00		X	1.00	
22	Printing matter and related services	0.45	0.10	0.03	0.01	0.00	0.00		x	0.53	
23	Pofined petroloum, coke and other fuels ³	2.22	0.59	0.02	0.01	0.00	0.00		x	2.85	
24.11.24.12	Industrial gases and dves	1.88	0.19	0.04	0.03	0.01	0.01		x	2.16	
24.13	Inorganic chemicals	2.11	0.18	0.05	0.04	0.01	0.01		х	2.41	
24.14	Organic chemicals	1.52	0.15	0.23	0.12	0.03	0.01		х	2.06	
24.15	Fertilisers	2.89	0.23	2.98	0.04	0.01	0.01		x	6.15	
24.16,24.17	Plastics & synthetic resins etc	1.25	0.14	0.08	0.05	0.01	0.01		x	1.54	
24.2	Pesticides	1.04	0.14	0.05	0.04	0.01	0.01		X	1.28	
24.3	Parmaceuticals	0.71	0.11	0.05	0.03	0.01	0.01		×	0.91	
24.5	Soap and toilet preparations	0.64	0.09	0.05	0.03	0.01	0.01		x	0.80	
24.6	Other chemical products	0.81	0.11	0.05	0.04	0.01	0.01		x	1.02	
24.7	Man-made fibres	1.69	0.12	0.06	0.05	0.01	0.01		x	1.93	
25.1	Rubber products	0.92	0.13	0.10	0.03	0.01	0.01		х	1.19	
25.2	Plastic products	0.90	0.10	0.05	0.06	0.01	0.01		x	1.13	
26.1	Glass and glass products	1.39	0.18	0.02	0.02	0.00	0.00		х	1.62	
26.2,26.3	Ceramic goods	0.99	0.27	0.03	0.02	0.00	0.00		x	1.31	
26.4	Structural clay products	1.74	0.24	0.02	0.02	0.00	0.00		x	2.04	
26.6-26.8	Articles of concrete stone etc	1.30	0.32	0.08	0.02	0.00	0.00		×	1.59	
27.1-27.3	Iron and steel	3.86	0.19	0.04	0.02	0.00	0.00		x	4.11	
27.4	Non-ferrous metals	2.29	0.44	0.03	0.02	0.04	0.08		х	2.91	
27.5	Metal castings	1.26	0.16	0.02	0.02	0.00	0.04		х	1.51	
28	Metal products	1.04	0.10	0.02	0.01	0.00	0.00		x	1.18	
29	Machinery and equipment	0.66	0.07	0.02	0.02	0.00	0.01		х	0.78	
30	Office machinery and computers	0.47	0.05	0.02	0.03	0.01	0.01		x	0.58	
32	Radio television and communications	0.04	0.07	0.02	0.02	0.00	0.01		~	0.56	
33	Medical and precision instruments	0.45	0.05	0.02	0.02	0.01	0.01		x	0.57	
34	Motor vehicles	0.74	0.09	0.03	0.02	0.01	0.01		x	0.89	
35	Other transport equipment	0.66	0.07	0.02	0.01	0.00	0.00		х	0.76	
36, 37	Furniture, other manufactured goods, recycling services	0.80	0.07	0.03	0.02	0.00	0.00		x	0.92	
40.1	Mains electricity ³	9.26	0.44	0.06	0.01	0.00	0.02		х	9.79	
40.2,40.3	Mains gas ³	2.49	0.85	0.02	0.01	0.00	0.00		х	3.38	
41	Mains water	0.53	0.04	0.01	0.01	0.00	0.00		x	0.59	
45	Construction ⁴	0.43	0.08	0.02	0.01	0.00	0.00		x	0.54	
50	Motor vehicle distribution and repair, automotive fuel retail	0.39	0.05	0.02	0.01	0.00	0.00		×	0.47	
51	Wholesale distribution	0.42	0.07	0.03	0.01	0.00	0.00		х	0.53	
52	Retail distribution	0.26	0.04	0.03	0.04	0.00	0.00		x	0.37	
55 60.1	Hotels, catering, pubs etc	0.39	0.11	0.09	0.01	0.00	0.00		X	0.60	
60.2	Railway transport	1.01	0.04	0.04	0.00	0.00	0.00		x	1.12	
61	Road transport	3.85	0.00	0.02	0.01	0.00	0.00		×	4.05	
62	Air transport ⁵	3.38	0.16	0.05	0.01	0.00	0.00		x	3.59	
63	Ancillary transport services	0.31	0.04	0.01	0.00	0.00	0.00		x	0.36	
64	Post and telecommunications	0.30	0.04	0.01	0.01	0.00	0.00		х	0.37	
65	Banking and finance	0.16	0.02	0.01	0.00	0.00	0.00		х	0.19	
66	Insurance and pension funds	0.31	0.04	0.01	0.00	0.00	0.00		x	0.36	
6/	Auxiliary financial services	0.25	0.03	0.01	0.00	0.00	0.00		x	0.30	
70	Renting of machinery etc	0.08	0.01	0.00	0.00	0.00	0.00		X	0.10	
72	Computer services	0.21	0.03	0.01	0.00	0.00	0.00		x	0.25	
73	Research and development	0.34	0.06	0.02	0.01	0.00	0.00		x	0.44	
74	Legal, consultancy, other business activities	0.16	0.02	0.01	0.00	0.00	0.00		x	0.20	
75	Public administration and defence	0.38	0.05	0.01	0.01	0.00	0.00		х	0.45	
80	Education	0.21	0.03	0.01	0.00	0.00	0.00		x	0.27	
85	Health and social work	0.30	0.05	0.03	0.01	0.00	0.00		x	0.39	
90	Sewage and refuse services	0.52	1.73	0.11	0.01	0.00	0.02		x	2.39	
91	Services from membership organisations	0.16	0.03	0.01	0.00	0.00	0.00		X	0.20	
93	Other service activities	0.25	0.05	0.03	0.01	0.00	0.00		Ŷ	0.33	
	ΤΟΤΑΙ	0.01	0.07	0.02	0.01	0.00	0.00		Ĥ	0.11	0
1	I VIAL										U

Source Calculated by Centre for Sustainability Accounting (CenSA), York, based on previous calculations by Stockholm Environment Institute (SEI), University of York The Centre for Sustainability Accounting (info@censa.org.uk) is able to supply more detailed and up-to-date factors to complement those presented here, see also:

http://www.censa.org.uk

Notes

¹ Agricultural and fish products are those bought direct from farmers or the fisheries industry. Where products have been prepared for consumption they should be treated as products from the food and drink manufacturing industry (SIC code 15 in the above table).

² These emissions relate to the activities of the industries engaged in the extraction of energy carriers. Where fuels are processed before use then the factors identified by footnote 3 should be used.

³ These emission factors relate to the supply and distribution of energy products for general consumption, and take into account emissions relating to the extraction and processing of the energy carriers (e.g. oil refineries). Except in the case of electricity, they do not include emissions relating to your company's use of the energy (for which see primarily Annex 1). In the case of electricity, these factors include the emissions relating to the production of the fuels used to generate the electricity, whereas those shown in Annex 3 of the 2009 Defra / DECC GHG Conversion Factors are limited just to emissions from the use of those fuels by the electricity producers.

⁴ These factors relate to spending on construction projects, not to emissions relating to construction projects in the supply chain.

⁵ These factors relate to transport services for hire or reward (including public transport services), not to emissions from vehicles owned by your company (for which estimates of actual fuel use should be used). They differ from those shown in Annexes 6 and 7, insofar as the upstream emissions relating to transport services are not included in the other annexes.