

Unico Inc TEST REPORT

SCOPE OF WORK EMC Testing – Blower Unit, Model(s): MB2430EC

REPORT NUMBER 103807635DAL-003

ISSUE DATE 3-May-2019

PAGES

57

DOCUMENT CONTROL NUMBER Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK

EMC TEST REPORT

(FULL COMPLIANCE)

Report Number: 103807635DAL-003 Project Number: G103807635

Report Issue Date: 3-May-2019

Model(s) Tested: MB2430EC

Model(s) Not Tested but declared equivalent by the

client: M1218BL1-EC3, M3036BL1-EC3, and M3642BL1-EC3

Standards: EN 61000-6-3:2007

Electromagnetic compatibility (EMC) - Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments. A1:2011,

EN 61000-6-1:2007

Electromagnetic compatibility (EMC) - Part 6-1: Generic standards -Immunity for residential, commercial and light-industrial environment EN 61000-3-3:2013

Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

EN 61000-3-2:2014

Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)

Tested by: Intertek Testing Services NA, Inc. 1809 10th Street Suite 400 Plano, TX 75074 USA

Client: Unico Inc 1120 Intagliata Drive Arnold, MO 63010 USA

Report prepared by

Tyler Drigg

Tyler Driggers Compliance Investigator

Report reviewed by

William B Cullen

William Cullen EMC Team Lead

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	Introduction and Conclusion
2	Test Summary5
3	Client Information
4	Description of Equipment Under Test and Variant Models7
5	System Setup and Method9
6	Radiated Emissions
7	AC Mains Conducted Emissions
8	Harmonics
9	Flicker
10	Electrostatic Discharge Immunity Test32
11	Radiated, radio-frequency, electromagnetic field immunity test
12	Electrical Fast Transient/Burst Immunity Test43
13	Immunity to Surge
14	Conducted, radio-frequency, electromagnetic field immunity test
15	Power Frequency Magnetic Field Immunity Test53
16	Voltage Dips / Interruptions Immunity Tests54
17	Revision History

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Radiated Emissions (CISPR 16-2-3:2006)	Pass
7	AC Mains Conducted Emissions (CISPR 16-2-1:2008)	Pass
8	Harmonics (EN 61000-3-2:2014)	Pass
9	Flicker (EN 61000-3-3:2013)	Pass
10	Electro-Static Discharge Immunity Test (IEC 61000-4-2:2008)	Pass
11	Radiated, Radio-Frequency, Electromagnetic Immunity (IEC 61000-4-3:2006, AMD1:2007, AMD2:2010)	Pass
12	Electrical Fast Transient/Burst Immunity Test (IEC 61000-4-4:2012)	Pass
13	Immunity to Surges (IEC 61000-4-5:2014)	Pass
14	Conducted, Radio-Frequency, Electromagnetic Immunity Test (IEC 61000-4-6:2013)	Pass
15	Power Frequency Magnetic Field Immunity Test (IEC 61000-4-8:2009)	Pass

Section	Test full name	Result
16	Voltage Dips/Interruptions Immunity Test (IEC 61000-4-11:2004)	Pass
17	Revision History	

3 Client Information

This EUT was tested at the request of:

Client:	Unico Inc
	1120 Intagliata Drive
	Arnold, MO 63010
	USA
Contact:	Craig Messmer
Telephone:	3147541623
Email:	craig@unicosystem.com

4 Description of Equipment Under Test and Variant Models

Intagliata Drive
d, MO 63010

Equipment Under Test					
Description Manufacturer Model Number Serial Number					
Blower Unit	Unico Inc	MB2430EC	1901A369393		

Receive Date:	February 8, 2019
Received Condition:	Good
Туре:	Production

Description of Equipment Under Test (provided by client) The Unico Inc Blower Unit is an air handler.

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
208/230V	7.6A	60/50	Single Phase		

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Blowing 100%

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	firmware version is 3.21

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

The models M1218BL1-EC3, M3036BL1-EC3, and M3642BL1-EC3 are equivalent. The M1218 and M2430 use the same 1/2hp motor and the M3036, M3642, and M4860 use the same 1hp motor. Every unit uses the same control box, the only difference between the units is cabinet geometry, blower wheel size, and blower wheel housing.

5 System Setup and Method

Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination
А	Power cord	1.0	None	None	EUT

Support Equipment					
Description Manufacturer Model Number Serial Number					
None					

5.1 Method:

Configuration as required by EN 61000-6-3.

5.2 EUT Block Diagram:

5.3 EUT Performance Criteria and Monitoring:

Performance as required by EN 61000-6-1.

Product Specific Performance:

No.	Description
1	Blower unit stays on and at highest speed

Description of how performance was observed during testing:

No.	Description
1	Visually
2	Audibly

General notes: A Fair-Rite P/N 2631540002 was required to be added to the AC input internal to the unit to be compliant with Radiated and Conducted Emissions.

6 Radiated Emissions

6.1 Method

Tests are performed in accordance with CISPR 16-2-3.

TEST SITE: 3m SAC

<u>Site Designation</u>: The Panashield 3 meter Semi Anechoic Chamber has a bore sight antenna and a 2-meter turntable with a 4400lbs capability.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 3m	10kHz-30 MHz	4.2 dB	N/A dB
Radiated Emissions, 3m	30-1000 MHz	3.5 dB	6.3 dB
Radiated Emissions, 1m	1-18 GHz	3.9 dB	5.5 dB
Radiated Emissions, 3m	1-18 GHz	3.5 dB	5.5 dB
Radiated Emissions, 1m	18-26 GHz	3.9 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG Where FS = Field Strength in dBμV/m RA = Receiver Amplitude (including preamplifier) in dBμV CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dBµV AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dBµV/m

To convert from dB μ V to μ V or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

$$\begin{split} FS &= RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 \\ UF &= 10^{(32 \ dB \mu V \, / \, 20)} = 39.8 \ \mu V / m \end{split}$$

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
			F520-N1N1-	171746		
4138	RF cable	MegaPhase	276	02001	10/23/2019	10/22/2020
			F520-N1N1-	171746		
4137	RF Cable	MegaPhase	118	01001	10/23/2019	10/22/2020
			F520-N1N1-	171746		
4134	RF Cable	MegaPhase	118	01003	10/23/2019	10/22/2020
	Antenna - 20 MHz to 6	Sunol		A10161		
1324	GHz	Sciences	JB6	2	10/30/2018	10/30/2019
3566	Mast controller	ETS Lindgren	2090	205641	VBU	VBU
	Turntable/Tower			020201		
188	Controller	Sunol	SC99V	-1	VBU	VBU
	Preamplifier 1-					
	1000MHz 33dB Typical					
1179	Gain	Com Power	PAM-103	441028	11/26/2018	11/26/2019
	EMI Receiver- Freq	Rhode &				
3005	Range 20Hz to 40GHz	Schwarz	ESU 40	100136	3/18/2019	3/17/2020

Software Utilized:

Name	Manufacturer	Asset #	Version			
Total Integrated	ETS-Lindgren	1330	6.0			
Laboratory Environment						
Profile						
Name	Manufacturer	Asset #	Version/Rev			

Nam	e	Manufacturer	Asset #	Version/Rev
Mast	ter Radiated	ETS-Lindgren	1330-004	11/11
Emis	sions			

6.3 Results:

The sample tested was found to Comply.

6.4 Setup Photographs:

Figure 6-1 Radiated Emissions Test Setup Front

Figure 6-2 Radiated Emissions Test Setup Back

6.5 Plots/Data:

Figure 6-3 Radiated Emissions 230V 50Hz With Ferrite 3 May 2019 Horizontal Polarity

Figure 6-4 Radiated Emissions 230V 50Hz With Ferrite 3 May 2019 Vertical Polarity

Report Number: 103807635DAL-003

Table 6-1 Radiated Emissions 230V 50Hz With Ferrite 3 May 2019 Quasi-Peak Measurements 3m Horizontal

Freq. MHz	Antenna Height cm	Azimuth degrees	Receiver Reading dBuV/m	Antenna Factor dB	PreAmp Factor dB	Cable Factor dB	Final QP Reading dBuV/m	Limit QP dBuV/m	Margin QP dB
32.73	350.0	268.0	30.6	26.2	35.5	0.9	22.2	40.0	-17.8
40.72	249.0	174.0	36.4	20.1	35.5	1.0	22.0	40.0	-18.0
99.42	250.0	178.0	40.5	16.3	35.5	1.5	22.9	40.0	-17.1
110.04	260.0	178.0	36.6	18.7	35.5	1.6	21.4	40.0	-18.6
182.43	134.0	42.0	40.1	17.5	35.4	2.1	24.3	40.0	-15.7
244.69	100.0	178.0	43.6	18.3	35.3	2.5	29.0	47.0	-18.0
882.27	286.0	300.0	30.4	28.8	31.9	4.8	32.2	47.0	-14.8

Table 6-2 Radiated Emissions 230V 50Hz With Ferrite 3 May 2019 Quasi-Peak Measurements 3m Vertical

Freq. MHz	Antenna Height cm	Azimuth degrees	Receiver Reading dBuV/m	Antenna Factor dB	PreAmp Factor dB	Cable Factor dB	Final QP Reading dBuV/m	Limit QP dBuV/m	Margin QP dB
31.09	164.0	230.0	38.0	27.3	35.5	0.8	30.6	40.0	-9.4
40.59	150.0	242.0	44.1	20.2	35.5	1.0	29.7	40.0	-10.3
106.18	150.0	311.0	41.6	17.9	35.5	1.6	25.7	40.0	-14.3
179.96	150.0	287.0	37.5	17.5	35.4	2.1	21.8	40.0	-18.2
221.79	160.0	81.0	40.4	17.5	35.3	2.3	24.9	40.0	-15.1
249.47	226.0	171.0	39.1	18.3	35.3	2.5	24.6	47.0	-22.4
885.09	231.0	38.0	30.6	28.8	31.9	4.9	32.4	47.0	-14.6

Test Personnel:	Kaushal Patel	Test Date:	May 3, 2019
Supervising/Reviewing			
Engineer:			
(Where Applicable)	Tyler Driggers	Limit Applied:	NA
Product Standard:	EN 61000-6-3	Ambient Temperature:	23.3ºC
Input Voltage:	230V 50Hz	Relative Humidity:	45.7%
Pretest Verification w/		Atmospheric Pressure:	988.8mbars
Ambient Signals or			
BB Source:	Yes	_	

Deviations, Additions, or Exclusions: To be compliant, a Fair-Rite PN 2631540002 was added to the AC input internal to the unit.

7 AC Mains Conducted Emissions

7.1 Method

Tests are performed in accordance with CISPR 16-2-1.

TEST SITE: Vertical Ground Reference Plane

<u>Site Designation</u>: The Vertical Ground Reference Plane is Intertek built Vertical and Horizontal Planes greater than 2m X 2m.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted Emissions	9 kHz - 150 kHz	3.43 dB	3.8dB
AC Line Conducted Emissions	150 kHz - 30 MHz	2.85 dB	3.4dB
Telco Port Emissions	150 kHz - 30 MHz	1.92 dB	5.0dB
AC Line Conducted Emissions with a Current Probe	150 kHz - 30 MHz	1.8	2.9

As shown in the table above our conducted emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF Where NF = Net Reading in dBµV RF = Reading from receiver in dBµV LF = LISN or ISN Correction Factor in dB CF = Cable Correction Factor in dB AF = Attenuator Loss Factor in dB

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

$$\label{eq:NF} \begin{split} \mathsf{NF} &= \mathsf{RF} + \mathsf{LF} + \mathsf{CF} + \mathsf{AF} = 28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu \mathsf{V} \\ \mathsf{UF} &= 10^{(49.1 \ dB\mu \mathsf{V} / 20)} = 285.1 \ \mu \mathsf{V} / m \end{split}$$

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	EMI Receiver Old Den-	RHODE &				
3729	073 20 Hz - 26 GHz	SCHWARZ	ESU 26	100265	02/05/2018	02/05/2019
		Hewlett-		3107A0		
3611	Transient Limiter	Packard	11947A	1975	6/7/2018	06/08/2019
				F520N		
	DC to 18GHz coaxial RF		F520NNNK3	NNK31		
974	Cable 3m Em Chamb	MegaPhase	15	5	10/23/2018	10/24/2019
	Line Impedance					
	Stabilization Network	Com-Power				
1559	9khz to 30MHz	Corp	LI-215A	191941	6/29/2018	06/30/2019

Software Utilized:

Name	Manufacturer	Asset #	Version
Total Integrated	ETS-Lindgren	1330	6.0
Laboratory Environment			

Profile

Name	Manufacturer	Asset #	Version/Rev
Master Conducted	ETS-Lindgren	1330-001	Ver11 Rev12
Emissions			

7.3 Results:

The sample tested was found to Comply.

7.4 Setup Photographs:

Figure 7-1 Conducted Emissions Test Setup Front

Figure 7-2 Conducted Emissions Test Setup Back

7.5 Plots/Data:

Figure 7-3 Conducted Emissions 230V 50Hz With Ferrite 3 May 2019 Line 1

Figure 7-4 Conducted Emissions 230V 50Hz With Ferrite 3 May 2019 Line 2

Report Number: 103807635DAL-003

								, =========	=		
Frog	QP	Avg	Cable	Limiter	Lisn	Final QP	Limit	Margin	Final	Limit	Margin
	Reading	Reading	Factor	Factor	Factor	Reading	QP		Avg	Avg	Avg
	dBuV	dBuV	dB	dB	dB	dBuV	dBuV	QP UB	dBuV	dBuV	dB
0.16	38.422	31.580	0.211	10.271	0.122	49.026	65.568	-16.543	42.184	55.568	-13.384
0.16	38.621	31.408	0.211	10.270	0.120	49.222	65.361	-16.139	42.009	55.361	-13.352
0.16	38.621	31.408	0.211	10.270	0.120	49.222	65.361	-16.139	42.009	55.361	-13.352
0.18	39.596	29.642	0.214	10.263	0.120	50.193	64.625	-14.432	40.240	54.625	-14.386
0.19	37.669	28.527	0.217	10.257	0.110	48.253	63.950	-15.697	39.111	53.950	-14.839
0.24	33.437	24.703	0.224	10.239	0.102	44.003	62.062	-18.059	35.268	52.062	-16.794
17.97	29.930	24.711	0.402	10.010	0.030	40.371	60.000	-19.629	35.152	50.000	-14.848

Table 7-1 Conducted Emissions 230V 50Hz With Ferrite 3 May 2019 Line 1

Table 7-2 Conducted Emissions 230V 50Hz With Ferrite 3 May 2019 Line 2

Erog	QP	Avg	Cable	Limiter	Lisn	Final QP	Limit	Margin	Final	Limit	Margin
Freq.	Reading	Reading	Factor	Factor	Factor	Reading	QP		Avg	Avg	Avg
	dBuV	dBuV	dB	dB	dB	dBuV	dBuV	QP QB	dBuV	dBuV	dB
0.16	38.668	31.84	0.21	10.271	0.12	49.272	65.57	-16.30	42.44	55.57	-13.13
0.16	38.837	31.90	0.21	10.270	0.12	49.438	65.36	-15.92	42.50	55.36	-12.86
0.16	38.837	31.90	0.21	10.270	0.12	49.438	65.36	-15.92	42.50	55.36	-12.86
0.18	40.174	30.11	0.21	10.263	0.11	50.765	64.67	-13.91	40.70	54.67	-13.97
0.18	39.751	29.49	0.21	10.263	0.11	50.341	64.63	-14.28	40.08	54.63	-14.54
1.19	22.314	15.39	0.28	10.088	0.09	32.769	56.00	-23.23	25.84	46.00	-20.16
18.00	28.127	23.03	0.40	10.010	0.03	38.569	60.00	-21.43	33.47	50.00	-16.53
0.18 0.18 1.19 18.00	40.174 39.751 22.314 28.127	30.11 29.49 15.39 23.03	0.21 0.21 0.28 0.40	10.263 10.263 10.088 10.010	0.11 0.11 0.09 0.03	50.765 50.341 32.769 38.569	64.67 64.63 56.00 60.00	-13.91 -14.28 -23.23 -21.43	40.70 40.08 25.84 33.47	54.67 54.63 46.00 50.00	1 1 -2 -1

Test Personnel:	Kaushal Patel	Test Date:	May 3, 2019
Supervising/Reviewing			
Engineer:			
(Where Applicable)	Tyler Driggers	Limit Applied:	NA
Product Standard:	EN 61000-6-3	Ambient Temperature:	23.3ºC
Input Voltage:	230V 50Hz	Relative Humidity:	45.7%
Pretest Verification w/		Atmospheric Pressure:	988.8mbars
Ambient Signals or			
BB Source:	Yes		

Deviations, Additions, or Exclusions: To be compliant, a Fair-Rite PN 2631540002 was added to the AC input internal to the unit.

8 Harmonics

8.1 Method

Tests are performed in accordance with IEC 61000-3-3.

TEST SITE: Immunity Room

Measurement Uncertainty

Measurement	Parameter	Expanded Uncertainty (k=2)	Permitted Error
Harmonics	Current	1.0%	±5.0%

As shown in the table above our Expanded Measurement Uncertainty for harmonic current U_{lab} is less than the corresponding measurement error allowed by IEC61000-3-2 and IEC61000-4-7, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required. There are currently no U_{CISPR} reference values in CISPR 16 for Harmonics.

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				A.0864		
4333	Ambient Data Logger	Extech	SD700	09	03/27/2018	03/27/2019
	Model					
	MX30K0C4Y20400 &					
	CIC-PC-PCX		MX30K0C4Y	1247A0		
1496	Power Analyzer	Ametek	20400	2352	11/13/2018	11/13/2019

Software Utilized:

Name	Manufacturer	Version
CTSMXL2	California Instruments Corp.	2.13.1

8.3 Results:

The sample tested was found to Comply.

8.4 Setup Photographs:

Figure 8-1 Harmonics Test Setup

8.5 Plots/Data:

Harmonics – Class-A per Ed. 4.0 (2014)(Run time)

Intertek

EUT: M4860BL1-EC-Tested by: Rick HillTest category: Class-A per Ed. 4.0 (2014) (European limits)Test Margin: 100Test date: 2/15/2019Start time: 2:29:24 PMEnd time: 2:39:36 PMTest duration (min): 10Data file name: CTSMXL_H-000937.cts_dataComment: CommentsCustomer: Unico

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

<u>European Limits</u>

Current Test Result Summary (Run time)

EUT: M	4860BL1-EC-		· · • • · · · · · · · · · · · · · · · ·		Tested by:	Rick Hill	
Test category: Class-A per Ed. 4.0 (2014) (European limits) Test Margin: 100							
Test da	Test date: 2/15/2019 Start time: 2:29:24 PM End time: 2:39:36 PM						
Test du	iration (min): 10	Da	ta file name	: CTSMXL_H-00	0937.cts_da	ita	
Comme	ent: Comments						
Custon	ner: Unico						
		•					
Test Re	esult: Pass	Source qu	alification:	Normal			
IHC	(A): 0.552 I	-1HD(%): 8	39.4 PC	DHC(A): 0.017	POHC LI	nit(A): 0.251	
I Backson	•		4 4.				
Hignes	t parameter valu	es auring	test:		E0 00		
	$V_RIVIS (VOILS):$	230.252			50.00		
	I_Peak (Amps):	2.140		I_RIVIS (Amps):	0.005		
	I_Fund (Amps):	0.019		Crest Factor:	2.40/		
	Power (walls):	140.7		Power Factor:	0.725		
Harm#	Harms(avg) 1	00%l imit	%of Limit	Harms(max)	150%l imit	%of Limit	Status
mann n	nanns(avg)			nanns(max)			Otatus
2	0.017	1.080	1.6	0.017	1.620	1.1	Pass
3	0.457	2.300	19.9	0.486	3.450	14.1	Pass
4	0.007	0.430	1.7	0.007	0.645	1.2	Pass
5	0.274	1.140	24.0	0.285	1.710	16.6	Pass
6	0.007	0.300	2.4	0.008	0.450	1.7	Pass
7	0.111	0.770	14.4	0.113	1.155	9.7	Pass
8	0.003	0.230	N/A	0.003	0.345	N/A	Pass
9	0.059	0.400	14.9	0.062	0.600	10.4	Pass
10	0.001	0.184	N/A	0.001	0.276	N/A	Pass
11	0.046	0.330	13.9	0.047	0 495	9.5	Pass
12	0 001	0 153	N/A	0.001	0 230	N/A	Pass
13	0.032	0.100	15 1	0.033	0.315	10.6	Pass
14	0.001	0 1 3 1	N/A	0.000	0 197	Ν/Δ	Pass
15	0.028	0 150	19.0	0.030	0 225	13.2	Pass
16	0.001	0 115	N/A	0.001	0.173	Ν/Δ	Pass
17	0.021	0 132	16.2	0.022	0 198	11.3	Pass
18	0.000	0 102	Ν/Δ	0.000	0.153	N/Δ	Pass
19	0.000	0 118	15.6	0.000	0.100	10.6	Pass
20	0.010	0.092	N/A	0.010	0.178	Ν/Δ	Pass
21	0.000	0 107	10.7	0.000	0 161	73	Pass
22	0.000	0.107	N/A	0.012	0.101	Ν/Δ	Pass
23	0.000	0.004	93	0.000	0.120	66	Pass
24	0.000	0.030	N/A	0.010	0.147	N/A	Daee
25	0.000	0.077	59	0.000	0.115	4.0	Pass
26	0.000	0.000	N/A	0.000	0.100		Pass
27	0.000	0.071	N/A	0.000	0.107	N/A	Pass
28	0.004	0.000	N/A	0.004	0.120	N/A	Daee
29	0.000	0.000	N/A	0.000	0.000	N/A	Pass
20	0.000	0.070	N/A	0.000	0.110	N/A	Daee
31	0.000	0.001	N/A	0.000	0.052	N/A	Daee
32	0.002	0.073	N/A	0.002	0.105	N/A	Daee
32	0.000	0.050	N/A	0.000	0.000	N/A	Daee
21	0.002	0.000	N/A	0.002	0.102 0.021	N/A	r ass Daec
24	0.000	0.004	IN/A	0.000	0.00 I 0.00 E	IN/A	F 455
20	0.001	0.004	IN/A	0.002	0.030 0.077	IN/A N/A	F 455
30 27	0.000	0.001	IN/A	0.000	0.077	IN/A	F d 5 5 Dooc
31 20	0.001	0.001	IN/A	0.001	0.031	IN/A	F d 5 5 Dace
20	0.000	0.040	IN/A	0.001	0.073 0.027	IN/A N/A	F 455
1 0 33	0.001	0.000	IN/A	0.002	0.007	IN/A	F d 5 5 Dace
40	0.000	0.040	IN/A	0.001	0.009	IN/A	rass

Voltage Source Verification Data (Run time)

EUT: M Test ca Test da Test du Commo Custon	14860BL1-EC- ategory: Class-A j ate: 2/15/2019 uration (min): 10 ent: Comments ner: Unico	oer Ed. 4.0 (Start Data	2014) (European time: 2:29:24 Pl file name: CTSM	n limits) M I MXL_H-000	Fested b Fest Mar End time 937.cts	oy: Rick Hill rgin: 100 e: 2:39:36 PM _data	
Test Re Measu Measu	esult: Pass stor red source distor rements are com	Source qual tion is withi pliant with I	ification: Norma in the requireme EC/EN61000-3-2	II nts of the Ed. 4 & IE	standar C/EN61	ds 000-4-7 Ed. 2.	.1
Highes	t parameter value	es during te	st:				
0	Voltage (Vrms):	230.252	Frequ	ency(Hz):	50.00		
	I_Peak (Amps):	2.148	I_RM\$	S (Amps):	0.885		
	I_Fund (Amps):	0.619	Crest	Factor:	2.467		
	Power (Watts):	146.7	Powe	r Factor:	0.725		
Harm#	Harmonics	V-rms	Limit V-rms	% of Lim	it	Status	
2		0.098	0.460	21.2	5	ок	
3		0.092	2.072	4.4	2	OK	
4		0.010	0.460	2.1	1	OK	
5		0.062	0.921	6.7	0	OK	
6		0.030	0.460	6.5	1	OK	
7		0.081	0.691	11.6	9	OK	
8		0.010	0.460	2.2	7	OK	
9		0.073	0.460	15.8	7	OK	
10		0.007	0.460	1.4	4	OK	
11		0.043	0.230	18.7	7	OK	
12		0.012	0.230	5.3	2	OK	
13		0.041	0.230	17.7	9	OK	
14		0.009	0.230	3.8	2	OK	
15		0.047	0.230	20.3	3	OK	
10		0.009	0.230	4.1	1 0		
10		0.043	0.230	10.0	1		
10		0.014	0.230	5.5 16 7	2		
20		0.039	0.230	53	3		
20		0.012	0.230	13 6	3 8	OK	
22		0.008	0.230	3.3	7	OK	
23		0.027	0.230	11.6	7	OK	
24		0.008	0.230	3.5	6	ÖK	
25		0.017	0.230	7.5	7	OK	
26		0.009	0.230	3.7	7	OK	
27		0.013	0.230	5.7	7	OK	
28		0.008	0.230	3.2	7	OK	
29		0.014	0.230	6.2	2	OK	
30		0.009	0.230	3.9	6	OK	
31		0.010	0.230	4.5	5	OK	
32		0.009	0.230	3.7	4	OK	
33		0.012	0.230	5.3	5	OK	
34		0.006	0.230	2.4	6	OK	
35		0.010	0.230	4.4	8	OK	
36		0.008	0.230	3.3	3	OK	
37		0.011	0.230	4.6	5	OK	
38		0.007	0.230	3.2	2	OK	
39		0.008	0.230	3.6	0		
40		0.010	0.230	4.3	4	UK	

Report Number: 103807635DAL-003

Intertek

Test Personnel:	Rick Hill MILIN-	Test Date:	February 15, 2019
Supervising/Reviewing			
Engineer:			
(Where Applicable)		Limit Applied:	Α
Product Standard:	IEC 61000-3-2	Ambient Temperature:	22.5°C
Input Voltage:	230V 50Hz	Relative Humidity:	45.5%
Pretest Verification w/		Atmospheric Pressure:	984.4mbars
Artifact:	NA		

Deviations, Additions, or Exclusions: None

9 Flicker

9.1 Method

Tests are performed in accordance with IEC 61000-3-3.

TEST SITE: Immunity Room

Measurement Uncertainty

Measurement	Parameter	Expanded Uncertainty (k=2)	Permitted Error
Flicker	Pst	0.4 %	±8.0%
Flicker	dc	0.4%	±8.0%

As shown in the table above our Expanded Measurement Uncertainty for Pst and dc U_{lab} is less than the corresponding measurement error allowed by IEC 61000-3-3, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required. There are currently no U_{CISPR} reference values in CISPR 16 for Flicker.

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				A.0864		
4333	Ambient Data Logger	Extech	SD700	09	03/27/2018	03/27/2019
	Model					
	MX30K0C4Y20400 &					
	CIC-PC-PCX		MX30K0C4Y	1247A0		
1496	Power Analyzer	Ametek	20400	2352	11/13/2018	11/13/2019

Software Utilized:

Name Manufacturer		Version
CTSMXL2	California Instruments Corp.	2.13.1

9.3 Results:

The sample tested was found to Comply.

9.4 Setup Photographs:

Figure 9-1 Flicker Test Setup

European Limits

9.5 Plots/Data:

Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)

Intertek

EUT: M4860BL1-EC-Tested by: Rick HillTest category: All parameters (European limits)Test Margin: 100Test date: 2/15/2019Start time: 5:04:39 PMEnd time: 7:06:12 PMTest duration (min): 120Data file name: CTSMXL_F-000939.cts_dataComment: 100V 50HzCustomer: Unico

Test Result: Pass

Status: Test Completed

Psti and limit line

1.00 0.75 0.25 18:15:00 18:25:00 17:45:00 17:55:00 18:05:00 18:35:00 18:45:00 18:54:59 17:35:00 19:04:59 17:25:00 17:15:00

Plt and limit line

Parameter values recorded during the test:

Vrms at the end of test (Volt):	230.26			
Highest dt (%):	0.00	Test limit (%):	N/A	N/A
T-max (mS):	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	-0.08	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.064	Test limit:	0.650	Pass

Test Personnel:	Rick Hill MIND	Test Date:	February 20, 2019
Supervising/Reviewing			
Engineer:			
(Where Applicable)		Limit Applied:	All
Product Standard:	IEC 61000-3-3		
		Ambient	
Input Voltage:	230V 50Hz	Temperature:	22.5°C
		Relative Humidity:	45.5%
Pretest Verification w/		Atmospheric	
Artifact:	NA	Pressure:	984.4mbars

Deviations, Additions, or Exclusions: None

10 Electrostatic Discharge Immunity Test

10.1 Method

Tests are performed in accordance with IEC 61000-4-2.

TEST SITE: Vertical Ground Reference Plane

<u>Site Designation</u>: The Vertical Ground Reference Plane is Intertek built Vertical and Horizontal Planes greater than 2m X 2m.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				A.0864		
4333	Ambient Data Logger	Extech	SD700	09	03/27/2018	03/27/2019
4398	ESD Insulator Pad	Intertek	ESDIP	RLH001	VBU	VBU
4399	ESD Bleed Resistors	Intertek	ESDBLDR	GS001	VBU	VBU
	ESD Verticle Coupling			SKM00		
3567	Plane	Intertek	ESD Verticle	2	VBU	VBU
				SKM00		
3563	ESD Table	Intertek	ESD Table	1	VBU	VBU
RE-59	ESD Simulator	Teseq	NSG438	1291	11/16/2018	11/16/2019

Software Utilized:

Name	Manufacturer	Version
None		

10.3 Results:

The sample tested was found to Comply.

10.4 Setup Photographs:

Figure 10-1 Electrostatic Discharge Test Setup

Figure 10-2 Electrostatic Discharge Test Setup 2

Figure 10-4 Electrostatic Discharge Test Setup 4

Figure 10-5 Electrostatic Discharge Test Setup

5

Figure 10-6 Electrostatic Discharge Test Setup VCP

10.5 Data:

Test	Discharge				Test V	oltages	, Polari	ties and	d Result	t Class	ificatio	า		
Test Doint	Voltage	2	kV	4	kV	6	kV	8	kV		15	kV		kV
POIN	Туре	Pos	Neg	Pos	Neg	Pos	Neg	Pos	Neg		Pos	Neg	Pos	Neg
HCP	Contact			Α	Α					/				
VCP	Contact			Α	Α					3 k/				
1	Contact			Α	А					ve {				
2	Contact			Α	Α					ode				
3	Contact			Α	Α					ily a				
4	Contact			Α	Α					s or				
5	Contact			Α	Α					ge				
6	Contact			Α	А					chai				
7	Air	А	Α	Α	Α			Α	Α	Disc				
8	Contact			Α	Α					∆ir I				
9	Contact			Α	Α									
10	Contact			Α	Α									
11	Contact			Α	Α									
		Elv	vis Ullo	a-Torre	S									
			EUT											
Test Pe	rsonnel:						Test	Date:			Febru	iary 19,	2019	
Superv	ising/Reviewii	ng												
Engine	er:						_				_			
(Where	e Applicable)					_	Requ	ired Pe	rtorma	nce:	В			
Product Standard: EN 61000-6-1			Test	Levels:			See T	able Ab	ove					
Input V	oltage:	230V 50Hz			Ambi	ient Ter	mperati	ure:	30.69	₽C				
Waveform Verified on			Relat	ive Hur	nidity:		24.3 9	%						
Oscillos	scope:	N/	4			Atmospheric Pressure:			990.2	mbars				
470k x	2 Strap(s)													
Verified	d:	95	51kΩ											

Notes:

(A) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

11 Radiated, radio-frequency, electromagnetic field immunity test

11.1 Method

Tests are performed in accordance with IEC 61000-4-3.

TEST SITE: Compact Chamber.

<u>Site Designation</u>: The Compact Chamber is a Braden Shielding Systems 3meter Semi Anechoic Chamber for performing a 16 point calibrated field immunity test.

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				A.0864		
4333	Ambient Data Logger	Extech	SD700	09	03/27/2018	03/27/2019
	Broadband amplifier (
	80MHz - 1GHz) OLD	Amplifier	200W1000M			
3555	Den ID 18779	Research	7A	16049	VBU	VBU
		Maury	US-N-MM-	16 07		
3569	Coaxial Cable 3 meters	Microwave	118	152	VBU	VBU
		Amplifier				
207	Antenna	Research	AT5080	306847	VBU	VBU
	Spectrum Analyzer Old	Hewlett		3412A0		
3627	Den- 18814	Packard	HP 8594E	0103	02/26/2018	02/26/2019
		Rhode &				
569	Signal Generator	Schwarz	SMR20	101111	12/6/2018	12/6/2019
		Amplifier				
152	Directional Coupler	Research	DC6080	304859	6/10/2018	6/10/2019
	Power Amplifier					
	100watts 700MHz to		ARI-6000-			
4286	6GHz	Com Power	100W	1005	VBU	VBU
	Double Ridge Guide					
271	Horn Antenna	A H Systems	SAS-571	787	VBU	VBU
	Dual Directional					
4315	Coupler	Werlatone	C10117-10	115504	03/27/2018	03/27/2019
4471	Field Probe	ETS-Lindgren	HI-6113	219145	12/5/2018	12/5/2019
	2 Meter RF Cable	Maury	UC-N-MM-	14.01.3		
3044	18GHz EMC lab	Microwave	78	91	7/18/2018	7/18/2019
		Maury	US-N-MM-	16 07		
3568	Cable	Microwave	196	151	VBU	VBU

Software Utilized:

Name	Manufacturer	Asset #	Version
Total Integrated	ETS-Lindgren	1330	6.0
Laboratory Environment			
Profile			
Name	Manufacturer	Asset #	Version/Rev
Master Radiated	ETS-Lindgren	1330-005	11/7
Immunity			

11.1 Results:

The sample tested was found to Comply.

11.2 Setup Photographs:

Figure 11-1 Radiated Immunity Test Setup

11.3 Data:

Field	Frequency		Antenna Polarity, Azimuths and Result Classification						
Level	Range	Vertical					Horiz	ontal	
(V/m)	MHz	0	90	180	270	0	90	180	270
3	80 -1000	А	А	А	А	А	А	Α	А
3	1400 - 2000	Α	А	А	А	Α	Α	Α	А
1	2000 - 2700	Α	Α	А	А	Α	Α	Α	А

Test Personnel:	Rick Hill MENT	Test Date:	February 19, 2019
Supervising/Reviewing		Modulation:	1 kHz
Engineer:			
(Where Applicable)		Required Performance:	Α
Product Standard:	EN 61000-6-1	Test Levels:	See Table Above
Input Voltage:	230V 50Hz	Ambient Temperature:	23.8 ºC
		Relative Humidity:	28.7 %
Field Level Monitored:	Yes	Atmospheric Pressure:	990.2 mbars

Notes:

(A) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

12 Electrical Fast Transient/Burst Immunity Test

12.1 Method

Tests are performed in accordance with IEC 61000-4-4.

TEST SITE: Vertical Ground Reference Plane

<u>Site Designation</u>: The Vertical Ground Reference Plane is Intertek built Vertical and Horizontal Planes greater than 2m X 2m

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				A.0864		
4333	Ambient Data Logger	Extech	SD700	09	03/27/2018	03/27/2019
				111230		
4149	EFT Network	Thermo Fisher	E503	1	2/11/2019	2/11/2020

Software Utilized:

Name	Manufacturer	Version	
CEWare32	Thermo Electron Corp.	Version 4.00	

12.3 Results:

The sample tested was found to Comply.

12.4 Setup Photographs:

Figure 12-1 Fast Transients Test Setup

12.5 Test Data:

Test	Coupling	0.2	T 5kV	est Vol 0.	tages, Po 5kV	larities,	and Re kV	sult Cla 2	assificat kV	ion 4	kV
FUIII	Method	pos	neg	pos	neg	pos	neg	pos	neg	pos	neg
Power L1	Direct					А	А				
Power L2	Direct					А	А				
Power PE	Direct					А	А				

Test Personnel:	Reshar Rouse RJR	Test Date:	3-May-2019
Supervising/Review		Pulse Repetition	
ing Engineer:		Frequency:	5kHz
(Where Applicable)		Required Performance	В
Product Standard:	EN 61000-6-1	Test Levels:	See Table Above
Input Voltage:	230V 50Hz	Ambient Temperature:	23.5 ºC
Waveform Verified		Relative Humidity:	28.9 %
on Oscilloscope:	Yes	Atmospheric Pressure:	1002.7 mbars

Notes:

(A) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

13 Immunity to Surge

13.1 Method

Tests are performed in accordance with IEC 61000-4-5.

TEST SITE: Vertical Ground Reference Plane

<u>Site Designation</u>: The Vertical Ground Reference Plane is Intertek built Vertical and Horizontal Planes greater than 2m X 2m.

13.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				A.0864		
4333	Ambient Data Logger	Extech	SD700	09	03/27/2018	03/27/2019
				111230		
4149	Surge Network	Thermo Fisher	E503	1	2/11/2019	2/11/2020

Software Utilized:

Name	Manufacturer	Version
CEWare32	Thermo Electron Corp.	Version 4.00

13.3 Results:

The sample tested was found to Comply.

13.4 Setup Photographs:

Figure 13-1 Combination Wave Surge Test Setup

13.5 Test Data:

	Test Voltages, Polarities, and Result Classification								
	0.5	5kV	1	1kV		2kV		4kV	
Test	pos	neg	pos	neg	pos	neg	pos	neg	
L1-PE, at 0 deg	А	А	А	А	А	А			
L1-PE, at 90 deg	А	А	А	Α	Α	А			
L1-PE, at 180 deg	А	А	А	Α	Α	Α			
L1-PE, at 270 deg	А	А	А	Α	Α	Α			
N-PE, at 0 deg	А	А	А	Α	Α	Α			
N-PE, at 90 deg	А	А	А	Α	Α	Α			
N-PE, at 180 deg	А	А	А	Α	Α	А			
N-PE, at 270 deg	А	А	А	Α	Α	Α			
L1-N, at 0 deg	А	А	А	Α	Α	Α			
L1-N, at 90 deg	А	А	А	Α					
L1-N, at 180 deg	А	А	А	Α					
L1-N, at 270 deg	А	А	А	Α					

Intertek

Reshar Rouse RJR	Test Date:	3-May-2019
	Required Performance:	В
EN 61000-6-1	Test Levels:	See Table Above
230V 50Hz	Ambient Temperature:	24.0 ºC
	Relative Humidity:	29.0 %
Yes	Atmospheric Pressure:	1002.6 mbars
	Reshar Rouse RJR EN 61000-6-1 230V 50Hz Yes	Reshar Rouse RJRTest Date:Required Performance:EN 61000-6-1230V 50HzAmbient Temperature:Relative Humidity:YesAtmospheric Pressure:

Notes:

(A) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

14 Conducted, radio-frequency, electromagnetic field immunity test

14.1 Method

Tests are performed in accordance with IEC 61000-4-6.

TEST SITE: Vertical Ground Reference Plane

<u>Site Designation</u>: The Vertical Ground Reference Plane is Intertek built Vertical and Horizontal Planes greater than 2m X 2m

14.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
4333	Ambient Data Logger	Extech	SD700	A.086409	03/27/2018	03/27/2019
			F-2031-			
76	EM Injection Clamp	FCC	23mm	357	9/24/2018	9/24/2019
				3318A072		
95	Power Sensor	HP	HP 8482H	68	05/09/2018	05/09/2019
		Rohde &				
83	Signal Generator	Schwarz	SMY02	DE23662	01/16/2018	01/16/2019
		Com-Power	ACS-250-			
3082	Power Amplifier	Corp	100w	711970	VBU	VBU
			24500F-			
4350	N to N low loss cable	abrind	NM-6	2271015	04/26/2018	04/26/2019
	2 Meter RF Cable	Maury	UC-N-			
3043	18GHz EMC lab	Microwave	MM-78	14.01.393	07/03/2018	07/03/2019
			50FH-			
4293	6dB 300W Attenuator	JFW	006-300	none	02/26/2018	02/26/2019
	Coupling Decoupling		FCC-801-			
88	Network	FCC	M3-25A	01027	11/29/2018	11/29/2019

Software Utilized:

Name	Manufacturer	Asset #	Version
Total Integrated	ETS Lindgron	1220	Version 6
Laboratory Environment		1330	Version o

Profile:

Name	Manufacturer	Asset #	Version/Rev
Master Conducted Immunity	ETS Lindgren	1330-002	11/3

14.1 Results:

The sample tested was found to Comply.

14.2 Setup Photographs:

Figure 14-1 Conducted Immunity Test Setup

Report Number: 103807635DAL-003

Intertek

Figure 14-2 Conducted Immunity Test Setup

14.3 Test Data:

Injection Device				Result
Туре	Port Description		Test Level (Vrms)	Classification
CDN	AC Power		3	А
Test Personnel:	Reshar Rouse RJR	Test Date:	3-May-2019	
Supervising/Reviewir	ng	Modulation:	1kHz	
Engineer:		Required		
(Where Applicable)		Performance		
Product Standard:	EN 61000-6-1	Test Levels:	See Table Above	
		Ambient		
Input Voltage:	230V 50Hz	Temperature:	22.6 ºC	
		Relative Humidity:	24.8 %	
Test Level Verificatio	n	Atmospheric		
Performed:	Yes	Pressure:	1002.2 mbars	

Notes:

(A) The EUT met the requirements without any degradation of performance.

Deviations, Additions, or Exclusions: None

15 Power Frequency Magnetic Field Immunity Test

15.1 Method

Client declares that the EUT does not contain any magnetically sensitive equipment such as but not limited to: CRT monitors, Hall Effect elements, electro-dynamic microphones, magnetic field sensors or audio frequency transformers. Test not applicable.

16 Voltage Dips / Interruptions Immunity Tests

16.1 Method

Tests are performed in accordance with IEC 61000-4-11.

TEST SITE: Immunity Lab.

16.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				A.0864		
4333	Ambient Data Logger	Extech	SD700	09	03/27/2018	03/27/2019
	Model					
	MX30K0C4Y20400 &					
	CIC-PC-PCX		MX30K0C4Y	1247A0		
1496	Power Analyzer	Ametek	20400	2352	11/13/2018	11/13/2019

Software Utilized:

Name	Manufacturer	Version
MX Series MXGUI	California Instruments	2.2.0.9 Feb. 22, 2010

16.3 Results:

The sample tested was found to Comply.

16.4 Setup Photographs:

Figure 16-1 Voltage Test Setup

16.5 Test Data:

Specification	Rated Fr Voltage y (Vac) (F	Frequenc y (Hz)	Voltage Test Level	Voltage Dip (%)	Test Voltage (Vac)	Duration	Result Classification	
							0	180
	(100)	()	(%)	(/0)	(100)		deg	deg
0%UT for 0.5 Cycles	230	50	0	100	0.0	0.5 Cycle	А	А
0%UT for 1 Cycles	230	50	0	100	0.0	1 Cycles	А	А
70%UT for 25 Cycles	230	50	70	30	161	25 Cycles	А	Α
0%UT for 250 Cycles	230	50	0	100	0.0	250 Cycles	В	В

Test Personnel:	Rick Hill MILIT	Test Date:	February 15, 2019
Supervising/Review			
ing Engineer:			
(Where Applicable)		Required Performance:	BBCC
Product Standard:	EN 61000-6-1	Test Levels:	See Table Above
Input Voltage:	230V 50Hz	Ambient Temperature:	22.5°C
Waveform Verified		Relative Humidity:	45.5%
on Oscilloscope:	Yes	Atmospheric Pressure:	984.4mbars

Notes:

- (A) The EUT met the requirements without any degradation of performance.
- (B) The EUT turned off but came back on and recovered when Voltage returned.

Deviations, Additions, or Exclusions: None

17 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	3-May-2019	103807635DAL-003	TD	WBC	Original Issue