Measuring Productivity Using the Infamous Lines of Code Metric

Benedikt Mas y Parareda, Markus Pizka
itestra GmbH
Ludwigstrasse 35, 86916 Kaufering, Germany
mas @itestra.de

Abstract

Nowadays, software must be developed at an ever-
increasing rate and, at the same time, a low defect count
has to be accomplished. To improve in both aspects, an ob-
Jjective and fair benchmark for the productivity of software
development projects is inevitably needed.

Lines of Code was one of the first widely used met-
rics for the size of software systems and the productivity
of programmers. Due to inherent shortcomings, a naive
measurement of Lines of Code does not yield satisfying re-
sults. However, by combining Lines of Code with knowl-
edge about the redundancy contained in every software sys-
tem and regarding total projects costs, the metric becomes
viable and powerful.

The metric “Redundancy-free Source Lines of Code per
Effort” is very hard to fake as well as objective and easy
to measure. In combination with a second metric, the “De-
fects per Source Lines of Code”, a fair benchmark for the
productivity of software development teams is available.

1. The need to measure

The ability to produce innovative software at a high rate
is of utmost importance for software development compa-
nies in order to persist in a competitive and fast moving
market. At the same time, with increasing dependence of
business processes on software, the ability to deliver high-
quality software becomes crucial for economic success [9].

We define productivity as the ratio of the size of the out-
put versus consumed input, i.e. the effort required to pro-
duce one unit of output. Applied on a coarse level to an en-
tire software development project, this definition retrospec-
tively describes the performance of the development effort.

Achieving high productivity is not easy and maintain-
ing it requires constant attention. The economic incentive
for improvement is enormous, as advancing the productivity
not only increases the profit margin of individual projects,
but also allows to implement more projects at the same time.

A prerequisite to manage and improve productivity is the
ability to measure and compare it against industry standards
and internal benchmarks. All processes that exert influence
on productivity need to be appraised in order to identify
potential for improvement that can lead to optimal perfor-
mance.

Factors that might impair or advance development pro-
ductivity range from external influences such as the temper-
ature in office spaces over the motivation of developers to
tricky technical challenges [11] [13]. However, the individ-
ual examination of all these factors is virtually impossible
in commercial environments. Therefore, we are interested
in a productivity metric that concludes the effects in a single
assessment.

Counting Lines of Code is one of the oldest and most
widely used software metrics [13] [7] to asses the size of
a software system. It has been argued repeatedly that this
metric does not adequately capture the complexity of soft-
ware systems or the development process. Hence, it is con-
sidered wrong to rely on Lines of Code for appraising the
productivity of developers or the complexity of a develop-
ment [5] [11] project.

We will show that by excluding redundant parts of code
from the Lines of Code count, combining the result with
the total effort needed and the defect rate in the outcome,
a highly objective and efficiently measurable productivity
benchmark for software development projects is obtained.

2 Related work

We are well aware of the controversy that our suggestion
to use some kind of Lines of Code as a foundation for mea-
suring productivity might cause. Advantages and disadvan-
tages of Lines of Code have been discussed in great detail
by various authors [13] [7] [11]; a summary of this disus-
sion can be found on the Internet [4]. Some authors even
went as far as comparing Lines of Code to a weight-based
metric that is based on the paper printout of a system [5].

Capers Jones explains in detail how the measurement of
Lines of Code might result in apparently erratic productiv-



ity rates (see section 5.1.2). Therefore, instead of using
Lines of Code, he suggests using function point based met-
rics [11].

To our knowledge, no attempt has been made yet to com-
bine redundancy metrics [6] with Lines of Code to assemble
a more suitable definition of the relevant size of a software
product.

3 Basics of the productivity metric

A desirable property of a software productivity metric is
the ability to compare a large variety of different systems.
Furthermore, the computation of the metric must only cause
low costs. This leads to four key requirements:

e The metric should be applicable to many different pro-
gramming languages.

e The effort (cost and time) to perform a measurement
should be low.

e The metric has to be objective and repeatable. This
means that an assessment of the same system executed
by different individuals has to produce identical re-
sults.

e Errors in measurement should be ruled out.

This indicates the use of metrics that can be assessed auto-
matically by tools at least to a significant extent. We suggest
to combine the following key performance indicators into a
productivity metric:

Redundancy The redundancy of a software system de-
scribes the amount of code that is dispensable, i. e. the
parts of code that are semantically duplicated or sim-
ply unused.

Source Lines of Code A count of relevant Source Lines of
Code (SLOC) of a system, using a standard definition.
Various extensive and precise definitions of Lines of
Code are available [8] [12] [14].

RFSLOC By ignoring redundant parts of a system in the
SLOC count, we obtain the number of Redundancy-
free Source Lines of Code (RFSLOC).

Defect count Defects include software bugs as well as fail-
ures to implement required functionality.

Man-days The total count of the man-days (MD) a soft-
ware development took or takes from setup until deliv-
ery.

To achieve fair results, these performance indicators have
to be examined after completion of a software development
project. They are combined into two metrics.

The composed Redundancy-free Source Lines of Code
per Man-day metric,

RFSLOC/MD

represents a simple yet viable measure for the productivity
of a software project. The second metric, the Defects per
Redundancy-free Source Lines of Code

defects/RFSLOC

is an important indicator for the quality of the outcome of
the project. Obviously, when judging productivity using
RFSLOC/MD, the defect rate has to be considered, too.

4 Performance indicators

In order to ensure fairness and comparability, the four
base indicators used in the composed productivity and qual-
ity metrics have to explained in greater depth.

Lines of

4.1 Redundancy-free Source

Code

The precise definition of Source Lines of Code is largely
irrelevant to the productivity metric, as long as the same
definition is reused for projects that are compared. How-
ever, the Source Lines of code count should not include the
following classes of code:

e Re-used code (such as external libraries)

e Test code; test code is not part of the final product
e Redundant code (see 4.1.1)

e Dead code, i. e. unreachable code

e Generated code (see below)

A standard code formatting has to be applied to the source
code before the counting takes place.

As the intricate differences between programming lan-
guages make a uniform formatting for all languages impos-
sible, the definition has to be extended by language-specific
code formatting rules. If need be, normative factors can be
defined to diminish differences in formatting between pro-
gramming languages.

Particular attention has to be paid to generated code.
Generating code is usually much faster than writing code.
Hence, if this type of code would be included in the met-
ric, the productivity of projects using code generation would
be elevated artificially. To prevent this, we omit generated
code. Instead, we include the size of the configuration and
the input to the code generator, thereby regarding all human
achievements as part of productivity.



One advantage of regarding a variation of Lines of Code
is that the assessment of the metric can be performed at very
little cost. For almost virtually any programming language
counting Lines of Code is easy. David A. Wheeler’s script
SLOCCount [3] alone is capable of counting source lines
of code for approximately 25 different programming lan-
guages.

4.1.1 Redundancy

By copying code instead of re-using it, the volume of a
system increases significantly while the functionality gets
hardly extended. Besides, the changeability of a software
system will even suffer.

In order to take this effect that could have a strong impact
on the productivity metric into account, we always rely on
Redundancy-free Source Lines of Code — lines that do not
contribute to the functionality of the system are excluded.
As a consequence, it becomes very difficult to fake the pro-
ductivity metric. The most effective way to fake productiv-
ity measures by copying code lines is ruled out.

Redundancy is defined on two layers:

e Two code snippets are syntactically redundant if they
are syntactically similar with respect to some defini-
tion of edit distance. Such textual copies are most
frequently produced if developers fail to recognize a
possibility for re-use or are unable to implement the
necessary abstractions and instead use copy and paste.

e The definition of redundancy can be extended to se-
mantically redundant. Two pieces of code that imple-
ment a similar behavior with respect to a given narrow
defintion of similarity are considered semantically re-
dundant.

The vast amount of redundancy contained in a software sys-
tem can be detected or at least estimated with specialized
clone analysis tools such as ConQAT [2]. To ensure fair-
ness, all assessments have to be carried out using a standard
tool configuration.

4.2 Defect count

It is generally accepted that producing error-free code
is considerably more expensive than implementing “quick-
and-dirty” solutions that possibly contain a substantial
amount of bugs. To ensure fairness of the metric, only
projects that display a similar defect rate can be compared
with each other.

4.3 Man-days

The count of man-days includes all effort put into com-
pletion of the project. This includes activities such as ad-
ministrative tasks, requirements analysis, implementation

or testing. Overtime and unpaid work should also be con-
sidered.

The inclusion of activies that are not directly related to
the implementation means that the efficiency of e.g. project
management will be reflected in the result. This behavior
of the proposed productiviy metric is absolutely desirable
as all tasks performed within the development project con-
tribute to its (economic) success or failure.

5 Justification

Measuring programming progress by Lines of
Code is like measuring aircraft building progress
by weight. Bill Gates [1]

For various reasons, Lines of Code are regarded as deliver-
ing wrong and misleading results for measuring the produc-
tivity of developers. If applied to the comparison of systems
written in different programming languages, it is even con-
sidered to be “professional malpractice* [11].

We will now justify how the proposed metric compen-
sates many shortcomings of Lines of Code. While certain
limitations to the applicability will remain, we believe that
these are of limited importance for practical application in
commercial environments.

5.1 Compensating LOC disadvantages

The following sections are a summary of the most com-
monly cited disadvantages of Lines of Code-based metrics
from various sources [4] [11] [S]. The first paragraph of
each section describes the shortcoming, the paragraphs be-
low explain our counter-arguments.

5.1.1 Lack of accountability

The implementation phase of a software
project makes up for only one third of the overall
effort of a software development project. Besides,
the implementation is only one of many results.
Hence, measuring the productivity of a project by
Lines of Code means ignoring the bigger part of
the effort.

The development of any non-trivial software system re-
quires certainly a complicated process that creates several
additional results such as a user manual and design docu-
mentation. While these artefacts are valuable in their own
right, the main outcome of the project is still executable
code,; i. e. the implementation. Additionally, the investment
in e. g. requirements analysis and system design is usually
performed because these activities are necessary for a suc-
cessful completion of the project in the first place and they
increase overall productivity and software quality:



e An increased effort in system design will reduce the
effort required for implementation.

e A well-designed and engineered system will be imple-
mented with less defects per RFSLOC. As the fixing
of defects is costly, producing less defects initially will
increase the overall productivity rate of a software de-
velopment project [11].

Therefore, assessing the productivity of a project by the re-
sulting system itself already includes intermediate results
apart from the implementation. In order to incorporate the
complexity of all contributing activities, it is even essential
to include all efforts of all activities and not only the effort
put into the implementation phase.

The volume of supplemental results that were possibly
required by the customer of the project is not included in the
assessment, as our definition of productivity is focused on
the development of software without possibly additionally
requested byproducts.

However, e. g. the requirement to produce extensive doc-
umentation justifies some reduction in productivity.

5.1.2 Lack of correlation with functionality

Different programming languages are differ-
ent in their verbosity, the statements offered by
the language and, most importantly, the function-
ality displayed by a fixed amount of lines.

If two systems written in different program-
ming languages exhibit identical functionality,
they will still be expressed in a different num-
ber of Lines of Code. Due to the diseconomy of
scales, this might lead to confusing results. Con-
sider the following example [11]:

A program written in Assembler requires
1,000,000 SLOC to implement and implementa-
tion takes 10,000 days. Implementing the same
program in C takes 6,250 days and requires
500,000 SLOC. The Assembler version of the
program is obiously the economically worst op-
tion, as the total cost are higher. However, if the
metric REFSLOC/MD is calculated, the Assembler
version will yield a ratio of 100 while the C ver-
sion will only yield 80 SLOC per man-day.

In contrast to Jones, we argue that the example supports
the correctness of the proposed metric and that the result is
exactly what is expected from a productivity metric.

It is generally accepted that project size and effort do
not scale equally; big projects require a disproportional ef-
fort due to increased complexity and are less likely to con-
clude successfully than smaller projects [10]. Hence, being
double in size, the Assembler project can be expected to
require a proportionally stronger effort than the C project.

Consequently, if the bigger project is able to produce more
redundancy-free source lines of code per man-day than the
smaller project and achieves a similar defect count (a pre-
requisite for the application of the productivity metric), the
productivity of this project has to be rated higher. This holds
true even if one considers that the total cost of that project
is higher.

5.1.3 Lack of correlation with effort

For various implementation tasks, effort and
lines of code do not correlate well. Activities
such as bugfixing usually require great effort, but
do not add a significant number of lines. Hence,
while these tasks are necessary for the completion
of functionality, their valuable contribution is not
reflected in the metric. This shows that the metric
occasionally delivers wrongful results.

The reason for the failure of the metric is the restric-
tion of the assessment to a particular activity or time frame
within a project. The assessment will only be fair if per-
formed on the total cost of a completed project.

Depending on the development process, different activi-
ties are required in different phases of the project. As each
activity influences the lines of code count differently, it is
impossible to assess productivity at an arbitrary point in
time or to compare the productivity of individual activities.
On completion of the project, the individual tasks are not
carrying weight any more, as they are subsumed in the total
effort of the project, and the metric will be correct, showing
a correlation with effort.

5.1.4 Code verbosity

Skilled development teams are able to de-
velop the same functionality with less code than
less skilled development teams. In a metric based
on lines of code, the more skilled development
teams will come off worse than less skilled devel-
opment teams.

While we agree that a theoretical possibility for such mis-
leading results exists, we believe that they are very unlikely
to occur in real world development projects, because:

e Verbose code becomes redundant quickly. Hence,
large parts of the overly verbose code do usually not
affect the RFSLOC count.

e Skilled development teams will produce code that con-
tains fewer bugs than unskilled development teams and
will spend less time on redoing and undoing work.



e Skilled development teams will more likely fulfill the
requirements, resulting in a lower defect count and re-
ceive less productivity penalties on defects.

e Concise code is easier to understand than verbose
code. Therefore, expensive activities such as fixing
(inevitable) bugs will be cheaper in the less verbose
code base. This will affect productivity during de-
velopment, making it unlikely that less skilled teams
achieve the same productivity rate if it is measured on
the total cost of a project.

5.1.5 Generated code

As generated code is excluded from the Lines
of Code count, the metric might display undesir-
able behaviour: if project A uses code generation
for developing a certain functionality and project
B is developing the same functionality without
using code generation, it is likely that project B
will be more expensive in total and take longer.
But as project A produces fewer lines of code, the

project might achieve an almost identical rate of
RFSLOC/MD.

Similar to the code verbosity problem, we consider this sce-
nario to be very unlikely in reality. If significant parts of a
system are generated, an alternative manual implementation
will also be of significant size. Hence, project B would be
significantly larger than project A. As explained in section
5.1.2, due to the diseconomy of scales this makes it very
unlikely that project B will achieve a similar or even higher
level of productivity than project A.

Additionally, it can be assumed that fixing bugs in the
generated code requires less effort than in the manually
written code. First, there will hardly be any bugs in the
generated code with a reasonable generator. Second, recon-
figuration of the code generator can be expected to be less
extensive than changing the manual implementation. The
time needed to detect and fix bugs in the manual implemen-
tation decreases its productivity.

5.1.6 Project complexity and comparability

In general, different projects can not be com-
pared to each other due to various external influ-
ences and characteristics that severly affect pro-
ductivity. These include:

e The particular customer caused high man-
agement overhead.

e The implementation technology is new.
e The project domain is particularly complex.

e The project is using a certain development
process.

e Volatile
change.

requirements cause frequent

We consider these characteristics to be typical and com-
mon challenges for the management of software develop-
ment projects that have to be dealt with as part of the de-
velopment process. If these factors affect productivity by
increasing the total cost of a project, this is also considered
part of the outcome of a project and should therefore be re-
flected in the metric.

5.2 Limitations

The proposed metric compensates many of the com-
monly cited shortcomings of Lines of Code-based metrics.
However, limitations to the comparability between projects
remain.

5.2.1 Non-functional requirements

Development efforts often have to deal with non-funtional
requirements such as:

e Performance requirements
e Security requirements
e Availability and reliability requirements

Non-functional requirements have a considerable impact on
the complexity of a development project. The development
of a critical system with high performance requirements is
not comparable to the development of a less demanding sys-
tem, as increasing the performance of a system is expensive
and laborous.

This is not reflected adequately in the RFSLOC count
and less demanding projects will generally perform bet-
ter. Therefore, only the comparison of systems with similar
non-functional requirements is valid.

6 Conclusion

The proposed productivity metric has several advantages
over alternative assessment methods:

e The metric can be measured using tools.
e The metric is very hard to fake.

e RFSLOC are universally applicable: any programming
language as of today is based upon code. Even visual
tools result in code that requires compiling.

e The metric is fair, if a few limitations are observed.

e Effects of the environment, such as e.g. ineffective
tools and management, are reflected in the metric.



We were able to employ the proposed metric in the assess-
ment of the application portfolio of a large industrial part-
ner, examining systems comprising more than 20 million
lines of code in total. The results of the experience showed
that productivity can be measured effectively using Lines
of Code, redundancy and the defect count. Additionally, we
could ascertain that possible failures of the metric (such as
described in 5.1.2, 5.1.4, 5.1.5) are of a low probability for
all practical purposes.

7 Future work

The productivity metric has to be refined to become
universally applicable. A major gap is the comparison
of projects of different size. To allow the comparison of
projects of random size, the productivtity rate should be nor-
malized according to the size of each project. However, at
the moment it is unclear how this normalization could take
place.

7.1 Maintenance projects

More promptly, the metric will be extended to cover the
efficiency of software maintenance services. Maintenance
can be conducted successfully without increasing the lines
of code count but greatly advancing the functionality of a
system. Obviously, the absolute count of lines of code can
not be used any more.

Key to evaluate the efficiency of maintenance could be
a count of the lines that were added, removed or changed.
These lines can be counted easily through clone detection:
all lines that were not changed will be detected as clones in
a clone assessment that compares the resulting system with
itself before the maintenance activities.

As maintenance is an entirely different task from the
green-field development of a system, this metric can not
be compared to the results found for development projects.
New experimental applications to maintenance projects are
needed and the metric will probably need to be refined to
address the particularities of maintenance activities.

References

[1] Bestprogramming quotations. World Wide Web, Aug. 2007.
http://www.linfo.org/q_programming.html.

[2] Congat - continuous quality assessment toolkit. World Wide
Web, Aug. 2007. http://conqgat.cs.tum.edu/.

[3] Sloccount. World Wide Web,
http://www.dwheeler.com/sloccount/.

[4] Wikipedia: Source lines of code. World Wide Web, Aug.
2007. http://en.wikipedia.org/wiki/Source_lines_of_code.

[5] P. G. Armour. Beware of counting loc. Communications of
the ACM, 47(3):21-24, 2004.

Aug. 2007.

(6]

(7]

(8]

(9]
(10]
(1]

[12]

(13]

(14]

B. S. Baker. On finding duplication and near-duplication
in large software systems. In L. Wills, P. Newcomb, and
E. Chikofsky, editors, Second Working Conference on Re-
verse Engineering, pages 86-95, Los Alamitos, California,
1995. IEEE Computer Society Press.

B. W. Boehm. Software Engineering Economics. Advances
in Computing Science & Technology. Prentice-Hall, Engle-
wood Cliffs , NJ , USA, Dec. 1981.

S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software en-
gineering metrics and models. Benjamin-Cummings Pub-
lishing Co., Inc., Redwood City, CA, USA, 1986.

W. E. Deming. Out of the Crisis. The MIT Press, 1986.

T. S. G. I. Inc. Chaos: A recipe for success, 1999.

C. Jones. Software Assessments, Benchmarks and Best Prac-
tises. Information Technology Series. Addison Wesley,
2000.

R. E. Park. Software size measurement: A framework for
counting source statements. Technical Report CMU/SEI-
92-TR-20, Software Engineering Institute, Carnegie Mellon
University, Sept. 1992.

C. E. Walston and C. P. Felix. A method of program-
ming measurement and estimation. IBM Systems Journal,
16(1):54-73, 1977.

D. A. Wheeler. More than a gigabuck: Estimating
gnu/linux’s size. World Wide Web, July 2002.



